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Abstract

We describe the processes obtained by time reversal of a class of stationary jump diffusion
processes that model the dynamics of genetic variation in populations subject to repeated
bottlenecks. Assuming that only one lineage survives each bottleneck, the forward process
is a diffusion on [0, 1] that jumps to the boundary before diffusing back into the interior.
We show that the behavior of the time-reversed process depends on whether the boundaries
are accessible to the diffusive motion of the forward process. If a boundary point is
inaccessible to the forward diffusion then time reversal leads to a jump diffusion that jumps
immediately into the interior whenever it arrives at that point. If, instead, a boundary
point is accessible then the jumps off of that point are governed by a weighted local time
of the time-reversed process.
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1. Introduction

Kingman’s observation that the genealogy of a random sample of individuals from a pan-
mictic, neutrally evolving population can be represented as a Markov process [16], [17] ranks
as one of the most influential contributions to mathematical population genetics. Not only
has the coalescent led to a deeper understanding of evolution in neutral populations, but it
also plays a central role in statistical genetics where it facilitates the efficient simulation of
sample genealogies. Unfortunately, the Markov property that makes Kingman’s coalescent both
mathematically and computationally tractable is usually not shared by genealogical processes in
populations composed of nonexchangeable individuals. In particular, this is true when there are
fitness differences between individuals, since then the selective interactions between individuals
cause genealogies to depend on the history of lineages that are nonancestral to the sample. The
key to overcoming this difficulty is to extend the genealogy to a higher-dimensional process that
does satisfy the Markov property. This has been done in two ways. One approach is to embed
the genealogical tree within a graphical process called the ancestral selection graph [6], [18],
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[24] in which lineages can both branch and coalesce. The intuition behind this construction is
that the effects of selection on the genealogy can be accounted for by keeping track of a pool of
potential ancestors which includes lineages that have failed to persist due to being out-competed
by individuals of higher fitness.

An alternative approach was proposed by Kaplan et al. [12], who showed that the genealogical
history of a sample of genes under selection can be represented as a structured coalescent
process. Here we think of the population as being divided into several panmictic subpopulations
(called genetic backgrounds) which consist of individuals that share the same genotype at the
selected locus. Because individuals with the same genotype are exchangeable (i.e. they have
the same fitness), the rate of coalescence within a background depends only on the size of
the background and the number of ancestral lineages sharing that genotype. Thus, to obtain a
Markov process, we need to keep track of two kinds of information: (i) the type of ancestral
lineages, and (ii) the frequencies of the alleles segregating at the selected locus, followed
backwards in time. For many applications, it is assumed that the population is at equilibrium
and that the forwards-in-time dynamics of the allele frequencies are described by a stationary
diffusion process. In this case, the ancestral process of allele frequencies can be identified by
time reversal of the diffusion process. In particular, if the diffusion process is one-dimensional
then the time-reversed process conveniently has the same law as the forward process. A formal
derivation of the structured coalescent process for such an equilibrium population is given in
[2] and various applications are discussed in [1], [5], and [30].

The focus of this paper is on the time reversal of a population genetical model that incor-
porates mutation, selection, genetic drift, and population bottlenecks. To be concrete, consider
a locus with two alleles, A0 and A1, and let pN(t) denote the frequency of A1 at time t in a
population of size N . In the absence of bottlenecks, we will suppose that the jump process
pN(·) can be approximated by the Wright–Fisher diffusion p(·) with generator

Aφ(p) = 1
2p(1 − p)φ′′(p)+ (µ0(1 − p)− µ1p + s(p)p(1 − p))φ′(p)

≡ 1
2v(p)φ

′′(p)+ µ(p)φ′(p), (1.1)

where µ0 and µ1 are the scaled mutation rates from A0 to A1 and from A1 to A0, respectively,
and s(p) is the scaled and possibly frequency-dependent selection coefficient of A1 relative
to A0. In using the diffusion approximation, we assume that N is large, that time is measured
in units of N generations, and that the unscaled mutation rates and selection coefficient are
of order N−1. Convergence results justifying the passage to the diffusion limit can be found
in [7].

Population bottlenecks are transient events during which most of the population is descended
from a small number of individuals. On the diffusive time scale, these can be modeled as
instantaneous jumps in the allele frequencies, and in this paper we will be concerned with a
class of models in which the bottlenecks always result in the temporary fixation of one of the two
alleles, i.e. p(·) always jumps to 0 or 1. We have two scenarios in mind. In the first, we consider
a locus that is part of a nonrecombining segment of DNA (e.g. a mammalian mitochondrial
genome) subject to strong selective sweeps which occur at rate λ. During each sweep, a unique
copy of a favorable mutation arises at some linked site and rises rapidly to fixation. Depending
on whether the new, strongly selected mutation occurs on a chromosome carrying an A1 or A2
allele, the frequency of A1 will either increase from p to 1 with probability p or decrease from
p to 0 with probability 1 − p. Here we imagine that the selective advantage of the favored
mutation is so strong that this change can be treated as a jump. The pseudohitchhiking model
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introduced by Gillespie [10] belongs to this class, as does a related, more general model studied
by Kim [15].

The second scenario concerns demographic bottlenecks that occur during transmission of
parasites from infected to uninfected hosts. Here we will let p denote the frequency of A1 in a
chronological series of infected hosts linked by a transmission chain, and we will assume that
p(·) can be modeled by a diffusion process from the time when one of these hosts is first infected
to the time when that host first transmits the infection to the next host in the transmission chain.
Suppose that transmissions occur at rate λ, and that each new infection is founded by a single
parasite, as has been proposed for HIV-1 [31] and for some bacterial pathogens [29]. In this
case, p will jump to 0 or 1 following each transmission depending on the type of transmitted
parasite. Also, to allow for the possibility that transmission itself might be selective (see,
e.g. [27]), we will let w(p) denote the probability that the transmitted parasite is of type A1
given that the frequency of this allele in the transmitting host is p. In general, we stipulate that
w(0) = 0, w(1) = 1, and that w(p) is monotonically increasing. If transmission is unbiased
then w(p) = p, as in the pseudohitchhiking model. A particular case of this transmission
chain model was studied by Rouzine and Coffin [28] to understand the effects of selection and
transmission bottlenecks on antigenic variation in HIV-1.

Both of these scenarios can be modeled by a jump diffusion process with infinitesimal
generator

Gφ(p) = 1
2p(1 − p)φ′′(p)+ (µ0(1 − p)− µ1p + s(p)p(1 − p))φ′(p)
+ λw(p)(φ(1)− φ(p))+ λ(1 − w(p))(φ(0)− φ(p)), (1.2)

where, for technical reasons, we will assume that s(p) andw(p) are smooth functions on [0, 1],
and that both mutation rates, µ0 and µ1, are positive. Under these conditions, it can be shown
(cf. Lemma 3.1) that the process p(·) has a unique stationary distribution, π(p) dp, which has
a density on [0, 1]. To characterize the structured coalescent process corresponding to this
model, we need to identify the stationary time reversal of the process p(·). Formally, this can
be done by solving the following adjoint problem for the operator G̃:

∫ 1

0
ψ(p)Gφ(p)π(p) dp =

∫ 1

0
φ(p)G̃ψ(p)π(p) dp, (1.3)

where φ is in the domain of G. If G̃ generates a Markov process p̃(·) then this process will
have the same law as the stationary time reversal of p(·) [23]. When λ = 0, p(·) is a diffusion
process and a simple calculation using integration by parts shows that G̃ = G, demonstrating
that the law of the diffusion is invariant under time reversal, as remarked above. However, if
λ > 0 then, for the adjoint condition (1.3) to be satisfied for all φ ∈ C2(R)∩ C[0, 1], we must
instead set

G̃ψ(p) = 1
2p(1 − p)ψ ′′(p)+ µ̃(p)ψ ′(p), (1.4)

where

µ̃(p) = 1

π(p)
(p(1 − p)π ′(p)+ (1 − 2p − µ(p))π(p)),

and ψ ∈ C2(R) ∩ C[0, 1] satisfies

ψ(1) =
∫ 1

0
ψ(p)

w(p)π(p)

κ
dp and ψ(0) =

∫ 1

0
ψ(p)

(1 − w(p))π(p)

1 − κ
dp
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with κ = ∫ 1
0 w(p)π(p) dp. Although it is not immediately clear that the operator defined

by (1.4) is the generator of a Markov process, this calculation does show that the process
incorporating bottlenecks is not invariant under time reversal.

To gain some insight into the qualitative behavior of the time-reversed process, it is useful to
consider two heuristic descriptions. We begin by observing that the behavior of p̃(·) depends
strongly on whether the boundary points {0, 1} are accessible or inaccessible to the diffusive
motion of the forward process. Recall that, for the Wright–Fisher diffusion corresponding
to A (which we call the diffusive motion of the jump diffusion process), Feller’s boundary
classification conditions show that 0 and 1 are accessible if and only if u0 <

1
2 and u1 <

1
2 ,

respectively; see, e.g. Section 4.7 of [8]. The importance of this distinction is illustrated in
Figure 1, which shows sample paths of the jump diffusion process corresponding to cases
where the two boundaries are either (a) inaccessible or (b) accessible to the forward diffusion.
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Figure 1: Sample paths of the jump diffusion process (1.2) with either (a) inaccessible or (b) accessible
boundaries. The forward diffusion is a neutral Wright–Fisher process with symmetric mutation: µ0 =

µ1 = 1 in (a) and 0.2 in (b).
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To see what this suggests about the behavior of the time-reversed process, begin at the top of
each figure and follow the sample path backwards in time towards the bottom. If the boundaries
are inaccessible then whenever the sample path is followed back to a boundary at some time,
the forward process will necessarily have reached that boundary via a jump. Consequently, the
time-reversed process must immediately jump into the interval (0, 1) whenever it arrives at a
boundary that is inaccessible to the forward diffusion. The behavior of the time-reversed process
at a boundary that is accessible to the forward diffusion is very different. In this case, when the
sample path of the time-reversed jump diffusion hits that boundary, the forward process may
have arrived there either diffusively or via a jump from the interior (Figure 1(b)). Accordingly,
the time-reversed process need not immediately jump into the interior (0, 1) when it visits the
boundary, although jumps can only occur when the process is on the boundary and are certain
to occur at some such times if λ > 0.

