Bull. Aust. Math. Soc. 86 (2012), 83–89 doi:10.1017/S0004972711002905

ON A DIRICHLET PROBLEM WITH *p*-LAPLACIAN AND SET-VALUED NONLINEARITY

S. A. MARANO

(Received 19 August 2011)

Abstract

The existence of solutions to a homogeneous Dirichlet problem for a *p*-Laplacian differential inclusion is studied via a fixed-point type theorem concerning operator inclusions in Banach spaces. Some meaningful special cases are then worked out.

2010 *Mathematics subject classification*: primary 35J60; secondary 35R70, 47H15. *Keywords and phrases*: *p*-Laplacian, differential inclusion, generalized gradient, operator inclusion.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N with a smooth boundary $\partial \Omega$, let $p \in (1, +\infty)$, and let $j : \Omega \times \mathbb{R} \to \mathbb{R}$ be measurable in $x \in \Omega$ for every $z \in \mathbb{R}$. Consider the Dirichlet problem

$$\begin{cases} -\Delta_p u = j(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1.1)

where $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$ denotes the *p*-Laplacian. If *j* is a Carathéodory's function then a number of existence and multiplicity results involving (1.1) are available in the literature; see for instance the monographs [8, 9, 15], besides the very recent paper [3]. Variational, subsupersolutions, as well as topological methods represent the most exploited technical approaches. When *j*(*x*, ·) turns out to be locally essentially bounded only, (1.1) is usually replaced by

$$\begin{cases} -\Delta_p u \in \partial J(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.2)

with

$$J(x,\xi) := \int_0^{\xi} j(x,t) \, dt, \quad (x,\xi) \in \Omega \times \mathbb{R},$$
(1.3)

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

S. A. Marano

and $\partial J(x, z)$ being the Clarke generalized gradient of $J(x, \cdot)$ at the point $z \in \mathbb{R}$. Problem (1.2) has been the subject of numerous investigations, mainly based on the critical point theory for locally Lipschitz continuous functions [4, 10, 14], sometimes combined with subsupersolution arguments [2, 8]. By the way, setting

$$\underline{j}(x,z) := \lim_{\delta \to 0^+} \underset{|w-z| < \delta}{\operatorname{ess inf}} j(x,w), \quad \overline{j}(x,z) := \lim_{\delta \to 0^+} \underset{|w-z| < \delta}{\operatorname{ess inf}} j(x,w), \quad (x,z) \in \Omega \times \mathbb{R},$$
(1.4)

the inclusion in (1.2) becomes

$$j(x, u) \le -\Delta_p u \le \overline{j}(x, u) \quad \text{in } \Omega, \tag{1.5}$$

which reduces to $-\Delta_p u = j(x, u)$ at each point *u* where $j(x, \cdot)$ is continuous.

In this paper, we simply point out that Problem (1.2), with *J* unnecessarily of the type (1.3), can also be treated through an existence result for operator inclusions, previously established in [1], provided p > N. One assumes that $(x, z) \mapsto J(x, z)$, $(x, z) \in \Omega \times \mathbb{R}$, is measurable with respect to $x \in \Omega$ and locally Lipschitz continuous in $z \in \mathbb{R}$. A further condition, compatible with any growth rate of $J(x, \cdot)$, fits our purposes; see Theorem 3.1. Some meaningful special cases, namely Corollaries 3.2–3.3, are then worked out.

The recent work [7] treats p-Laplacian differential inclusions via fixed points for multifunctions in partially ordered sets. Amidst the results of [7] let us mention Proposition 4.1, which provides extremal solutions to a problem like (1.5) under hypotheses different from those employed here.

2. Preliminary results

From now on, Ω denotes a bounded domain of the real Euclidean *N*-space $(\mathbb{R}^N, |\cdot|)$ with a smooth boundary $\partial \Omega$, $p \in (N, +\infty)$, p' := p/(p-1), $\|\cdot\|_q$ is the usual norm of $L^q(\Omega)$, $1 \le q \le +\infty$, while $W_0^{1,p}(\Omega)$ stands for the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$. On $W_0^{1,p}(\Omega)$ we introduce the norm

$$|u|| := \left(\int_{\Omega} |\nabla u(x)|^p dx\right)^{1/p}, \quad u \in W_0^{1,p}(\Omega).$$

It is known that $W_0^{1,p}(\Omega)$ compactly embeds in $L^p(\Omega)$ and one has

$$\|u\|_p \le \lambda_1^{-1/p} \|u\| \quad \forall u \in W_0^{1,p}(\Omega),$$

where λ_1 indicates the first Dirichlet eigenvalue of the *p*-Laplacian [11]. Moreover, since p > N, we actually get $W_0^{1,p}(\Omega) \subseteq L^{\infty}(\Omega)$ as well as

$$||u||_{\infty} \le a||u||, \quad u \in W_0^{1,p}(\Omega),$$
 (2.1)

for suitable a > 0; see, for example, [5, Ch. IX]. The constant *a* has been estimated in [16, Formula (6b)] and, for convex Ω , in [6, Theorem 1].

