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Abstract

The problem of oblique wave scattering by a rectangular submarine trench is
investigated assuming a linearized theory of water waves. Due to the geometrical
symmetry of the rectangular trench about the central line x = 0, the boundary value
problem is split into two separate problems involving the symmetric and antisymmetric
potential functions. A multi-term Galerkin approximation involving ultra-spherical
Gegenbauer polynomials is employed to solve the first-kind integral equations arising in
the mathematical analysis of the problem. The reflection and transmission coefficients
are computed numerically for various values of different parameters and different angles
of incidence of the wave train. The coefficients are depicted graphically against the
wave number for different situations. Some curves for these coefficients available in the
literature and obtained by different methods are recovered.
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oblique incident wave, multi-term Galerkin approximation, reflection and transmission
coefficients.

1. Introduction

The problems of water wave scattering by obstacles situated at the bottom of an ocean
form an important area in the linearized theory of water waves for their possible
applications in coastal and polar engineering. Oblique water wave scattering by a
rectangular submarine trench is one such problem, and it is investigated here by
employing a multi-term Galerkin approximation method. In the literature, this method
of Galerkin approximation has been widely used to investigate water wave scattering
problems involving thin vertical barriers [1, 2, 11] or thick vertical barriers with
rectangular cross sections [3–5].

Kreisel [7] first investigated wave propagation over a variable bottom topography
for normally incident wave trains by reducing the fluid domain into a rectangular
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strip using an appropriate conformal mapping and then converting the boundary
value problem of the potential function to an integral equation, which was solved by
iteration. Later, Lassiter [8] studied water wave scattering by a rectangular submarine
trench for a normally incident wave train, where the water depths before and after
the trench were constant but not necessarily equal. He obtained the reflection and
transmission coefficients after formulating the problem in terms of complementary
variational integrals of Schwinger’s type, using the conditions that the velocity
potential and horizontal component of velocity were continuous along the vertical
lines before and after the trench. Lee and Ayer [9] used a matching procedure to solve
the rectangular trench problem by expressing solutions in two subregions comprising
an infinite rectangular region of constant depth and a finite rectangular region of the
trench. They obtained the reflection and transmission coefficients numerically and
also presented them graphically. A series of laboratory experiments in a wave tank
were also performed by Lee and Ayer [9], and the experimental results were compared
with the theoretical solutions. All the aforesaid trench problems involved normally
incident wave trains. Miles [10] considered the trench problem for normal as well
as obliquely incident wave trains. He employed a conformal mapping algorithm
to solve the problem for normally incident wave trains, and employed a variational
formulation for obliquely incident waves. Also, he gave approximate analytical
results for the reflection coefficients for long waves. Shortly afterwards, Kirby and
Dalrymple [6] studied the problem of propagation of obliquely incident waves over an
asymmetric trench for which the water depths on the sides were unequal but constant.
They obtained numerical results based on the numerical solutions of a set of linear
integral equations, derived by matching the truncated eigenfunction expansions for
each subregion of constant depth along the two vertical boundaries. They compared
their numerical results with the data obtained from a small-scale wave tank experiment.

In this paper, we reinvestigate the oblique wave scattering problem involving
a rectangular symmetric submarine trench by employing a multi-term Galerkin
approximation method. Due to the geometrical symmetry of the rectangular trench
about the central line x = 0, the problem is split into two separate problems involving
the symmetric and antisymmetric potential functions describing the resultant motion
in the fluid region, as was done by Kanoria et al. [5], who considered the problem
of water wave scattering by a thick vertical barrier of rectangular cross section
having four different geometrical shapes. Using eigenfunction expansions of the
potential functions along with Havelock’s inversion formula [12] followed by a
matching procedure, we obtain integral equations for the corresponding unknown
horizontal velocity components across the vertical line through the corner point of
the trench. By using the multi-term Galerkin approximation method involving ultra-
spherical Gegenbauer polynomials as basis functions, the integral equations are solved
approximately. Numerical estimates for the reflection and transmission coefficients are
obtained for different angles of incidence and different values of various parameters
associated with the problem. These coefficients seem to satisfy the energy identity.
Some of the curves for these coefficients are compared with those available in the
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Figure 1. Schematic diagram of a submarine trench.

literature obtained using other methods and laboratory experiments, and a very good
agreement is achieved. From the numerical results, we observe that the depth and the
width of the trench affect the reflection and transmission coefficients significantly. We
also notice that for large angles of incidence of the waves, reflection is more while
transmission is less, which is plausible.

