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LATTICES WHOSE IDEAL LATTICE IS STONE
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1. Introduction

An elementary fact about ideal lattices of bounded distributive lattices is that they
belong to the equational class 3Sm of all distributive p-algebras (distributive lattices with
pseudocomplementation). The lattice of equational subclasses of ^ m is known to be a
chain

of type (o+l, where 38 0 is the class of Boolean algebras and 3$\ is the class of Stone
algebras. G. Gratzer in his book [7] asks after a characterisation of those bounded
distributive lattices whose ideal lattice belongs to 38 (n ̂  1). The answer to the problem
for the case n = 0 is well known: the ideal lattice of a bounded lattice L is Boolean if and
only if L is a finite Boolean algebra. D. Thomas [10] recently solved the problem for the
case n = 1 utilising the order-topological duality theory for bounded distributive lattices
and in [5] W. Bowen obtained another proof of Thomas's result via a construction of
the dual space of the ideal lattice of a bounded distributive lattice from its dual space.
In this paper we give a short, purely algebraic proof of Thomas's result and deduce
from it necessary and sufficient conditions for the ideal lattice of a bounded distributive
lattice to be a relative Stone algebra. Gratzer's problem for the case n = l can be
paraphrased as: Characterise those bounded distributive lattices whose congruence
kernels form a Stone algebra. We ask and answer the same question for distributive p-
algebras and distributive double p-algebras drawing from the main result a
characterisation of those double Heyting algebras whose congruence lattice is Stone.

2. Preliminaries

Let <L, v, A , 0,1 >, henceforth simply L, be a bounded distributive lattice.
Throughout, we shall write Cen(L) for the centre of L, J(L) for its ideal lattice and L/I
for LI9(1), where 6(1) is the principal congruence of L generated by IeS(L). If L is
equipped with a unary operation * characterised by the property:

flAX=0 if and only if x^

then L is called a distributive p-algebra or distributive lattice with pseudocomplementation.
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If, in any such algebra, we write B(L) = {xeL;x — x**} then <£(L),u, A , * , 0 , 1> is a
Boolean algebra, called the skeleton of L, when the join operation u is defined on B{L)
by avb = (avb)** and D(L) = {xeL;x*=0} is a filter in L, called the dense filter. A
Stone algebra is a distributive p-algebra satisfying the identity x* vx** = l and a relative
Stone algebra is a bounded lattice in which every interval is a Stone algebra. Relative
Stone algebras are intimately related to Heyting algebras; this is, bounded (distributive)
lattices equipped with a binary operation * characterised by the property:

^ i if and only if x^

Indeed, the classes of relative Stone algebras and Heyting algebras satisfying the identity
(x * y) v (y * x) = 1 are coincident. A distributive p-algebra endowed with a unary
operation + characterised by the property dual to that for * is called a distributive
double p-algebra and a Heyting algebra endowed with a binary operation +
characterised by the property dual to that for * is called a double Heyting algebra. If L
is a distributive double p-algebra and aeL then elements a"(*+)(n<co) can be defined
recursively by

a 0(*+)_ f l a(t+l)(* + ) = a(c(*+)* +

Elements an(+*'(n<co) can also be defined in a similar fashion and the following are
known to hold (see [2]):

x^x*+,(xvj;)*+=x*+vy*"\Cen(L) = {xeL;x = x*+}.

By a congruence relation on a distributive p-algebra, distributive double p-algebra,
double Heyting algebra we mean a lattice congruence preserving *, * and +, * and +,
respectively, and by a congruence kernel we mean any congruence class containing 0.

All undefined terms as well as general lattice theoretic results and facts about
distributive p-algebras may be found in [1] or [7].

3. Gratzer's problem for n=\

The key to the solution of the problem is the following simple observation:

Lemma 1. An ideal I in a bounded distributive lattice L is complemented if and only if
it is of the form {z\,for some zeCen(L).