A more quantitative picture of this second case can be obtained by considering a less singular
process that approximates the jump diffusion process corresponding to (1.2). For ε ∈ (0, 1

2 ),
let pε(·) = (pε(t) : t ≥ 0) be a perturbation of a Wright–Fisher diffusion which at rate λ jumps
to a point chosen uniformly at random from an interval of width ε adjacent to one of the two
boundaries. More precisely, let pε(·) be the Markov process with generator

Gεφ(p) = 1
2p(1 − p)φ′′(p)+ (µ0(1 − p)− µ1p + s(p)p(1 − p))φ′(p)

+ λ

(
w(p)

1

ε

∫ 1

1−ε
(φ(q)− φ(p)) dq + (1 − w(p))

1

ε

∫ ε

0
(φ(q)− φ(p)) dq

)
.

Writing πε(p) for the density of the stationary distribution of this process, a simple calculation
using (1.3) shows that the stationary time reversal of pε(·), denoted p̃ε(·), is also a jump
diffusion process with generator

G̃εψ(p) = 1

2
p(1 − p)ψ ′′(p)+ 1

πε(p)
(p(1 − p)π ′

ε(p)+ (1 − 2p − µ(p))πε(p))ψ
′(p)

+ λκε
1

επε(p)
1(1−ε,1](p)

∫ 1

0

w(q)πε(q)

κε
(ψ(q)− ψ(p)) dq

+ λ(1 − κε)
1

επε(p)
1[0,ε)(p)

∫ 1

0

(1 − w(q))πε(q)

1 − κε
(ψ(q)− ψ(p)) dq,

where ψ ∈ C2([0, 1]) and κε = ∫ 1
0 w(p)πε(p) dp. It is easy to read off the behavior of this

process from its generator. In particular, we see that p̃ε(·) can only jump when it is present in
the region [0, ε) ∪ (1 − ε, 1] and that the rate at which jumps occur out of this region is equal
to λκε/(επε(p)) when p ∈ (1 − ε, 1] and λ(1 − κε)/(επε(p)) when p ∈ [0, ε).

To relate these observations to the process p̃(·), let T > 0 and note that, as ε tends
to 0, the sequence of processes (pε(·)) converges in distribution on D[0,1]([0, T ]) to p(·).
Furthermore, because time reversal is a continuous mapping on D[0,1]([0, T ]), the continuous
mapping theorem [7] implies that the sequence of processes (p̃ε(·)) converges in distribution
to the process p̃(·). In particular, this suggests that p̃(·) has the following behavior. For each
ε ∈ (0, 1

2 ), define the additive functionals

L1,ε(t) ≡ 1

ε

∫ t

0

1

π(p̃(s))
1(1−ε,1](p̃(s)) ds,

L0,ε(t) ≡ 1

ε

∫ t

0

1

π(p̃(s))
1[0,ε)(p̃(s)) ds,
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and suppose that, for i = 0, 1, the limits Li(t) = limε→0 Li,ε(t) exist for all t ≥ 0. Here we
would like to interpretLi(t) as the local time of the process p̃(·) at i ∈ {0, 1}. Then, by compar-
ison with the jump diffusion processes p̃ε(·), we expect that if both boundaries are accessible
then p̃(·) is a jump diffusion with diffusive motion in (0, 1) governed by (1.4), which jumps
from the boundary point 0 to a random point in the interval (0, 1) distributed asw(q)π(q) dq/κ
as soon as L0(·) exceeds an exponential random variable with parameter λκ , and which jumps
from the boundary point 1 to a random point distributed as (1 − w(q))π(q) dq/(1−κ) on (0, 1)
as soon as L1(·) exceeds an exponential random variable with parameter λ(1 − κ). Although
these remarks are purely heuristic, we show below that they correctly describe the stationary
time reversal of the pseudohitchhiking model and other jump diffusions with generators of the
form (1.2).

2. Main result

Although our principle concern is with the modified Wright–Fisher process corresponding
to (1.2), we state our results for a more general class of jump diffusion processes, which we
now introduce. Let the forward process (p(t) : t ≥ 0) be the jump diffusion process on [0, 1]
corresponding to the generator

Gφ(p) = 1
2v(p)φ

′′(p)+µ(p)φ′(p)+λw0(p)(φ(0)−φ(p))+λw1(p)(φ(1)−φ(p)) (2.1)

for φ ∈ C2([0, 1]). In other words, the diffusive motion of p(·) is governed by the generator

Aφ(p) = 1
2v(p)φ

′′(p)+ µ(p)φ′(p), φ ∈ C2([0, 1]),
with infinitesimal drift and variance coefficients, µ(·) and v(·), respectively, while jumps occur
at a constant rate λ ≥ 0 and move the process from state p ∈ [0, 1] either to 0 with probability
w0(p) ∈ [0, 1] or to 1 with probability w1(p) := 1 − w0(p). Throughout this paper, we will
make the following assumption.

Assumption 2.1. The infinitesimal mean and variance satisfy µ(0) > 0 > µ(1) and v(0) =
v(1) = 0 < v(p) for all p ∈ (0, 1), respectively. Furthermore, v(·), µ(·), and w0(·) are
analytic functions in a neighborhood of [0, 1], and the infinitesimal variance has nonzero
derivatives, v′(0) > 0 > v′(1), at the boundaries.

For example, ifA is the generator of a neutral Wright–Fisher diffusion (1.1) (with s(p) ≡ 0),
then Assumption 2.1 is satisfied with µ(0) = µ0 > 0, µ(1) = −µ1 < 0, and v′(0) =
1 = −v′(1). We also remark that, when Assumption 2.1 is satisfied, Lemma 3.1 shows that
(p(t) : t ≥ 0) has a unique stationary distribution π(p) dp with a density π(·) that satisfies a
second-order ordinary differential equation with nonlocal boundary conditions.

In Theorem 2.1, we characterize the time-reversed process (p̃(t) : t ≥ 0) of the forward
process (p(t) : t ≥ 0). In keeping with the heuristic description given in the introduction,
(p̃(t) : t ≥ 0) is also a jump diffusion process on [0, 1] but now with jumps from the boundary
{0, 1} to the interior (0, 1). The diffusive motion of this process is governed by the generator

Ãψ(p) = 1

2
v(p)ψ ′′(p)+ µ̃(p)ψ ′(p), where µ̃(p) := −µ(p)+ (vπ)′(p)

π(p)
(2.2)

and ψ ∈ C2([0, 1]). Note that this diffusion has the same infinitesimal variance as the forward
diffusion, but has a different infinitesimal drift that depends on the jump events via the stationary
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density π(·). Also, the jump rates of the time-reversed process depend on a local time process
which is described in the following way. Recall that the scale function and the speed measure
associated with Ã are

S̃(p) :=
∫ p

1/2
exp

(
−

∫ x

1/2

2µ̃(z)

v(z)
dz

)
dx and m̃(dp) := 1

v(p)S̃′(p)
dp, p ∈ [0, 1],

(2.3)
respectively. The scale function will be identified with the associated measure S̃(dp) :=
S̃′(p) dp on [0, 1] and the speed measure m̃(dp) will be identified with its density function.

We define the local time process of the jump diffusion p̃(·) such that it agrees with the local-
time process of the diffusive motion until the first jump. More formally, we will introduce
a nonnegative process (L̃p(t) : t ≥ 0, p ∈ [0, 1]) which is almost surely (a.s.) continuous in
(t, p) and which satisfies∫ t

0
f (p̃(u)) du =

∫ 1

0
f (p)L̃p(t)m̃(dp) a.s. for t ≥ 0, (2.4)

for all measurable f : [0, 1] → [0,∞). We remark that the local-time process satisfying (2.4)
differs from the semimartingale local time of the diffusive motion of the time-reversed process
by a scalar factor (see (7.4) below), i.e. L̃ is a weighted semimartingale local time. That
this process is well defined is shown below in Lemma 6.1. The last ingredient needed in our
construction is a pair of independent, exponentially distributed random variables, R0 and R1,
with parameters

ri := lim
p→i

m̃(p)

π(p)
λκi ∈ [0,∞], (2.5)

where κi := ∫ 1
0 wi(p)π(p) dp, i ∈ {0, 1}. The existence of the limit displayed in (2.5) is

guaranteed by Lemma 4.3. By convention, Ri := 0 if ri = ∞ and Ri := ∞ if ri = 0.
With these definitions we now describe the dynamics of the time-reversed process

(p̃(t) : t ≥ 0). Between jump times, (p̃(t) : t ≥ 0) evolves according to the law of the diffusion
governed by Ã. If this diffusion hits a boundary i ∈ {0, 1} at a time t ≥ 0 and if at that time the
local-time process exceeds the random variable Ri , that is, if L̃i(t) ≥ Ri , then p̃(·) jumps from
i to a random point chosen from (0, 1) according to the distribution (1/κi)

∫
wi(p)π(p) dp.