2. Mathematical formulation

We consider the irrotational motion in water regarded as an incompressible, inviscid
and homogeneous fluid, with a free surface over a rectangular submarine trench
of width 2b. The trench is at the bottom of an ocean of uniform finite depth,
h, and the depth of the trench from the mean free surface is c (see Figure 1).
A rectangular Cartesian coordinate system is chosen, in which the y-axis is taken
vertically downwards and the (x, z)-plane corresponds to the undisturbed free surface.
Here, we consider the case of a train of surface waves obliquely incident on the right-
hand side of the trench with angle of incidence θ. The obliquely incident wave is
represented by the velocity potential

<{φinc(x, y)ei(νz−σt)},

where

φinc =
2 cosh k0(h − y)e−iµ(x−b)

cosh k0h
,

with k0 being the real positive root of the transcendental equation

k tanh kh = K with K =
σ2

g
.
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Here, σ is the circular frequency of the incoming wave train, g is the acceleration due
to gravity,

µ = k0 cos θ, ν = k0 sin θ
(
0 < θ <

π

2

)
and eiνz is the z-dependence of the incident field.

Due to the geometrical symmetry of the rectangular trench, the z-dependent
term can be eliminated by assuming the velocity potential to be of the form
<{φ(x, y)ei(νz−σt)}. Henceforth, the factor ei(νz−σt) will be omitted.

Then φ(x, y) satisfies the boundary value problem

(∇2 − ν2)φ = 0 in the fluid region; (2.1)

Kφ + φy = 0 on y = 0, |x| <∞; (2.2)

φx = 0 on x = ±b, y ∈ (h, c)(c > h); (2.3)

r1/3∇φ is bounded as r = {(x ∓ b)2 + (y − h)2}1/2 → 0; (2.4)

φy = 0 on y = h, |x| > b; (2.5)

φy = 0 on y = c, |x| < b; (2.6)

and finally

φ(x, y) ∼
{
φinc(x, y) + Rφinc(−x, y) as x→∞,
Tφinc(x, y) as x→ −∞,

where R and T are the unknown reflection and transmission coefficients, respectively,
to be determined.

3. Method of solution

Due to the geometrical symmetry of the rectangular trench about x = 0, φ(x, y) can
be split into symmetric and antisymmetric parts, φs(x, y) and φa(x, y), respectively, so
that

φ(x, y) = φs(x, y) + φa(x, y),

where
φs(−x, y) = φs(x, y) and φa(−x, y) = −φa(x, y).

Therefore, we consider only the region x ≥ 0. Now φs(x, y) and φa(x, y) satisfy the
equations (2.1)–(2.6) together with

φs
x(0, y) = 0 and φa(0, y) = 0.

Let the behaviour of φs,a(x, y) for large x be represented by

φs,a(x, y) ∼
cosh k0(h − y)

cosh k0h
{e−ik0(x−b) + Rs,aeik0(x−b)} as x→∞,

where Rs and Ra are unknown constants. These constants are related to R and T by

R,T = 1
2 (Rs ± Ra)e−2ik0b. (3.1)
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Now the eigenfunction expansions of φs,a(x, y) satisfying the equations (2.1)–(2.3),
(2.5) and (2.6) for x > 0 (in different regions) are given as follows.

Region I (x > b, 0 < y < h):

φs,a(x, y) =
cosh k0(h − y)

cosh k0h
{e−iµ(x−b) + Rs,aeiµ(x−b)} +

∞∑
n=1

As,a
n cos kn(h − y)e−sn(x−b),

(3.2)
where kn (n = 1, 2, . . .) are the real positive roots of the equations

k tan kh + K = 0

and
sn = (k2

n + ν2)1/2.

Region II (0 < x < b, 0 < y < c):(
φs(x, y)
φa(x, y)

)
=

C s
0 cos(α2

0 − ν
2)1/2x

Ca
0 sin(α2

0 − ν
2)1/2x

 coshα0(c − y)
coshα0c

+

∞∑
n=1

C s
n cosh tnx

Ca
n sinh tnx

 cosαn(c − y), (3.3)

where ±α0,±iαn (n = 1, 2, . . .) are the roots of the transcendental equation

α tanhαc = K

and
tn = (α2

n + ν2)1/2 (n = 1, 2, . . .).