Proof. Clearly, if zeCen(L) then (z] has complement (z'] in J{L). Conversely, if
JeCen(./(L)) then 7 v / * = L so that l = zvw, for some zel, we I* which since
/* = {xeL; x A j = 0 for all iel}, shows that zeCen(L) and z' = w. For any xel*, we have
X A Z = 0 so that x^z*=z' = w and, therefore, 7*^(w]. Thus, /* = (w], since we I*, and
it follows that / = (z].

Theorem 2. The ideal lattice of a bounded distributive lattice L is a Stone algebra if
and only if L is a Stone algebra whose centre is complete.
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Proof. If J(L) is Stone than (a]*eCen(./(L)), for any aeL, and so (a]*=(z], for
some zeCen(L), by Lemma 1. However, {a~]* = {xeL;xAa=0} and so a* exists and
belongs to Cen(L), for any aeL. In other words, L is a Stone algebra. In order to show
that Cen(L) is a complete lattice, it is enough by Lemma 1 to show that if ZeCen(L)
then P){(z]; z e Z ) i s o f t h e f o r m 7*> f o r s o m e /e^(L). We claim that / = \/{(z']; zeZ} is
an ideal satisfying our needs. Indeed, xel* if and only if x A a = 0, for all a e V{(z'];
zeZ}, and by distributivity this is equivalent to XAZ' = 0, for all zeZ, since \ /{(z ' ] '
zeZ} consists of all finite joins of elements in the set union (J{(z']; zeZ}. This, in turn,
holds if and only if xe(){{z]\ zeZ}. Thus, I* = C\{{z]; zeZ}.

Conversely, suppose that L is a Stone algebra and that Cen(L) is complete. In order
to show that J(V) is Stone it is enough to show that /* e Cen./(L), for any leJ{L).
First, observe that i*eCen(L) for any iel, since L is Stone, and so the existence of z
= /\{i*; iel}, taken in Cen(L), is guaranteed. We claim that /* = (z]. Indeed, xel* if
and only if x is a lower bound in L of {i*; iel} or, equivalently, x** is a lower bound in
L of {i*; iel}. This, in turn, is equivalent to x^z , since x^x**eCen(L) and z**
= z e Cen(L). Thus, /*=(z] € Cen(./(L)).

Corollary 3. For a bounded distributive lattice L, the following are equivalent:

(i) */(L) is a relative Stone algebra,
(ii) For any I e ./(L), L/I is a Stone algebra whose centre is complete.

(iii) L is a relative Stone algebra whose centre is complete and, for any I e D(>/(L)), L/I
is a Stone algebra whose centre is complete.

Proof. It is well known (see [1]) that for a bounded distributive lattice L to be
relative Stone it is necessary and sufficient that every principal filter of L be a Stone
algebra. This fact, applied to </(L) in conjunction with Theorem 2 and the equally well
known fact that J(L/I) = [I), for any leJ(L), establishes the equivalence of (i) and (ii).
Now, if J(L) is relative Stone and beL is arbitrary then L/(b] is a Stone algebra. In
particular, it follows that, given any aeL, there exists aeL such that

M » A [ X ] , = [ 0 ] , if and only if [ x ] ^ [ a ] 6 ,

where [x]fc denotes the congruence class of 0((b]) containing x. As a consequence of this
and the well known description of principal congruences on distributive lattices we
conclude that

aAx^b if and only if x ^ d v b

and so L is a Heyting algebra in which a*b = dv b, for any a, beL. Furthermore, the
identity (a * b) v (b * a) = 1 holds in L by virtue of the fact that it holds in J{L). Indeed,
for any I,JeJ(L), we have /*J = {xeL; xAieJ, for all ie 1} and so, in particular,
(a] *(b]=(a*fe], for any a,beL. Therefore, (a*b~\ v(b*a] = L and so (a*b)v(b*a) = l.
Thus, L is relative Stone and the proof that (ii) implies (iii) is complete. Moreover,
condition (iii) in conjunction with Theorem 2 shows that S(L/I) and therefore [/) is a
Stone algebra, for any / e D(J(L)). Thus, (iii) implies (i), since it is well known that for a
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Stone algebra to be relative Stone it is necessary and sufficient that each of its principal
filters generated by a dense element be a Stone algebra (see [1]).