From this point, p̃(·) restarts independently of the sample path up to that time.
To better understand how the dynamics of p̃(·) are influenced by the boundary behavior of the

forward process, we take a closer look at the jump times. Because the coefficients v(·) andµ(·)
are smooth on an interval containing [0, 1], an application of Feller’s boundary classification
criteria shows that a boundary point i ∈ {0, 1} is accessible to the forward diffusive motion if
and only if 2|µ(i)| < |v′(i)|. Then, in conjunction with Lemma 3.2 below, which describes
the asymptotics of the density π(p) near the boundaries, Lemma 4.3 below implies that

ri := lim
p→i

m̃(p)

π(p)
λκi

⎧⎪⎨
⎪⎩

∈ (0,∞) if 2|µ(i)| < |v′(i)| and λwi(·) 
≡ 0,

= ∞ if 2|µ(i)| ≥ |v′(i)| and λwi(·) 
≡ 0,

= 0 if λwi(·) ≡ 0,

for i ∈ {0, 1}. Thus, provided that λwi(·) 
≡ 0, the time-reversed process immediately jumps
into the interior (0, 1) if the boundary point is inaccessible to the forward diffusive motion, that
is, if 2|µ(i)| ≥ |v′(i)|. In this case, the state space of p̃(·) is in fact [0, 1] \ {i}. In contrast, if
i is accessible to the forward diffusion and λwi(·) > 0, then the exponential random variable
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Ri is a.s. positive, and so a positive amount of local time will have to be accrued at i before a
jump occurs off of this boundary point.

Note that, in either case, we expect that both boundary points are accessible to the backward
diffusive motion. According to Lemma 4.1 below,

µ̃(i) =
{
µ(i) if 2|µ(i)| ≤ |v′(i)|,
v′(i)− µ(i) if 2|µ(i)| ≥ |v′(i)|, i ∈ {0, 1},

and, again, an application of Feller’s boundary criteria shows that the boundary point i is
accessible to the backward diffusive motion whenever 2µ(i) 
= v′(i). The critical case is more
subtle. Then, 2µ̃(i) = v′(i), and so i would be inaccessible if the drift coefficient µ̃(·) were
analytic in a neighborhood of i. However, we show in Lemma 4.1 that

µ̃(p) = µ(i)+ v′(i)
ln (|p − i|) +O

( |p − i|
ln |p − i|

)
,

and then Feller’s criteria reveal that the logarithmic singularity is just sufficient to render the
point i accessible to the backward diffusive motion when 2µ̃(i) = v′(i).

Our main result states that the process p̃(·) has the same law as the stationary time reversal
of the jump diffusion p(·).
Theorem 2.1. Suppose that Assumption 2.1 holds. Let p(·) be the jump diffusion on [0, 1] with
generator G as defined in (2.1). Then the process (p̃(t) : t ≥ 0) is a version of the stationary
time reversal of (p(t) : t ≥ 0), that is,

(p̃(t) : t ≤ T )
d= (p(T − t) : t ≤ T ) for all T ≥ 0

if the distribution of p(0) is the stationary distribution π(p) dp. Here ‘
d=’ denotes equality in

distribution.

The proof of Theorem 2.1 is deferred to Section 7.
Theorem 2.1 establishes the time reversal of the stationary process over a fixed time interval

[0, T ], T < ∞, fixed and nonrandom. Readers interested in other pathwise time reversals are
referred to the literature. It has been shown that processes which are in ‘Hunt duality’ (see [4,
Chapter VI]) are time reversals of each other. Reversing time at the end point of an excursion
from an accessible boundary point results in the dual process being started at this boundary
point; see [9] and [21]. The paper by Mitro [22] reverses time at inverse local time points.

The remainder of the paper is organized as follows. The next section collects some results
concerning the stationary distribution of the jump diffusion process (1.2). In Section 4 we
describe the boundary behavior of p̃(·). In particular, we show that the time-reversed process
jumps immediately off of any boundary that is inaccessible to the forward diffusion. In Section 5
we identify a core for the generator G̃ satisfying the adjoint condition (1.3). The local-time
process of p̃(·) is introduced and studied in Section 6. Finally, in Section 7 we show that p̃(·)
has generator G̃. The proof of this result depends on an application of the Itô–Tanaka formula.

3. The stationary distribution

The following lemma asserts that, if the conditions of Assumption 2.1 are satisfied then the
jump diffusion process p(·) has a unique stationary distribution on [0, 1]. It is also shown that
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this distribution has a density π(·) with respect to Lebesgue measure which satisfies a second-
order ordinary differential equation (ODE) subject to boundary conditions that are nonlocal
whenever λ > 0. If λ = 0 then this equation can be solved explicitly, leading to the familiar
expression

π(p) = C−1 1

v(p)
exp

(
2

∫ p µ(q)

v(q)
dq

)
,

where C is a normalizing constant; see, e.g. Section 4.5 of [8]. Although a general closed-form
expression forπ(·) apparently does not exist when λ > 0, π(·) can be calculated by numerically
solving (3.1a)–(3.1e), below, using a modification of the shooting method [25]. In addition,
below we give an explicit formula for the stationary density in the important special case of a
neutral Wright–Fisher diffusion subject to recurrent bottlenecks.

Lemma 3.1. Suppose that Assumption 2.1 holds. Then there exists a unique stationary dis-
tribution for the process (p(t) : t ≥ 0). This distribution is given by 1(0,1)(p)π(p) dp, where
π : (0, 1) → (0,∞) is the unique solution of the nonlocal boundary value problem(( 1

2vπ
)′′ − (µπ)′ − λπ

)
(p) = 0 for all p ∈ (0, 1), (3.1a)

lim
p→0

(
µπ − ( 1

2vπ
)′)
(p) = λκ0, (3.1b)

lim
p→1

(
µπ − ( 1

2vπ
)′)
(p) = −λκ1, (3.1c)

lim
p→0

(vπ)(p) = 0 = lim
p→1

(vπ)(p), (3.1d)

∫ 1

0
π(p) dp = 1, (3.1e)

where κi := ∫ 1
0 wi(p)π(p) dp for i ∈ {0, 1}. Furthermore, p(t) converges in distribution to

the stationary distribution as t → ∞ for every initial distribution of p(0).

Proof. Existence and uniqueness of a stationary distribution π̄(dp) follow from standard
arguments, so we give only a sketch. Couple two versions of (p(t) : t ≥ 0)with different initial
distributions through the same jump times such that the diffusive motions inbetween jumps are
independent until they first meet and are identical thereafter. Owing to the assumption that
µ(0) > 0 > µ(1), the coupling is successful if there are no jumps, that is, if λ = 0; see
Theorem V.54.5 of [26]. In the presence of jumps (λ > 0), the probability that both components
jump to the same boundary is positive at every jump and, therefore, the two components agree
eventually. As a consequence of this successful coupling and of the compactness of [0, 1], p(t)
converges in distribution to a probability measure π̄(dp) as t → ∞ and π̄(dp) is an invariant
distribution.

Next we prove that π̄(·) has a smooth density π(·). Denote by (X(t))t≥0 the diffusion
governed by A (see (1.1)). The scale function and the speed measure associated with A are

S(p) :=
∫ p

1/2
exp

(
−

∫ x

1/2

2µ(z)

v(z)
dz

)
dx and m(p) dp := 1

v(p)S′(p)
dp, p ∈ [0, 1],

respectively. Existence and smoothness of the density π(·) will be derived from existence
and uniqueness of the transition density Q(t;p, q) of (X(t))t≥0 with respect to the speed
measure. Existence of Q(t;p, q) is established in [11] ([20] is more detailed in a special
case) via an eigen-differential expansion. To state this result more formally, we introduce the
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following notation. The interval defined in [11]—here denoted by I •—is the unit interval
closed at 0 if 0 is accessible, closed at 1 if 1 is accessible, and open otherwise. For this, note
that whenever (X(t))t≥0 hits a boundary point, it immediately returns to the interior (0, 1)
because of the assumption that µ(0) > 0 > µ(1). Moreover, note that the stopping time
min{t ≥ 0 : X(t) 
∈ I •} = ∞ a.s. The generator of (X(t))t≥0 is defined in [11] via right
derivatives. As (X(t))t≥0 is a regular diffusion, this generator coincides with

Af (p) = 1

m(p)

d

dp

(
1

S′(p)
f ′(p)

)
, p ∈ I •,

for f ∈ C2(I •). There exists a solution e(γ, ·) = (e1(γ, ·), e2(γ, ·)) of

(Aeγ, ·)(p) = γ e(γ, p) for all 0 < p < 1,

e

(
γ,

1

2

)
= (1, 0),

1

m(1/2)
e′
(
γ,

1

2

)
= (0, 1),

for every γ ∈ (−∞, 0] such that γ �→ e(γ, p) is continuous for every p ∈ I •. Based on these
eigenfunctions, it was shown in [11] that there exists a Borel measure s(dγ ) from (−∞, 0] to
2 × 2 symmetric nonnegative definite matrices

s(dγ ) =
(

s11(dγ ) s12(dγ )
s21(dγ ) s22(dγ )

)

such that

Q(t;p, q) =
∫ 0

−∞
eγ te(γ, p)s(dγ )e(γ, p), (t, p, q) ∈ (0,∞)× I • × I •,

is the transition density of (X(t))t≥0 with respect to the speed measurem(·). Now, as our jump
diffusion p(·) could also jump to an inaccessible boundary, we need to extend p �→ Q(t;p, q)
onto [0, 1]. Note that if i ∈ {0, 1} is inaccessible then i is an entrance boundary due to the
assumption that (−1)iµ(i) > 0. As in Problem 3.6.3 of [11], we use the Markov property to
extend (X(t))t≥0 to the state space [0, 1]. Thus, we may assume Q(t;p, q) to be defined on
(0,∞)× [0, 1] × I •.

With these results on the transition density of (X(t))t≥0 we now establish the existence of a
smooth density of π̄(·). Define κ1 := 1 − κ0, κ0 ∈ [0, 1], by

κi :=
∫ 1

0
wi(p)π̄(dp) for i ∈ {0, 1},

and observe that κi is the probability that a stationary version of the process jumps to the
boundary point i when it jumps. Recall that the jump times of p(·) form a Poisson process with
rate λ and that inbetween jumps, p(·) evolves according to A. If U is any Borel measurable set
in [0, 1] then, by conditioning on the time and distribution of the last jump, we have

π̄(U) = κ0

∫ ∞

0
λe−λt

∫
U

Q(t; 0, q)m(q) dq dt + κ1

∫ ∞

0
λe−λt

∫
U

Q(t; 1, q)m(q) dq dt.
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Interchanging integrals, we infer that π̄(·) has a density with respect to the Lebesgue measure
and we set π(q) dq := π̄(dq), where π : (0, 1) → [0,∞) satisfies

π(q) =
1∑
j=0

κjm(q)

∫ ∞

0
λe−λt

∫ 0

−∞
eγ te(γ, j)s(dγ )e(γ, q) dt

=
1∑
j=0

κjm(q)

∫ 0

−∞
λ

λ− γ
e(γ, j)s(dγ )e(γ, q) dt

= λm(q)(κ0Gλ(0, q)+ κ1Gλ(1, q)).