Now we have the matching conditions

φs,a
x (b + 0, y) = φs,a

x (b − 0, y), 0 < y < h.

Let us define
φs,a

x (b + 0, y) = f s,a(y), 0 < y < h, (3.4)

φs,a
x (b − 0, y) = gs,a(y), 0 < y < c, (3.5)

so that

gs,a(y) =

{
f s,a(y), 0 < y < h,
0, h < y < c. (3.6)

Due to the edge condition (2.4),

f s,a(y) = O(|y − h|−1/3) as y→ h.

Substituting the expansions of φs,a(y) from (3.2) in (3.4),

iµ
cosh k0(h − y)

cosh k0h
{Rs,a − 1} −

∞∑
n=1

As,a
n sn cos kn(h − y) = f s,a(y), 0 < y < h. (3.7)
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Use of Havelock’s inversion formula [12] in (3.7) yields

1 − Rs,a =
4ik0

δ0µ
cosh k0h

∫ h

0
f s,a(y) cosh k0(h − y) dy, (3.8)

with δ0 = 2k0h + sinh 2k0h and

As,a
n = −

4kn

δnsn

∫ h

0
f s,a(y) cos kn(h − y) dy,

with
δn = 2knh + sin 2knh (n = 1, 2, . . .).

Now, using (3.3) and (3.5),

C s,a
0 (α2

0 − ν
2)1/2(− sin(α2

0 − ν
2)1/2b, cos(α2

0 − ν
2)1/2b)

coshα0(c − y)
coshα0c

+

∞∑
n=1

(sinh tnb, cosh tnb)C s,a
n tn cosαn(c − y) = gs,a(y), 0 < y < c.

Applying Havelock’s inversion formula and using (3.6),

C s,a
0 =

4α0 cos hα0c
γ0(α2

0 − ν
2)1/2(− sin(α2

0 − ν
2)1/2b, cos(α2

0 − ν
2)1/2b)

×

∫ h

0
f s,a(y) coshα0(c − y) dy,

with
γ0 = 2α0c + sinh 2α0c

and

C s,a
n =

4αn

γntn(sinh tnb, cosh tnb)

∫ h

0
f s,a(y) cosαn(c − y) dy,

with
γn = 2αnc + sin 2αnc.

Now matching φs,a(x, y) across the line x = b yields

cosh k0(h − y)
cosh k0h

{1 + Rs,a} +

∞∑
0

As,a
n cos kn(h − y)

= C s,a
0 (cos(α2

0 − ν
2)1/2b, sin(α2

0 − ν
2)1/2b)

coshα0(c − y)
coshα0c

+

∞∑
n=1

(cosh tnb, sinh tnb)C s,a
n cosαn(c − y), 0 < y < h.
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This ultimately produces the first-kind integral equations∫ h

0
F s,a(u)Ms,a(y, u) du =

cosh k0(h − y)
cosh k0h

, 0 < y < h, (3.9)

where

F s,a(y) =
4k0 cosh2 k0h
µδ0(1 + Rs,a)

f s,a(y), 0 < y < h,

and

Ms,a(y, u) =
δ0µ

k0 cosh2 k0h

∞∑
n=1

[kn cos kn(h − y) cos kn(h − u)
δnsn

+ (coth tnb, tanh tnb)
αn cosαn(c − y) cosαn(c − u)

γntn

+

{
(− cot(α2

0 − ν
2)1/2b, tan(α2

0 − ν
2)1/2b) coshα0(c − y)

× coshα0(c − u)
α0

γ0(α2
0 − ν

2)1/2

}]
, 0 < y, u < h.

Note thatMs,a(y, u) (0 < y, u < h) are real and symmetric in y and u.
Now, if we define

C s,a = −i
1 − Rs,a

1 + Rs,a , (3.10)

then, by equations (3.8) and (3.9),

C s,a =

∫ h

0
F s,a(y)

cosh k0(h − y)
cosh k0h

dy,

where

F s,a(y) =
4 cosh2 k0h
δ0(1 + Rs,a)

f s,a(y) (3.11)

and F s,a(y) and C s,a are real quantities. Thus, if the integral equations (3.9) are solved,
these solutions can be used to evaluate C s,a from the relations (3.11), and these produce
the actual reflection and transmission coefficients

|R| =
|1 + C sCa|

4
and |T | =

|C s −Ca|

4
,

with
4 = {1 + (C s)2 + (Ca)2 + (C sCa)2}1/2,

which are obtained from the equations (3.10) and (3.1).
Next we consider the Galerkin approximation method to solve the integral

equations (3.9). The unknown functions F s,a(y) are approximated as

F s,a(y) ≈ F s,a(y), 0 < y < h,
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where F s,a(y) have the multi-term Galerkin expansions in terms of suitable basis
functions given by