Corollary 4. The congruence lattice of a Boolean lattice L is relative Stone if and only
if every homomorphic image of L is complete.

In connection with Corollaries 3 and 4 we point out that if L is a Stone algebra
whose centre is complete and leJ{L) the L/I is not necessarily Stone nor is its centre
necessarily complete. Indeed, if L is the Stone algebra obtained by adjoining a new zero
and unit to the four-element Boolean algebra and / is the principal ideal of L generated
by its only atom then L/I is isomorphic to the four-element Boolean algebra with a new
unit adjoined and so is not Stone. Furthermore, while the field of all subsets of an
uncountable set X is complete, its quotient modulo the ideal of all countable subsets of
X is not.

4. The problem for distributive /^-algebras and double /^-algebras

Earlier we pointed out that a subset of a bounded distributive lattice is an ideal if and
only if it is a congruence kernel. W. Cornish [6] showed that an ideal / in a distributive
p-algebra is a congruence kernel if and only if i**el whenever is I. In addition, Cornish
showed that the lattice of congruence kernels of a distributive p-algebra L is isomorphic
to the ideal lattice of the skeleton B(L) of L. T. S. Blyth [4] showed that exactly the
same is true for pseudo-complemented semilattices with, of course, the appropriate
definition of congruence kernel in this context. Thus, we have

Theorem 5. The lattice of congruence kernels of a pseudo-complemented semilattice or
of a distributive p-algebra L is a Stone algebra if and only if the skeleton of L is complete.

The situation for distributive double p-algebras is not so simple but nevertheless
tractible. It follows on dualising results in [2] that a subset / of a distributive double p-
algebra is a congruence kernel if and only if i*+ e / whenever i e I. Moreover, it is easy
to show, utilising the well known description of infinite joins in ideal lattices of
distributive lattices and the identity (x v y)*+ = x*+ v y*+ which holds in any
distributive double p-algebra, that the lattice K{L) of congruence kernels of a
distributive double p-algebra L is a complete sublattice of the ideal lattice J{L) of L.
Consequently, /C(L)e^w and, using Lemma 1, it is easy to see that Cen(/C(L)) = {(z];
zeCen(L)}. When, then, is K(L) Stone?

Theorem 6. The lattice K(L) of congruence kernels of a distributive double p-algebra L
is a Stone algebra if and only if /\n<(Oan( + *) and /\S exist in L, for any aeB(L) and
SsCen(L).

Proof. We start with the observation that if aeL and I(a} = {x e L;x^a"(*+), for some
n<co) then /(a)eK(L), since an(*+)gam(*+) whenever n^m, and claim that I(a)*
= C\n«o("*nl+*)l With the aim of showing that the ideal f]n<lo{a*ni+*^eK(L), let
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n . < » ( ] a n d l e t k<0}- T h e n ^ o l ( * + 1 1 ( + " so that ^ ^
and, therefore, x* + ga