The functionGλ(p, q) is Green’s function and it is C2 in the second variable for everyp ∈ [0, 1].
As the speed density m(·) is also C2 in (0, 1) due to Assumption 2.1, we conclude that the
stationary density π(·) is twice continuously differentiable.

The main step of the proof is to show that π(·) satisfies (3.1a)–(3.1d). By Proposition 4.9.2
of [7], the stationary distribution π(p) dp satisfies∫ 1

0
Gφ(p)π(p) dp = 0 (3.2)

for all φ ∈ C2([0, 1]). Let 0 < ε < 1
2 . The functions v, µ, φ, and π are C2 in [ε, 1 − ε].

Integration by parts yields∫ 1−ε

ε

Gφπ dp − φ(0)
∫ 1−ε

ε

λw0π dp − φ(1)
∫ 1−ε

ε

λw1π dp

=
∫ 1−ε

ε

[
φ′′ · ( 1

2vπ
) + φ′ · (µπ)− λφπ

]
dp

= [
φ′ 1

2vπ
]1−ε
ε

+ [
φ
(
µπ − ( 1

2vπ
)′)]1−ε

ε
−

∫ 1−ε

ε

φ
[
(µπ)′ − ( 1

2vπ
)′′ + λπ

]
dp.

(3.3)

By considering all functions φ ∈ C2 with support in (ε, 1 − ε) and then letting ε → 0, we
conclude that π(·) satisfies the second-order ODE (3.1a). Furthermore, because the functions
Gφ,w0,w1 are bounded andπ is integrable, we may apply the dominated convergence theorem
to the integrals on the left-hand side of (3.3) as ε → 0. Together with (3.2), this shows that

lim
ε→0

[
φ′ 1

2vπ
]1−ε
ε

+ φ(1) lim
ε→0

(
µπ − ( 1

2vπ
)′)
(1 − ε)− φ(0) lim

ε→0

(
µπ − ( 1

2vπ
)′)
(ε)

= −φ(1)λκ1 − φ(0)λκ0.

As φ was arbitrary, this implies the nonlocal boundary conditions (3.1b)–(3.1d).
If π̂(·) is another normalized solution of (3.1a)–(3.1e) then reversing the previous arguments

shows that (3.2) holds with π replaced by π̂(·). This in turn implies that π̂(p) dp is another
stationary distribution and we conclude that π̂ = π . It remains to show that π(·) is strictly
positive. Assuming that π(p) = 0 for some p ∈ (0, 1), we conclude that π ′(p) = 0 from p

being necessarily a global minimum. However, the only solution of the second-order ODE (3.1a)
satisfying π(p) = 0 = π ′(p) is the zero function, which contradicts the assumption that π(·)
is a probability density. This completes the proof.
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Remark 3.1. Lemma 3.1 can be used to find an explicit formula for π(·) when the jump
diffusion process is a model of a neutrally evolving population subject to recurrent bottlenecks,
i.e. when p(·) has generator

Gφ(p) = 1
2p(1 − p)φ′′(p)+ (µ0(1 − p)− µ1p)φ

′(p)+ λ(pφ(1)+ (1 − p)φ(0)− φ(p)).

In this case, (3.1a) is a hypergeometric equation and, using the fact that the mean frequency of
allele A1 in a stationary population is µ0/(µ0 + µ1), we find that the density π(p) is equal to

π(p) = C−1p2µ0−1(1−p)2µ1−1[µ0F(1−a, 1−b, 2µ0, p)+µ1F(1−a, 1−b, 2µ1, 1−p)],
where C is a normalizing constant, F(a, b, c; z) is Gauss’ hypergeometric function, and the
constants a and b are determined (up to interchange) by the equations a+ b = 3 − 2(µ0 +µ1)

and ab = 2(λ+ 1 − µ0 − µ1).

The second lemma of this section provides information on the boundary behavior of the
density of the stationary distribution. This information is derived using results on second-order
ODEs with regular singular points.

We adopt the Landau big-O and little-o notation. In addition, for two functions ψ1(·) and
ψ2(·), we write ψ1(p) ∼ ψ2(p) as p → i if both ψ1(p) = O(ψ2(p)) and ψ2(p) = O(ψ1(p))

as p → i.

Lemma 3.2. Suppose that Assumption 2.1 holds. Let π(·) be the density of the stationary
distribution of the jump diffusion p(·) corresponding to generator (2.1). Then, for i ∈ {0, 1},
π(·) is equal to

π(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ci |p − i|(2µ(i)−v′(i))/v′(i) +O(1) if 2|µ(i)| < |v′(i)|,
2λκi
|v′(i)| ln

(
1

|p − i|
)

+O(1) if 2µ(i) = v′(i),

2λκi
|2µ(i)− v′(i)|

+O(|p − i| + |p − i|(2µ(i)−v′(i))/v′(i)) if 2|µ(i)| > |v′(i)| and λwi 
≡ 0,

Ci |p − i|(2µ(i)−v′(i))/v′(i)

+O(|p − i|2µ(i)/v′(i)) if 2|µ(i)| > |v′(i)| and λwi ≡ 0,
(3.4)

as p → i, where Ci ∈ (0,∞). In addition, if 2µ(i) = v′(i) and λwi ≡ 0, then π(i) > 0.

Proof. We only consider i = 0 as the case i = 1 is analogous. We begin by observing that
i = 0 is a regular singular point for the differential equation (3.1a); see, e.g. Section 9.6 of [3]
for this concept. The associated indicial equation for 0 is

ν(ν − 1)+ 2
v′(0)− µ(0)

v′(0)
ν = 0,

and has roots α := 0 and β := (2µ(0)− v′(0))/v′(0). Note that β > −1. If (α− β) 
∈ Z then
Theorem IX.7 of [3] tells us thatπ(·) is equal to a linear combination ofb1(p) := pα(1 + h1(p))

and b2(p) := pβ(1 + h2(p)) in a neighborhood of 0, where h1 and h2 are suitable analytic
functions satisfying h1(0) = 0 = h2(0).

If (α−β) ∈ Z then Theorem IX.8 of [3] tells us that π(·) is equal to a linear combination of
b1(p), b2(p), and ln(p)b1(p) in a neighborhood of 0. If 2µ(0)/v′(0) ∈ N≥2 then, assuming
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that π(p) = −c1 ln(p)+O(1), π ′(p) = −c1/p+O(1) for some constant c1 > 0 leads to the
contradiction

∞ > λκ0 = (
µ(0)− 1

2v
′(0)

)
lim
p→0

π(p)− 1
2v

′(0) lim
p→0

pπ ′(p) = ∞,

where we have used (3.1b). Therefore, ln(p) does not contribute to π(·) if 2µ(0) > v′(0).
It remains to calculate the coefficients. In the case 2µ(0) 
= v′(0), insert π(b) = c1b1(p)+

c2b2(p) into (3.1b) to obtain the coefficient c1, i.e.

λκ0 = lim
p→0

[(
µ(p)− 1

2v
′(p)

)
π(p)− 1

2v(p)π
′(p)

]
= lim
p→0

[(
µ(0)− 1

2v
′(0)

)
(c1 + c2p

β)− 1
2v

′(0)pc2βp
β−1]

= (
µ(0)− 1

2v
′(0)

)
c1.

Of course, if λκ0 = 0 then π(·) 
≡ 0 implies that c2 > 0. Next we show that λκ0 > 0 together
with 2µ(0) < v′(0) implies that c2 > 0.

Assuming that c2 = 0 implies that π(0) = 2λκ0/(2µ(0) − v′(0)) < 0, which contradicts
π(·) being a density function. In the critical case, 2µ(0) = v′(0), (3.1b) implies that

λκ0 = − 1
2v

′(0) lim
p→0

(pπ ′(p)).

Therefore, the coefficient of − ln(p) is 2λκ0/v
′(0). If 2µ(0) = v′(0) and λκ0 = 0, then

assuming that π(0) = 0 implies that π(p) = cpn +O(pn+1) with c 
= 0 and n ≥ 1. Inserting
this into the ODE (3.1a) leads to

0 = 1
2v

′(0)c(pn+1)
′′ − µ(0)c(pn)′ +O(pn)

= (n+ 1)n

2
v′(0)cpn−1 − n

v′(0)
2
pn−1 +O(pn)

asp → 0. Dividing by nv′(0)cpn−1/2 and lettingp → 0 results in the contradiction n+1 = 1.
This completes the proof.