F s,a(y) =

N∑
n=0

as,a
n f s,a

n (y), 0 < y < h, (3.12)

where as,a
n are unknown constants. Following similar arguments given by Kanoria et al.

[5], the basis functions are

f s,a
m (y) = −

d
dy

[
e−ky

∫ h

y
f̂n(t) dt

]
, 0 < y < h, (3.13)

where f̂n(y) is chosen in terms of the ultra-spherical Gegenbauer polynomials of order
1/6 as

f̂n(y) =
27/6Γ(1/6)(2n)!

πΓ(2n + 1/3)h1/3(h2 − y2)1/3 C1/6
2n

( y
h

)
, 0 < y < h. (3.14)

Now, using (3.14) and (3.13) and substituting these into (3.12), we get the approximate
forms of F s,a(y). Using these approximate forms in (3.9), multiplying both sides by
f s,a
n (y) and integrating over the interval (0, h), we obtain the linear systems

N∑
n=0

as,a
n K s,a

mn = ds,a
m , m = 0, 1, . . . ,N, (3.15)

where

K s,a
mn =

∫ h

0

∫ h

0
Ms,a(y, u) f s,a

n (u) f s,a
m (y) du dy, m, n = 0, 1, . . . ,N, (3.16)

and

ds,a
m =

∫ h

0

cosh k0(h − y)
cosh k0h

f s,a
m (y) dy, m = 0, 1, . . . ,N. (3.17)

The integrals (3.16) and (3.17) can be evaluated explicitly as in Kanoria et al. [5]
by using the different properties and standard results on the Gegenbauer polynomials.
Thus,

K s,a
mn =

δ0µ

k0 cosh2 k0h

[
4(−1)m+n

∞∑
r=1

{k2/3
r cos2 krh
δr srh1/3 J2m+1/6(krh)J2n+1/6(krh)

+
α2/3

r (coth trb, tanh trb)
γrtrh1/3 cos2 αrcJ2m+1/6(αrh)J2n+1/6(αrh)

+
(−cot(α2

0 − ν
2)1/2b, tan(α2

0 − ν
2)1/2b)

γ0(α2
0 − ν

2)1/2h1/3
cosh2 α0c I2m+1/6(α0h)I2n+1/6(α0h)

}]
for m, n = 0, 1, . . . ,N and

ds,a
m =

I2m+1/6(k0h)
(k0h)1/6 , m = 0, 1, . . . ,N.
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Figure 2. Plot of |T | against K0h with fixed values of c/h = 2, b/h = 5 and different values of θ = 0◦

(− − −) and 45◦ (–).

The constants as,a
n (n = 0, 1, . . . , N) are now obtained by solving the linear systems

(3.15) and, from (3.11),

C s,a =

N∑
n=0

as,a
n ds,a

n .

Then |R| and |T | are evaluated from (3.10).

