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Abstract. Using the results of an extended set of high-resolution non-radiative hydrodynamic
simulations of galaxy clusters we obtain simple analytic formulae for the dark matter and hot
gas distribution, in the spherical approximation.

1. Introduction
Galaxy clusters are the largest virialized systems we observe in the universe today.

Any comparison with observations in the optical or via gravitational lensing requires
modeling at least the dark matter (DM) component of galaxy clusters, while X-ray or
millimetric observations (e.g. the Sunyaev-Zel’dovich effect) require knowledge of the
internal structure of the Intra Cluster Medium (ICM). Both aspects can in principle be
studied by means of numerical simulations.

In this paper we summarize some of our results: an extended discussion can be found
in Rasia et al. (2004).

Numerical Simulations. The sample includes 17 high-resolution clusters, simulated
with the hydro-N-body code GADGET (Springel et al. 2001). Their virial masses range
between 3.1 × 1014h−1M� and 1.7 × 1015h−1M� and virial radii, Rv, between 1.4 and
2.5h−1 Mpc. Our analysis is restricted to the z = 0 outputs. Thanks to the random
criterion used to select the re-simulated haloes, the modeling we are doing will be repre-
sentative of an average cluster, in an average environment and dynamical configuration.

2. Modeling dark matter profiles
The underlying idea of this work is to build a self-consistent model for the radial profiles

describing the dynamical properties of galaxy clusters. For each cluster we compute the
radial profile of the interested quantity, then we average the profiles and fit this using at
most double power-law analytic fits. We decided to consider all the profiles presented in
this work only at radii larger than log x = −1.85, where x ≡ r/Rv. Within this radius
our clusters contain on average ≈ 800 dark matter particles. In all plots the solid line is
the average profile, the shaded region represents the error on the mean and the vertical
dashed line is the inner-radius limit of our model.

Density structure. A model for the dark matter density profile is straightforward to
obtain by combining our coarse-grained phase-space density model, f(x) ≡ ρ(x)/σ3

r(x) ∝
x−1.875, with the radial velocity dispersion profile σ̃r(x) = 0.67x0.3(x + xp)−0.48, with
xp = 10−1.16 and solving for the density. We easily get the following approximate fit for
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Figure 1. Density profiles. Left (Right) panel: average dark matter (gas) profile ρ(x)x2. The
dashed line is our fit, while the dotted lines is the NFW model (β-model). Central panel: gas
(solid) and dark matter (dashed) density profile normalized so that they match at the virial
radius.

the dark matter spatial density distribution:

ρ̃(x) =
ρ0

x(x + xp)1.5
; ρ0 =

(1 − fb)∆v

6
[
(1 + 2xp)/(1 + xp)1/2 − 2x

1/2
p

] , (2.1)

where ∆v is the virial over-density specified by the cosmological model and fb = 0.097
is the average baryonic fraction.

The mean density profile, averaged over the whole sample of simulated clusters, is
shown in Fig. 1, our model (eq. 2.1) is represented by the dashed line, while with the
dotted line we represent the NFW model (Navarro, Frenk & White 1997), with a con-
centration parameter equal to c = 1/xs = 6.3.

Mass estimates. Given the previous relations, the cluster mass inside any given
radius can be obtained in different ways: by integrating our density profile (eq. 2.1),
or by integrating the NFW profile, or through the Jeans equation. We found that the
Jeans equation is a proper description of the mass, being the error always smaller than
10 per cent and that the mass derived by integrating our density profile is in very good
agreement with the actual mass.

3. Modeling gas profiles
Density structure. In analogy to what has been done in the previous section for the

dark matter profiles, in this section we will apply a similar analysis to the radial profiles
of the hot gas component. Let us start from the density. In the central panel of Fig. 1
we compare the profiles of gas and dark matter, normalized so that they match at the
virial radius.

The profiles of gas and dark matter are roughly self-similar for x > 0.06, while the
gas profile becomes flatter in the internal region. The self-similarity of the DM and gas
profiles in the outer part of the cluster suggested us to fit the gas density profile with
the same functional form used for the dark matter, with a different concentration value,
relaxing the constraint on the inner slope and assuming of course a different normalization
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Figure 2. Average gas temperature profile for our model (dashed curve).

based on the average baryon fraction:

ρ̃(x) ≡ ρ(x)
ρb

=
ρ0

(x + xp)2.5
, ρ0 =

fb∆v

3
×

[
16x3

p/3 + 40x2
p/3 + 10xp + 2

(xp + 1)2.5
− 16x

1/2
p

3

]−1

(3.1)
where xp = 0.04;

In the right panel of Fig. 1 we compare the average profile for the gas density obtained
from our simulated clusters (solid curve) with the proposed fit (dashed curve) and with
the β-model (Cavaliere & Fusco-Femiano 1976, 1978)(dotted line).

Temperature structure. Observations suggest the presence of a central isothermal
region followed by a smooth decline towards the outskirts and there are strong indications
that the value of the temperature at the virial radius is approximately a factor of 2 smaller
than at the center.

In Fig. 2 we show the average temperature profile normalized by the estimate of the
virial temperature, Tv ≡ (GµmpMv)/(kbRv). In this relation G is the gravity constant,
µ = 0.59 is the mean molecular weight, mp is the proton mass and kb is the Boltzmann
constant.

The sudden temperature drop at x ≈ 0.2 cannot be fit by a double power-law as those
used so far. Instead, we model this sharp transition by using the following expression:
T (x)/Tv = (0.255x0.016)/[(x4 + x4

p)
0.13], where xp = 10−0.51.

Mass estimates. A typical mass estimator using ICM as a tracer and assuming a
spherical and static gravitational potential is the equation of the hydrostatic equilibrium.
However, the hypotheses underlying this equation are too restrictive for at least two
reasons. First, our simulations show that the mean velocity anisotropy β(x) is not zero,
second the residual bulk motions of the gas must be taken into account.

A more proper mass estimate, including the radial velocity dispersion and the velocity
anisotropy, is given by:

ME(< x)=−xMvT̃ (x)

[
d ln ρ̃(x)
d ln x

+
d ln T̃ (x)

d ln x

]
+xMvσ̃

2
r(x)

[
d ln ρ̃(x)
d ln x

+
d ln σ̃2

r(x)
d ln x

+ 2β̃(x)
]
.

(3.2)

We found that the β-model underestimates the true cluster mass at most radii, whereas
using our density profile improves the estimate at all radii and reduces the error at the
virial radius to 15 per cent. The complete model is the most accurate at all radii, with
an error of 5 to 10 per cent at x > 0.2.
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