4. Boundary behavior of the time-reversed process

We begin this section by characterizing the boundary behavior of the infinitesimal drift
coefficient of the time-reversed process. This information is of interest for two reasons. First,
it will be used to establish that any boundary point that is accessible to the forwards-in-time
process, either diffusively or via jumps, is accessible to the diffusive motion of the time-reversed
process. Secondly, we also expect the time-reversed process to have the same state space, [0, 1],
as the forward process. Indeed, if a boundary point i is inaccessible to the forward diffusive
motion then subsequent results will show that the time-reversed process jumps back into the
interior as soon as it hits a boundary. If, however, i is accessible to the forward diffusive motion
then, because the time-reversed process may visit i without jumping, we need to confirm that
p̃(·) does not then wander outside of [0, 1]. To this end, we will show that µ̃(0) ≥ 0 whenever
0 is accessible and, similarly, that µ̃(1) ≤ 0 whenever 1 is accessible.
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Lemma 4.1. Suppose that Assumption 2.1 holds. Then the drift function µ̃(·) of the backward
diffusive motion defined in (2.2) satisfies

µ̃(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
µ(i)+O(|p − i|) if 2|µ(i)| < |v′(i)| or λκi = 0,

µ(i)+ v′(i)
ln (|p − i|) +O

( |p − i|
ln |p − i|

)
if 2µ(i) = v′(i) and λκi 
= 0,

v′(i)− µ(i)+O(|p − i|) if 2|µ(i)| > |v′(i)| and λκi 
= 0,

(4.1)

as p → i for i ∈ {0, 1}.
Proof. Recall that Lemma 3.2 describes the asymptotic behavior of π(·) as p → i. From

this we obtain

v(p)π ′(p)
π(p)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v′(i)2µ(i)− v′(i)
v′(i)

+O(|p − i|) if 2|µ(i)| < |v′(i)| or λκi = 0,

v′(i)
ln |p − i| +O

( |p − i|
ln |p − i|

)
if 2µ(i) = v′(i) and λκi 
= 0,

0 +O(|p − i|) if 2|µ(i)| > |v′(i)| and λκi 
= 0,

as p → i for i ∈ {0, 1}. Inserting this into

µ̃(p) := −µ(p)+ (vπ)′(p)
π(p)

= −µ(i)+ v′(i)+O(|p − i|)+ v(p)π ′(p)
π(p)

results in assertion (4.1).

Remark 4.1. Note that µ̃(0) < 0 if µ(0) > v′(0), so that the diffusive motion of the time-
reversed process need not be confined to [0, 1]. Nonetheless, because the boundary p = 0 is
inaccessible to the forward diffusion in this case (i.e. 2µ(0) > v′(0)), the fact that the process
p̃(·) immediately jumps back into (0, 1) upon hitting 0 will ensure that the jump diffusion is
confined to [0, 1].

We next show that if a boundary point is accessible to the forward jump diffusion p(·), either
diffusively or via a jump, then it must be accessible to the backward diffusive motion governed
by Ã. Recall the scale function S̃ from (2.3).

Lemma 4.2. Suppose that Assumption 2.1 holds. The boundary point i ∈ {0, 1} is accessible
to the diffusive motion governed by Ã, that is, S̃(i) ∈ R, if and only if i is accessible to the
forward jump diffusion p(·), that is, if λwi 
≡ 0 or |µ(i)| < |v′(i)|.

Proof. Without loss of generality, we only prove the case i = 0. According to Lemma 15.6.1
of [14], the boundary point 0 is accessible if and only if S̃(0+) is finite. (This is a special case
of Feller’s boundary classification criteria.) Substituting the asymptotic expression for µ̃ near
p = 0 (see Lemma 4.1) into the definition of S̃, we obtain, in the case λκ0 > 0,

S̃′(p) := exp

(
−

∫ p

1/2

2µ̃(z)

v(z)
dz

)
∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p−2µ(0)/v′(0) if 2|µ(i)| < |v′(i)|,
1

p

1

(ln(p))2
if 2µ(i) = v′(i),

p−(2v′(0)−2µ(0))/v′(0) if 2|µ(i)| > |v′(i)|,
(4.2)

as p → 0. In all three cases, S̃′(·) is integrable over (0, 1
2 ]. The case λκ0 = 0 follows from

similar arguments.
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The following lemma shows that the rate constant ri (defined in (2.5)) is equal to ∞ if the
boundary point i ∈ {0, 1} is inaccessible to the forward diffusive motion. Therefore, p̃(·) jumps
whenever it hits i as L̃i(t) ≥ 0 = Ri . In addition, if there are no jumps in the forward process
then ri = 0, and p̃(·) never jumps as L̃i(t) < ∞ = Ri .

Lemma 4.3. Suppose that Assumption 2.1 holds. Then the rate constant ri used to define the
jump times of p̃(·) satisfies

ri := lim
p→i

(
m̃(p)

π(p)
λκi

) ⎧⎪⎨
⎪⎩

∈ (0,∞) if 2|µ(i)| < |v′(i)| and λwi(·) 
≡ 0,

= ∞ if 2|µ(i)| ≥ |v′(i)| and λwi(·) 
≡ 0,

= 0 if λwi(·) ≡ 0,

(4.3)

for i ∈ {0, 1}.
Proof. Without loss of generality, we only prove the case i = 0, as the case i = 1 is similar.

If λκ0 = 0 then r0 = 0 is trivially correct. Assume that λκ0 > 0 for the rest of the proof.
The asymptotic behavior of the scale density S̃′(·) is given in (4.2). From this we derive the
asymptotic behavior of the speed density m̃(p) (defined in (2.3)) as p → 0:

m̃(p) = 2

v(p)S̃′(p)
∼

⎧⎪⎨
⎪⎩
p(2µ(0)−v′(0))/v′(0) if 2µ(0) < v′(0),
(ln(p))2 if 2µ(0) = v′(0),
p(v

′(0)−2µ(0))/v′(0) if 2µ(0) > v′(0).
(4.4)

Compare (4.4) with the boundary behavior of π(·) (see Lemma 3.2) to obtain (4.3).

5. The generator of the time-reversed process

In this section we identify the generator of the time-reversed process and show that this
operator satisfies the duality condition given in (1.2). That this operator is also the generator
of the jump diffusion process p̃(·) described in Section 2 will be established in the final two
sections of the paper.

The following notation will be needed to formulate the generator of the time-reversed process.
If ν(dp) = f (p) dp is a measure on [0, 1] with continuous density f : (0, 1) → (0,∞) with
respect to Lebesgue measure, then we write

(Dνψ)(p) := lim
y→p

ψ(y)− ψ(p)∫ y
p
f (q) dq

for all p ∈ (0, 1)

whenever this limit exists in R and denote by

D(Dν) := {ψ ∈ C([0, 1]) : Dνψ(p) exists for all p ∈ (0, 1), Dνψ is continuous

in (0, 1), Dνψ(0+) and Dνψ(1−) exist in R}
the subset of functions which are mapped to continuous functions on [0, 1]. Note that ψ ∈
C1((0, 1)) and Dνψ(p) = ψ ′(p)/f (p), p ∈ (0, 1), for every ψ ∈ D(Dν). For ψ ∈ D(Dν),
the definition of Dν extends to the boundary via

Dνψ(0) := Dνψ(0+) and Dνψ(1) := Dνψ(1−).
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Using this notation, the generator Ã of the backward diffusive motion reads as

(Ãψ)(p) = 1
2v(p)ψ

′′(p)+ µ̃(p)ψ ′(p)

= 1

2
v(p)S̃′(p)

(
1

S̃′ψ
′′ + 1

S̃′
2µ̃

v
ψ ′

)
(p)

= Dm̃DS̃ψ(p)

for everyψ ∈ C2([0, 1]). The following set will be a core for the generator of the time-reversed
process:

H :=
{
ψ ∈ D(D

S̃
) : D

S̃
ψ ∈ D(Dm̃) and, for i ∈ {0, 1},

lim
p→i

( 1
2vπψ

′)(p) = (−1)i+1
∫ 1

0
(ψ(p)− ψ(i))λwi(p)π(p) dp

}
. (5.1)

The following lemma asserts that the restriction of Dm̃DS̃ to H extends to a strong generator
of a Markov process. Indeed, this can be deduced from Theorem II.4 of [19], which shows that
the restriction of Dm̃DS̃ to

{
ψ ∈ D(D

S̃
) : D

S̃
ψ ∈ D(Dm̃) and, if i ∈ {0, 1} is accessible,

χiψ(i)+
∫ 1

0

ψ(i)− ψ(p)

|pi(i)− pi(p)| dqi(p)+ ηiDm̃DS̃ψ(i) = 0

}
(5.2)

is the strong generator of a Feller semigroup if χi and ηi are both nonnegative, if qi is a
nondecreasing function on [0, 1], and if pi is continuous, nondecreasing, and equal to S̃ in a
neighborhood of i, i = 0, 1. Only the case 0 = χ0 = χ1 = η0 = η1 = q(1−) − q(0+) 
=
q(1) − q(0) is excluded. The quotient in (5.2) is to be interpreted as (−1)i+1D

S̃
ψ(i) for

p = i ∈ {0, 1} and the integral with respect to dqi(p) denotes the Lebesgue–Stiltjes integral
with respect to qi .

Lemma 5.1. Suppose that Assumption 2.1 holds. The restriction ofDm̃DS̃ to the set H extends
to a strong generator of a Markov process.

Proof. By Theorem II.4 of [19], it suffices to prove that H is of the form (5.2). According to
Lemma 4.2, the boundary point i ∈ {0, 1} is accessible to the diffusion governed by Dm̃DS̃ if
and only if λwi(·) 
≡ 0 or |µ(i)| < |v′(i)|. First we show that the condition in (5.1) is trivial if
i is inaccessible, that is, we show that limp→i (vπψ

′)(p) = 0 for every ψ ∈ D(D
S̃
). Suppose

that
C := lim

p→i
(vπψ ′)(p) > 0

for some function ψ ∈ D(D
S̃
). By Lemma 3.2, π(p) is bounded above by −C̄ ln (|p − i|) in

a neighborhood of i for some C̄ > 0. Thus, in a neighborhood of i,

ψ ′(p) ≥ −C
2v(p)π(p)

≥ C

4C̄|v′(i)||p − i| ln (|p − i|) .

Integrating over [ 1
2 , p] implies thatψ(p) is bounded below byC ln (− ln(|p − i|))/(4C̄|v′(i)|)

as p → i, which contradicts ψ ∈ C(I ). An analogous argument applies to the case C < 0.
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Now, let i be accessible to the forward process, that is, λκi > 0 or |µ(i)| < |v′(i)|. Note
that S̃(·) is a bounded, continuous, nondecreasing function in a neighborhood of i. Choose
χi, ηi = 0 and pi(p) := S̃(p). Furthermore, let

qi(p) :=
∫ p

0
|pi(i)− pi(y)|wi(y)π(y) dy + c0 1(0,1](p) 1{i=0} +c1 11(p) 1{i=1},

where c0, c1 ∈ [0,∞) are to be chosen later. Note that qi is bounded and that dqi puts mass ci
on the point i. With these definitions, the condition in (5.2) takes the form∫ 1

0
(ψ(i)− ψ(p))wi(p)π(p) dp = (−1)iD

S̃
ψ(i)ci .