4. Numerical results

To solve the linear system (3.15) and to obtain numerical results correct up to
six decimal places, a suitable choice of N is 40. The reflection and transmission
coefficients, |R| and |T |, are evaluated numerically for different values of Kh. These
coefficients are also depicted graphically for various values of the parameters b/h
and c/h, and for different incident angles in a number of figures. To verify the
results obtained here, we have compared our results with those given by Kirby and
Dalrymple [6], obtained by employing a different method. Kirby and Dalrymple [6]
plotted |T | against the nondimensional wave number k1h1 (≡ k0h here) in their
Figure 4(a) and (b) for various values of h2/h1 (≡ c/h here) and a fixed value of the ratio
of the trench length and water depth in the left-hand side of the trench (≡ 2b/h here)
and different values of the incident angle θ. In Figure 4(a) of Kirby and Dalrymple [6],
|T | was plotted against k1h1 (≡ k0h here) for 2b/h = 10, c/h = 2 with θ = 0◦ and 45◦.
In this paper, |T | is plotted against k0h for the same values of b/h, c/h and θ in Figure 2.
Also, the curves in Figure 4(b) of Kirby and Dalrymple [6] depicting |T | against k1h1
for 2b/h = 10, c/h = 3, θ = 0◦ and 45◦ almost coincide with the corresponding curves
in Figure 3 here, which are plots of |T | against k0h for b/h = 5, c/h = 3, θ = 0◦ and 45◦.
Also, θ = 0◦ corresponds to the case of normal incidence and Figure 4 plots |R| against
k0h/2π with c/h = 2, b/h = 2.5 and θ = 0◦. This curve is compared with Figure 2 of
Lee and Ayer [9], in which |R| was plotted against h/λ (≡ k0h/2π here) with the same
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Figure 3. Plot of |T | against K0h with fixed values of c/h = 3,b/h = 5 and different values of θ = 0◦ (− − −)
and 45◦ (–).
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Figure 4. Plot of |R| against k0h/2π; c/h = 2, b/h = 2.5 and θ = 0◦.

values of c/h and b/h for the case of normal incidence. Here, it is observed that Lee
and Ayer’s result (see [9, Figure 2]) is recovered from our present obliquely incident
result (Figure 4 here) by taking the incident angle θ to be 0◦.

Some more figures of |R| and |T | are drawn against the nondimensional wave
number Kh in Figures 5(a) and (b), 6 and 7. In Figure 5(a) and (b), |R| and |T | are
depicted, respectively, with fixed values of c/h = 2, b/h = 3 and different values of the
incident angle θ, such as θ = 30◦, 45◦ and 60◦. In these figures, we observe that the
amplitude of |R| gradually increases and the number of zeros of |R| gradually decreases
with increasing values of the incident angle. The value of |T | gradually decreases and
also the number of zeros of |T | becomes less as θ increases. Thus, more energy is
reflected and less is transmitted as the incident angle increases.

In Figure 6, |R| and |T | are plotted with fixed values of c/h = 2 and θ = 45◦ for
different values of b/h, such as 2, 3 and 5. From these figures, it is clear that as the

https://doi.org/10.1017/S1446181115000024 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000024


296 R. Chakraborty and B. N. Mandal [11]

0 0.2 0.4 0.6 0.8 1.0 1.2
0

0.2

0.4

0.6

0.8

1.0(a) (b)

0 0.2 0.4 0.6 0.8 1.0 1.2
0

0.2

0.4

0.6

0.8

1.0

Figure 5. Plots of (a) |R| and (b) |T | against Kh with fixed values of b/h = 3, c/h = 2 and different values
of θ = 30◦ (– · – ·), 45◦ (· · · ) and 60◦ (–).
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Figure 6. Plots of |R| and |T | against Kh with fixed values of θ = 45◦, c/h = 2 and different values of
b/h = 2 (– · – ·), 3 (–) and 5 (· · · ).

trench width becomes large, more energy is reflected and less energy is transmitted.
Figure 7 depicts |R| and |T | against Kh. Here, the values of b/h (= 4), θ (= 45◦) remain
fixed, and c/h (= 1, 2) varies. From this figure, it is observed that as c/h increases, |R|
gradually decreases and |T | gradually increases. Also observe that the energy identity
relation |R|2 + |T |2 = 1 is satisfied numerically. This is used as a partial check for the
correctness of the numerical results.

5. Conclusion

A multi-term Galerkin approximation method involving ultra-spherical Gegenbauer
polynomials of order 1/6 was employed here to reinvestigate the oblique wave
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Figure 7. Plots of |R| and |T | against Kh with fixed values of θ = 45◦, b/h = 4 and different values of
c/h = 1 (· · · ) and 2 (–).

scattering problem involving a symmetric, rectangular submarine trench. Very accurate
numerical estimates for the reflection and transmission coefficients for different values
of wave number and other parameters involved in the physical problem have been
obtained. The results for normal incidence are recovered from the present solution by
putting θ = 0. The numerical results are illustrated in a number of figures, some of
which match quite well with those available in the literature, drawn by using different
mathematical techniques. The incident angle as well as the trench length affect the
reflection and transmission coefficients significantly. If the water depths before and
after the trench are different, that is, for the case of an asymmetric submarine trench,
we expect that the same method can be employed with appropriate modifications.
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