(*+ 1 ) (*+ ) + = a**(+*)+ + ^a**<+*>. Thus, x * + £ f ) n < m ( a
Moreover, if x e l{a) n f)n < m (a*"(+*»] then x ^ an(*+>, for some n < co, and x <, a*n(+*> = an(*+>*
so that x ^ an<*+» A an(*+)* = 0. Therefore, I(a) nf]n<co(a*n(+*>] = {0}. In addition, ifK e K(L)
satisfies l(a) n X = {0} and k e X then k A a"(* +»= 0 for all n < a; that is, k ^ ani*+>* = a*"<+*> for
all n«o. Thus, K s ^ < ffl(a*«<+*>] and we conclude that /* = f)n < a (a*"(+*>]. It follows, now,
that if K(L) is a Stone algebra and aeL then I(a)* eCen(K(L)) and so 7(a)* = (z], for some
zeCen(L). Thus, / \ n < a a* n i + * ' exists, for any aeL. Equivalently, / \ n<man i +* ' exists, for any
a e B{L). Next, it is straightforward to show that if S S Cen(L) and I(S') = {x £ L; x ^ s't v • • • v s'n,
for some st e S, 1 ^ i S "} then 7(S') e K(L). Moreover, by distributivity, / e X(L) satisfies / n Z(S')
= {0} if and only if i A S' = 0, for all iel and s e S: equivalently, if and only if 7 sp ){ ( s ] ; s eS} .
Consequently, 7(5')* = f){(s];seS} which, since7(S')* =(z] for some zeCen(L), shows that /\S
exists, for any SsCen(L).

Conversely, suppose that, for any aeB(L) and SeCen(L), /\n<0>ani+*) and /\S exist
in L. We start by showing that all such meets necessarily belong to Cen(L). Indeed, if
aeB(L), k<co and m{a) = /\n<aa

n(+*) then m(a)^a(k+1)(+*» so that m(a)*^a(t + 1)( + *)*
= a*( + *) + * * ^ a « + *)+ a n d > therefore, m(a)*+ ^a

k{ + *)+ + ^aki+*\ It follows that
m{a)** ^m(a) and so m(a)eCen(7_), since x ^ x * + holds for any xeL. Moreover, if
SsCen(L) and m(S) = /\S then, since m{S)^s implies m*+(S)^s, for any seS, we have
m*+{S)^m(S) and so m(S)eCen(L). It follows, now, that if ieIeK{L) then m(i*) and,
therefore, z = /\{m(i*); iel} exists and is central. We claim that 7* = (z]. Indeed, if xe7* ,
iel and n<co then xAi n ( * + ) =0 so that x^;"<*+>* = ;*"<+*>. Therefore, x<Lm(i*), for all
ie7, and so x ^ z . Hence, 7*s(z]. For the reverse inclusion, first observe that if x^z,
iel and m<co then xm (*+ )^zm (*+ ) = z^i* , since zeCen(L), and so i^ i**^x m ( * + ) * . It
follows, now, that 7(x)n7 = {0}; because if iel(x)nl then i^x"(*+), for some n<co, and
so igxn (*+ )Axn (*+ )* = 0. Therefore, x£7(x)s7*. Thus, we have shown that I* is
complemented in K(L), for any 7 e K(L). Equivalently, K(L) is a Stone algebra.

In [9] P. Kohler call s an ideal 7 in a double Heyting algebra L normal if a e I implies
a* + £7 and proves that the congruence lattice of L is isomorphic to the lattice of
normal ideals of L. Thus, we have

Corollary 7. The congruence lattice of a double Heyting algebra L is a Stone algebra
if and only if f\n<loa

n(+*) and f\S exist, for any aeB(L) and SsCen(L).

A double p-algebra is called regular if it satisfies the identity ( x A x + ) v ( y v / )
= } v y*. In [8], T. Katrinak shows that a regular double p-algebra is, in fact, a double
Heyting algebra in which x*y and x + y are double p-algebra polynomials. As a
consequence, double Heyting algebra congruences and double p-algebra congruences
coincide for regular double p-algebras. Thus, Corollary 7 is a generalisation and,
simultaneously, an improvement of the main result of [3].

Added in proof. Recently, I learnt that Theorem 2 was proved by T. Katrinak in his
paper "Notes on Stone lattices I", Mat. Casopsis Sloven. Akad. Vied. 16 (1966), 128—
142 (in Russian). A version of Theorem 2 for join similattices with 1 appears in his
paper "Pseudocomplementare Halbverbande", Mat. Casopsis Sloven. Akad. Vied. 18
(1968), 121-143.
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