It remains to choose ci ∈ [0,∞) such that

D
S̃
ψ(i)ci = lim

p→i

( 1
2vπψ

′)(p) (5.3)

for every ψ ∈ H. Using the boundary behavior (4.2) of S̃(·) and the asymptotic behavior (3.4)
of π̃(·), we arrive at

(vπψ ′)(p) ∼ |p − i|π(p)S̃′(p)D
S̃
ψ(p)

∼

⎧⎪⎪⎨
⎪⎪⎩
D
S̃
ψ(p) if 2|µ(i)| < |v′(i)|,

D
S̃
ψ(p)

−1

ln (|p − i|) if 2µ(i) = v′(i),

D
S̃
ψ(p)|p − i|2µ(i)/v′(i)−1 if 2|µ(i)| > |v′(i)|,

as p → i. This shows that (5.3) holds with some constant ci ∈ [0,∞). This completes the
proof.

Lemma 5.2. Suppose that Assumption 2.1 holds. Let the process (p(t) : t ≥ 0) be in equi-
librium. Then the time-reversed process (p̄t : t ≥ 0) exists, that is, there exists a process
(p̄t : t ≥ 0) satisfying

(p̄(t) : t ≤ T )
d= (p(T − t) : t ≤ T ) for all T ≥ 0.

In addition, H is a core for the generator G̃ of (p̄t : t ≥ 0) and

G̃ψ = 1
2vψ

′′ + µ̃ψ ′ = Dm̃DS̃ψ for all ψ ∈ H. (5.4)

Proof. Let G̃ be the closure of the operator defined in (5.4). By Lemma 5.1, G̃ is the strong
generator of a Markov process (p̄t : t ≥ 0). Recall the generatorG of p(·) from (2.1). We will
prove that G̃ is the adjoint operator of G with respect to the invariant measure π(p) dp. Let
0 < ε < 1

2 , φ ∈ C2([0, 1]), and ψ ∈ H. The functions v, µ, φ, ψ , and π are C2 in [ε, 1 − ε].
Integration by parts yields∫ 1−ε

ε

Gφψπ dp − φ(0)
∫ 1−ε

ε

λw0ψπ dp − φ(1)
∫ 1−ε

ε

λw1ψπ dp

=
∫ 1−ε

ε

[
φ′′ · ( 1

2vψπ
) + φ′ · (µψπ)− λφψπ

]
dp

= [
φ′ 1

2vψπ
]1−ε
ε

+ [
φ
(
µψπ − ( 1

2vψπ
)′)]1−ε

ε

+
∫ 1−ε

ε

φ
[( 1

2vψπ
)′′ − (µψπ)′ − λψπ

]
dp. (5.5)
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As π satisfies (3.1a), we see that(
1

2
vψπ

)′′
− (µψπ)′ − λψπ = 1

2
vψ ′′π +

(
(vπ)′

π
− µ

)
ψ ′π = Dm̃DS̃ψπ.

The functionsGφ,ψ ,w0,w1, φ, andDm̃DS̃ψ are bounded and π is integrable. Hence, we may
apply the dominated convergence theorem to the integrals in (5.5) as ε → 0. This also proves
that the limits of the boundary terms in (5.5) exist as ε → 0. Thus, letting ε → 0 in (5.5), we
obtain∫ 1

0
Gφψπ dp −

∫ 1

0
φDm̃DS̃ψπ dp

= φ(1)

(
ψ(1)

(
µπ −

(
1

2
vπ

)′)
(1−)− lim

p→1

(
1

2
vπψ ′

)
(p)+

∫ 1

0
λw1ψπ dp

)

− φ(0)

(
ψ(0)

(
µπ −

(
1

2
vπ

)′)
(0+)− lim

p→0

(
1

2
vπψ ′

)
(p)−

∫ 1

0
λw0ψπ dp

)
= 0

for all φ ∈ C2 and ψ ∈ H. The last equality follows from (3.1b)–(3.1d) and the fact that
ψ ∈ H. This proves that G and G̃ are adjoint to each other. Consequently, the semigroups
of (p(t) : t ≥ 0) and of (p̄t : t ≥ 0) are adjoint to each other. According to Nelson [23], this
implies that the Markov process (p̄(t) : t ≥ 0) associated with G̃ has the same law as the
time-reversed process of (p(t) : t ≥ 0). This completes the proof.

6. The local-time process

In this section we describe some properties of the local-time process of p̃(·). First we show
existence. Recall the scale function S̃ and the speed measure m̃ from (2.3).

Lemma 6.1. Suppose that Assumption 2.1 holds. Then there exists a unique, nonnegative
process

(L̃p(t) : t ≥ 0, p ∈ [0, 1])
which is a.s. continuous in (t, p) and which satisfies

∫ t

0
f (p̃(u)) du =

∫ 1

0
f (p)L̃p(t)m̃(dp) for all t ≥ 0, (6.1)

for all measurable f : [0, 1] → [0,∞) a.s. In addition, if 2|µ(i)| ≥ |v′(i)| for i ∈ {0, 1} then
L̃i(·) ≡ 0 a.s.

Proof. Let 0 =: τ0 ≤ τ1 < τ2 < · · · be the jump times of p̃(·). Then, by construction of
p̃(·), (p̃(t + τn−1) : 0 ≤ t < τn − τn−1), n ∈ N≥1, are independent diffusions governed by Ã.
It is well known that p̃(· + τn−1) can be written in terms of a Brownian motion as follows. Let
{By,n· : y ∈ R, n ∈ N} be a family of independent standard Brownian motions with By,n0 = y.
Denote by (LB

y,n

x (t) : t ≥ 0, x ∈ R) the local-time process ofBy,n· (see, e.g. Section 2.8 of [11]),
and define

ξ
(n)
t :=

∫ 1

0
LB

S̃(p̃(τn−1)),n

S̃(p)
(t)m̃(dp), t ≥ 0.
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Then a version of p̃(· + τn−1) is given by

p̃(t + τn−1) = S̃−1
(
B
S̃(p̃(τn−1)),n

(ξ
(n)
t )

−1

)
, 0 ≤ t < τn − τn−1.

Inserting this into the occupation time formula of the Brownian motion, a short calculation (see,
e.g. Section 5.4 of [11]) shows that∫ t

0
f (p̃(r + τn−1)) dr =

∫ 1

0
f (p)L̂(n)p (t)m̃(dp), 0 ≤ t < τn − τn−1, (6.2)

where the local-time process of p̃(· + τn−1) with respect to the speed measure is

L̂(n)p (t) := LB
S̃(p̃(τn−1)),n

S̃(p)
((ξ

(n)
t )−1), 0 ≤ t < τn − τn−1, p ∈ [0, 1], n ∈ N≥1.

Now we put the independent path segments together by defining

L̃p(t) := L̂(n)p (t − τn−1)+
n−1∑
k=1

L̂(k)p (τk − τk−1) if τn−1 ≤ t < τn. (6.3)

It is easy to use (6.2) to show that (L̃p(t) : t ≥ 0, p ∈ [0, 1]) satisfies (6.1). Uniqueness follows
from standard arguments.

If 2|µ(i)| ≥ |v′(i)| then p̃(·) jumps into (0, 1) as soon as it hits the boundary and we
conclude that p̃(t) 
= i for all t ≥ 0. Thus, the local time at this boundary point is identically
zero. This completes the proof.

In the next section, we will need to be able control the second moment of the local time of
the time-reversed jump diffusion at a boundary point. We first prove the following estimate
concerning the local time of a standard Brownian motion.

Lemma 6.2. Let ε, δ > 0, and let (Bt : t ≥ 0) be a standard Brownian motion with local
time LBx (·) at x ∈ R. Suppose that the function S̄ : [0, δ] → R is nondecreasing. Define
� := S̄(δ)− S̄(0) and

ζt :=
∫ δ

0

1

ε
LB
S̄(y)

(t) dy, t ≥ 0.

Then, for each m > 0, there exists a constant Cm independent of ε and of δ such that

ES̄(p)[(LB
S̄(p)

(ζ−1
t ))

m] ≤ Cm(εt)
m/2

[(
εt

�2

)m/2
+ 1

]
(6.4)

for all p ∈ [0, δ] and t ≥ 0.

Proof. Inequality (6.4) is trivial if � = 0 or t = 0, so we may and will assume that � > 0
and t > 0. Fix p ∈ [0, δ]. The left-hand side of (6.4) does not depend on the value of S̄(p), so
we will also assume without loss of generality that S̄(p) = 0. Denote byB∗

t := max{Bs : s ≤ t}
and by |B|∗t := max{|Bs | : s ≤ t} the process of the maximum and the process of the absolute
maximum, respectively. Define Zt := S̄−1(B

ζ−1
t
) for t ≥ 0. According to Section 5.4 of [11],

LZp (t) := LB0 (ζ
−1
t ) is the local time of (Zt : t ≥ 0) at p. The process (Zt : t ≥ 0) is equal in

distribution to the process (S̄−1(Bεt ) : t ≥ 0) reflected at 0 and at δ. Another way to construct
(S̄(Zt ) : t ≥ 0) is to take the path of (Bεt : t ≥ 0) and to identify each x ∈ [S̄(0), S̄(δ)] with
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the set {x + 2�z, 2S̄(δ)− x + 2�z : z ∈ Z}. Thus, the local time LZp (t) of (Zt : t ≥ 0) in p is
equal in distribution to the sum ofLB2�z(εt)+ LB

2�z+2S̄(δ)
(εt) over z ∈ Z. Note thatLBx (εt) = 0

a.s. on the event {|B|∗εt < |x|}, x ∈ R. In addition, note that convexity of 0 ≤ x �→ xm implies
that km−1(a1 + · · · + ak)

m ≤ (am1 + · · · + amk ) for a1, . . . , ak ≥ 0, k ∈ N. Therefore,

Ep[(LZp (t))m]

= E0
[ ∑
k∈2�N≥0

1[k,k+2�) (|B|∗εt )
( k/2�∑
z=−k/2�

∑
x∈{0,2S̄(δ)}

LB2�z+x(εt)
)m]

≤ E0
[ ∑
k∈2�N≥0

1[k,k+2�) (|B|∗εt )
(

2k

�
+ 2

)m−1 k/2�∑
z=−k/2�

∑
x∈{0,2S̄(δ)}

(LB2�z+x(εt))
m
]
.

(6.5)

Use the strong Markov property (see, e.g. Proposition 2.6.17 of [13]) to restart the Brownian
motion at the first hitting times of 2�z and 2�z+ 2S̄(δ), respectively. Thus, the left-hand side
of (6.5) is bounded above by

∑
k∈2�N≥0

P0 (|B|∗εt ∈ [k, k + 2�))

(
2k

�
+ 2

)m−1

2
k/2�∑

i=−k/2�
E0[(LB0 (εt))m]

≤ E0
[(

2|B|∗εt
�

+ 2

)m]
E0[(LB0 (εt))m].

Note that 2LB0 (t) and B∗
t are equal in distribution; see, e.g. Theorem 3.6.17 of [13]. Therefore,

the left-hand side of (6.5) is bounded above by

2m
[

E0
[( |B|∗εt

�

)m]
+ 1

]
E0

[(
1

2
B∗
εt

)m]
≤

[
Km/2

(
εt

�2

)m/2
+ 1

]
Km/2(εt)

m/2,

whereKm/2 ≥ 1 is a suitable constant which is independent of�, ε, and t . The last step follows
from the Burkholder–Davis–Gundy inequality; see, e.g. Theorem 3.3.28 of [13]. Therefore,
(6.4) holds with Cm := K2

m/2. This completes the proof.

In the proof of Theorem 2.1, we will need to exploit the fact that, in the L2 sense, the local
time (L̃i(t) : t ≥ 0) at a boundary point i ∈ {0, 1} of the backward process started at i decreases
to 0 faster than

√
t as t → 0. This might be surprising as we can show that

E0 [(LB0 (t))2] ∼ t as t → 0.

However, the infinitesimal variance v(·) is 0 in i. Thus, informally speaking, the diffusion
governed by Ã is pushed away from 0 almost deterministically at rate µ̃(i) > 0 if the boundary
point is accessible at all.

Lemma 6.3. Suppose that Assumption 2.1 holds. Then the local time at the boundary satisfies

lim
t→0

1

t
Ei [(L̃i(t))2] = 0 (6.6)

for i ∈ {0, 1}.
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Proof. If 2|µ(i)| ≥ |v′(i)| then Lemma 6.1 tells us that L̃i(t) = 0, which implies the
assertion in this case. For the rest of the proof, assume that 2|µ(i)| < |v′(i)|. Without loss
of generality, we only prove the case i = 0, as the case i = 1 is similar. To begin, we prove
that (6.6) holds with L̃0(·) replaced by L̂(1)0 (·). For δ ∈ (0, 1), define

m̃(δ) = inf
x≤δ m̃(x).

The asymptotic behavior (4.4) of m̃(·) implies that limδ→0 m̃(δ) = limp→0 m̃(p) = ∞. Recall
that By,1· is a standard Brownian motion started at By,10 = y. Observe that

ξ
(1)
t :=

∫ 1

0
LB

S̃(0),1

S̃(y)
(t)m̃(p) dp ≥ m̃(δ)

∫ δ

0
LB

S̃(0),1

S̃(y)
(t) dp =: ζt for all t ≥ 0.

Using (ξ (1)t )
−1 ≤ ζ−1, we obtain an upper bound for L̂(1)0 (·) as follows:

1

t
E0 [(L̂(1)0 (t))

2] = 1

t
E
[(
L
BS̃(0),1
S̃(0)

((ξ
(1)
t )−1)

)2]
≤ 1

t
E
[(
LB

S̃(0),1

S̃(0)
(ζ−1
t )

)2]
≤ C2

m̃(δ)

(
t

m̃(δ)(S̃(δ)− S̃(0))
2 + 1

)

t→0−−→ C2

m̃(δ)

δ→0−−→ 0 (6.7)

for some constant C2 which is independent of t and δ. The last inequality is Lemma 6.2.
Now we come to the local-time process L̃0(·). Recall r0 and R0 from Section 2, and let τ1

be the first jump time of p̃(·) from the boundary point 0. The local time L̂0(t) converges to 0
a.s. as t → 0. By the theorem of dominated convergence, this implies that E0[L̂0(t)] → 0 as
t → 0. Thus, there exists a t0 ≥ 0 such that r0 E0 [L̂(1)0 (t)] ≤ 1

4 for all t ≤ t0. Then we obtain,
from the definition of L̃0(·), (6.3), and the Markov property,

E0 [(L̃0(t))
2

1{τ1<t}] ≤ 2 E0 [(L̂(1)0 (t))
2] + 2 E0 [(L̃0(t)− L̂

(1)
0 (t))

2
1{L̂(1)0 (t)≥R0}]

≤ 2 E0 [(L̂(1)0 (t))
2] + 2 EL(p̃(τ1)) [(L̃0(t))

2] E0 [1 − e−r0L̂(1)0 (t)]
≤ 2 E0 [(L̂(1)0 (t))

2] + 2 E0 [(L̃0(t))
2] 1

4

for all t ≤ t0. Using this estimate, we get, for t ≤ t0,

E0 [(L̃0(t))
2] ≤ E0 [(L̂(1)0 (t))

2] + E0 [(L̃0(t))
2

1{τ1<t}]
≤ 3 E0 [(L̂(1)0 (t))

2] + 1
2 E0 [(L̃0(t))

2].
Therefore,

lim
t→0

1

t
E0 [(L̃0(t))

2] ≤ 6lim
t→0

1

t
E0 [(L̂(1)0 (t))

2] = 0,

where the last equality is (6.7). This completes the proof.
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7. The backward process

In Section 5, we identified the generator G̃ of the time-reversed process (see Lemma 5.2).
However, while it is clear that the boundary behavior of this process must be prescribed by the
domain of the generator, it is difficult to see how a qualitative description of the process can be
deduced from the analytical condition that defines this domain. To address this issue, we show
in this section that the process p̃(·) defined in Section 2 also has generator G̃. This confirms
the heuristic arguments given in the introduction and shows that the time-reversed process is a
jump diffusion process whose jump times depend on the local-time process constructed in the
preceding section.

The proof of Theorem 2.1 is based on the Itô–Tanaka formula for semimartingales, which
involves the semimartingale local-time process. Because this local time differs by a scalar
factor from the local-time process introduced in Section 6 (see (7.4) below), we have restated
the semimartingale Itô–Tanaka formula in terms of L̃p(·). This is done in the following lemma.

Lemma 7.1. Suppose that Assumption 2.1 holds. Let (Ỹ (t) : t ≥ 0) be a diffusion correspond-
ing to the generator Ã defined in (2.2). Then, for each ψ ∈ H,

ψ(Ỹ (t))− ψ(Ỹ (0)) =
∫ t

0
Dm̃DS̃ψ(Ỹ (u)) du+

∫ t

0
ψ ′(Ỹu)

√
v(Ỹu) dBu

+ 1
2 L̃0(t)DS̃ψ(0)− 1

2 L̃1(t)DS̃ψ(1) (7.1)

for all t ≥ 0 a.s.

Proof. Fixψ ∈ H. We approximateψ with suitable functions and apply the semimartingale
Itô–Tanaka formula. Denote by (L̄p(t))t≥0,p∈[0,1] the semimartingale local-time process of
(Ỹ (t) : t ≥ 0). We remark that, in general, this local-time process is distinct from the local
time, L̃p(·), introduced in the preceding section. By Theorem 3.7.1 of [13] we may and we
will assume that L̄p(t) is continuous in t and càdlàg in p. The occupation time formula
(Theorem 3.7.1 of [13]) states that∫ t

0
ψ(Ỹ (u))v(Ỹ (u)) du = 2

∫ 1

0
ψ(p)L̄p(t) dp, t ≥ 0, (7.2)

a.s. Let f be a continuous function which is C2 except in {a1, . . . , an} ⊂ [0, 1], and which
admits finite limits f ′(ak+) and f ′(ak−), k = 1, . . . , n. Then the Itô–Tanaka formula for
continuous semimartingales (see Theorem 3.7.1 and Problem 3.6.24 of [13]) states that

f (Ỹt )− f (Ỹ0) =
∫ t

0
f ′(Ỹu)µ̃(Ỹu) du+

∫ t

0
f ′′(Ỹu)

1

2
v(Ỹu) du+

∫ t

0
f ′(Ỹu)

√
v(Ỹu) dBu

+
n∑
k=1

L̄ak (t)[f ′(ak+)− f ′(ak−)] a.s. (7.3)

For every n ∈ N, let ψn be a continuous function which is equal to ψ in (1/n, 1 − 1/n)
and which is constant both in [0, 1/n] and in [1 − 1/n, 1]. In addition, suppose that (ψn)n∈N

approximates ψ uniformly in [0, 1] and that (Dm̃DS̃ψn)n∈N approximates Dm̃DS̃ψ pointwise
and boundedly in (0, 1). Note that

D
S̃
ψn

(
1

n
−

)
= 0 and D

S̃
ψn

(
1

n
+

)
= D

S̃
ψ

(
1

n

)
.
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Comparing the occupation time formula (7.2) of L̄p(·) with the occupation time formula (2.4)
of L̃p(·) we see that

L̄p(t) = L̃p(t)
1

2
v(p)m̃(p) = L̃p(t)

1

2S̃′(p)
for all p ∈ (0, 1). (7.4)

Now applying the Itô–Tanaka formula (7.3) to ψn(·) and inserting (7.4), we arrive at

ψn(Ỹt )− ψn(Ỹ0) =
∫ t

0
Dm̃DS̃ψn(Ỹu) du+

∫ t

0
ψ ′
n(Ỹu)

√
v(Ỹu) dBu

+ 1

2
L̃1/n(t)DS̃ψn

(
1

n

)
− 1

2
L̃1−1/n(t)DS̃ψn

(
1 − 1

n

)
. (7.5)

Note that the Lebesgue measure of {u ≤ t : Ỹu ∈ {0, 1}} is equal to 0 a.s. Letting n → ∞
in (7.5) completes the proof.

Proof of Theorem 2.1. Recall G̃, Dm̃DS̃ , and H from Section 5. Lemma 5.2 shows that the
generator of the time-reversed process is the closure of G̃. Therefore, it remains to be shown
that the generator of the Markov process (p̃(t) : t ≥ 0) restricted to the set H coincides with
G̃, that is, that

Ep ψ(p̃(t))− ψ(p)

t
→ G̃ψ(p) = Dm̃DS̃ψ(p) as t → 0 (7.6)

holds for all p ∈ [0, 1] and every ψ ∈ H.
Recall Ri, ri, κi for i ∈ {0, 1} from Section 2. Fix ψ ∈ H, and note that ψ is C2 in

(0, 1). Using Itô’s formula, it is straightforward to show that the convergence in (7.6) holds
for every p ∈ (0, 1) if λκi 
= 0 and holds for every p ∈ [0, 1] if λκi = 0. It remains to
prove (7.6) for i ∈ {0, 1} if λκi 
= 0. Starting at i ∈ {0, 1}, (p̃(t) : t ≥ 0) evolves according to
a diffusion (Ỹ (t) : t ≥ 0) which is governed by Ã until the first time t such that L̃i(t) ≥ Ri . At
that time, the process restarts from an independent random point Ji in (0, 1) with distribution
(1/κi)wi(p)π(p) dp. Thus,

Ei ψ(p̃(t))− ψ(i)− Ei [1{L̃i (t)<Ri } (ψ(Ỹt )− ψ(i))]

= Ei
[∫ L̃i (t)

0
EJi [ψ(p̃(t − l))− ψ(i)]rie−ri l dl

]

= Ei
[∫ L̃i (t)

0

(∫ 1

0
(ψ(z)− ψ(i))

1

κi
wi(z)π(z) dz+O(t − l)

)
rie

−ri l dl

]

= Ei [1 − e−ri L̃i (t)]
∫ 1

0
[ψ(z)− ψ(i)] 1

κi
wi(z)π(z) dz+O(t Ei L̃i (t))

= o(t)+ Ei [riL̃i(t)](−1)i+1 lim
p→i

( 1
2vπψ

′)(p) 1

λκi
+O(t Ei L̃i (t))

(7.7)

as t → 0. In the last step we used the inequality 1 − e−x − x ≤ x2 for x ≥ 0 together
with Lemma 6.3 and ψ ∈ H. The local time L̃i(t) converges to 0 a.s. as t → 0. By the
dominated convergence theorem, this implies that Ei L̃i (t) converges to 0 as t → 0. Thus, the
last summand on the right-hand side of (7.7) is of order o(t). Furthermore, Lemma 4.3 implies
that

ri lim
p→i

(vπψ ′)(p) 1

λκi
= lim
p→i

(vm̃ψ ′)(p) = D
S̃
ψ(i). (7.8)

https://doi.org/10.1239/aap/1293113155 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113155


1170 M. HUTZENTHALER AND J. E. TAYLOR

Next we consider the second expectation on the left-hand side of (7.7). Using Hölder’s
inequality, we see that

Ei [1{L̃i (t)≥Ri } (ψ(Ỹ (t))− ψ(i))] = Ei [(1 − e−ri L̃i (t))(ψ(Ỹ (t))− ψ(i))]

≤
√

Ei [(L̃i(t))2]
√

Ei [(ψ(Ỹ (t))− ψ(i))
2]

= √
o(t)

√
O(t)

= o(t),

where we have applied Lemma 6.3. Thus, we obtain, from the Itô–Tanaka formula (7.1),

Ei [1{L̃i (t)<Ri } (ψ(Ỹ (t))− ψ(i))] = o(t)+ Ei [ψ(Ỹ (t))− ψ(i)]
= o(t)+ tDm̃DS̃ψ(i)+ (−1)i 1

2 Ei [L̃i(t)]DS̃ψ(i)
(7.9)

as t → 0. Putting (7.7), (7.8), and (7.9) together completes the proof of Theorem 2.1.

Acknowledgements

We are grateful to Tom Kurtz, Alison Etheridge, and two anonymous referees for their
suggestions and comments on the manuscript.

References

[1] Barton, N. H. and Etheridge, A. M. (2004). The effect of selection on genealogies. Genetics 166, 1115–1131.
[2] Barton, N. H., Etheridge, A. M. and Sturm, A. K. (2004). Coalescence in a random background. Ann. Appl.

Prob. 14, 754–785.
[3] Birkhoff, G. and Rota, G.-C. (1989). Ordinary Differential Equations, 4th edn. John Wiley, New York.
[4] Blumenthal, R. M. and Getoor, R. K. (1968). Markov Processes and Potential Theory (Pure Appl. Math.

29). Academic Press, New York.
[5] Coop, G. and Griffiths, R. C. (2004). Ancestral inference on gene trees under selection. Theoret. Pop. Biol.

66, 219–232.
[6] Donnelly, P. and Kurtz, T. G. (1999). Genealogical processes for Fleming–Viot models with selection and

recombination. Ann. Appl. Prob. 9, 1091–1148.
[7] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. John Wiley, New York.
[8] Ewens, W. J. (2004). Mathematical Population Genetics. I, 2nd edn. Springer, New York.
[9] Getoor, R. K. and Sharpe, M. J. (1981). Two results on dual excursions. In Seminar on Stochastic Processes,

1981 (Evanston, IL, 1981; Progress Prob. Statist. 1), Birkhäuser Boston, MA, pp. 31–52.
[10] Gillespie, J. H. (2000). Genetic drift in an infinite population: the pseudohitchhiking model. Genetics 155,

909–919.
[11] Itô, K. and McKean, H. P., Jr. (1974). Diffusion Processes and Their Sample Paths. Springer, Berlin.
[12] Kaplan, N. L., Darden, T. and Hudson, R. R. (1988). The coalescent process in models with selection.

Genetics 120, 819–829.
[13] Karatzas, I. and Shreve, S. E. (1991). Brownian Motion and Stochastic Calculus (Graduate Texts Math.

113), 2nd edn. Springer, New York.
[14] Karlin, S. and Taylor, H. M. (1981). A Second Course in Stochastic Processes. Academic Press, New York.
[15] Kim, Y. (2004). Effect of strong directional selection on weakly selected mutations at linked sites: implication

for synonymous codon usage. Mol. Biol. Evol. 21, 286–294.
[16] Kingman, J. F. C. (1982). On the genealogy of large populations. In Essays in Statistical Science (J. Appl. Prob.

Spec. Vol. 19A), eds J. Gani and E. J. Hannan, Applied Probability Trust, Sheffield, pp. 27–43.
[17] Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl. 13, 235–248.
[18] Krone, S. M. and Neuhauser, C. (1997). Ancestral processes with selection. Theoret. Pop. Biol. 51, 210–237.
[19] Mandl, P. (1968). Analytical Treatment of One-Dimensional Markov Processes. Springer, New York.
[20] McKean, H. P., Jr. (1956). Elementary solutions for certain parabolic partial differential equations. Trans. Amer.

Math. Soc. 82, 519–548.
[21] Mitro, J. B. (1984). Exit systems for dual Markov processes. Z. Wahrscheinlichkeitsth. 66, 259–267.

https://doi.org/10.1239/aap/1293113155 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113155


Time reversal of jump diffusions 1171

[22] Mitro, J. B. (1984). Time reversal depending on local time. Stoch. Process. Appl. 18, 171–177.
[23] Nelson, E. (1958). The adjoint Markoff process. Duke Math. J. 25, 671–690.
[24] Neuhauser, C. and Krone, S. M. (1997). The genealogy of samples in models with selection. Genetics 145,

519–534.
[25] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numerical Recipes in C, 2nd

edn. Cambridge University Press.
[26] Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov Processes, and Martingales. Vol. 2. Cambridge

University Press.
[27] Rong, R. et al. (2007). Unique mutational patterns in the envelope alpha 2 amphipathic helix and acquisition of

length in gp120 hypervariable domains are associated with resistance to autologous neutralization of subtype C
human immunodeficiency virus type 1. J. Virol. 81, 5658–5668.

[28] Rouzine, I. M. and Coffin, J. M. (1999). Search for the mechanism of genetic variation in the pro gene of
human immunodeficiency virus. J. Virol. 73, 8167–8178.

[29] Rubin, L. G. (1987). Bacterial colonization and infection resulting from multiplication of a single organism.
Rev. Infect. Diseases 9, 488–493.

[30] Taylor, J. E. (2007). The common ancestor process for a Wright–Fisher diffusion. Electron. J. Prob. 12, 808–
847.

[31] Yuste, E. et al. (1999). Drastic fitness loss in human immunodeficiency virus type 1 upon serial bottleneck
events. J. Virol. 73, 2745–2751.

https://doi.org/10.1239/aap/1293113155 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1293113155

	1 Introduction
	2 Main result
	3 The stationary distribution
	4 Boundary behavior of the time-reversed process
	5 The generator of the time-reversed process
	6 The local-time process
	7 The backward process
	Acknowledgements
	References