Let $W^{-1,p'}(\Omega)$ be the dual space of $W_0^{1,p}(\Omega)$. By [5, Theorem VI.4] the space $L^{p'}(\Omega)$ compactly embeds in $W^{-1,p'}(\Omega)$. Thus, there exists b > 0 satisfying

$$\|v\|_{W^{-1,p'}(\Omega)} \le b\|v\|_{p'}, \quad v \in L^{p'}(\Omega).$$
(2.2)

REMARK 2.1. The constant *b* can be evaluated through λ_1 . In fact,

$$\|v\|_{W^{-1,p'}(\Omega)} := \sup_{\|u\| \le 1} \left| \int_{\Omega} u(x)v(x) \, dx \right| \le \sup_{\|u\| \le 1} \|u\|_p \|v\|_{p'} \le \lambda_1^{-1/p} \|v\|_p$$

for all $v \in L^{p'}(\Omega)$, whence $b \leq \lambda_1^{-1/p}$.

Let $A: W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ be the nonlinear operator stemming from the negative *p*-Laplacian, that is,

$$\langle A(u), v \rangle := \int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) \, dx, \quad u, v \in W_0^{1,p}(\Omega).$$
(2.3)

Theorem A.0.6 in [15] and an elementary argument ensure the following properties.

- (p_1) A is bijective and uniformly continuous on bounded sets.
- (p₂) Its inverse A^{-1} turns out to be continuous.
- (p₃) $||A(u)||_{W^{-1,p'}(\Omega)} = ||u||^{p-1}$ in $W_0^{1,p}(\Omega)$.

Let U be a nonempty set and let $\Phi: U \to W_0^{1,p}(\Omega), \Psi: U \to L^{p'}(\Omega)$ be two operators such that the following conditions (i₁) hold true.

(i₁) Ψ is bijective and for any $v_h \rightarrow v$ in $L^{p'}(\Omega)$ there is a subsequence of $\{\Phi(\Psi^{-1}(v_h))\}$ which converges to $\Phi(\Psi^{-1}(v))$ almost everywhere in Ω . Furthermore, a nondecreasing function $\varphi : \mathbb{R}^+_0 \rightarrow \mathbb{R}^+_0 \cup \{+\infty\}$ can be defined in such a way that

$$\|\Phi(u)\|_{\infty} \le \varphi(\|\Psi(u)\|_{p'}) \quad \forall u \in U.$$
(2.4)

Finally, let $F: \Omega \times \mathbb{R} \to 2^{\mathbb{R}}$ be a convex closed-valued multifunction. Theorem 3.1 of [1] directly yields the next result.

THEOREM 2.2. Suppose (i_1) holds true and, moreover, suppose that the following conditions hold true.

- (i₂) $F(\cdot, z)$ is measurable for all $z \in \mathbb{R}$.
- (i₃) $F(x, \cdot)$ has a closed graph for almost every $x \in \Omega$.
- (i₄) There exists r > 0 such that the function $m(x) := \sup_{|z| \le \varphi(r)} \inf\{|y| : y \in F(x, z)\}, x \in \Omega$, belongs to $L^{p'}(\Omega)$ and $||m||_{p'} \le r$.

Then the problem $\Psi(u) \in F(x, \Phi(u))$ in Ω possesses at least one solution $u \in U$ satisfying $|\Psi(u)(x)| \le m(x)$ for almost every $x \in \Omega$.

For the notions on multifunctions (respectively, nonsmooth analysis) exploited in the paper, we simply refer the reader to [1] (respectively, [12]), measurable always means Lebesgue measurable, while the symbol m(E) will indicate the Lebesgue measure of E.

S. A. Marano

3. Existence of solutions

Keep the same notation of Section 2 and define, for every $t \in \mathbb{R}_0^+$,

$$\varphi(t) := a(bt)^{1/(p-1)}.$$
(3.1)

The function φ turns out to be monotone increasing in \mathbb{R}_0^+ . Let $J : \Omega \times \mathbb{R} \to \mathbb{R}$. We shall make the following assumptions.

(a₁) $J(\cdot, z), z \in \mathbb{R}$, is measurable.

(a₂) To every M > 0 there corresponds k(M) > 0 such that

$$|J(x, z_1) - J(x, z_2)| \le k(M)|z_1 - z_2| \quad \text{almost everywhere in } \Omega \text{ and}$$
$$\forall z_1, z_2 \in [-M, M].$$

(a₃) For suitable ε , r > 0 one has $m(\Omega)^{1-1/p}k(a(br)^{1/(p-1)} + \varepsilon) \le r$. By (a₂) it makes sense to consider the generalized Clarke gradient $\partial J(x, z)$ of $J(x, \cdot)$ at the point $z \in \mathbb{R}$.

THEOREM 3.1. If p > N and $(a_1)-(a_3)$ hold true then there exists $u \in W_0^{1,p}(\Omega)$ satisfying $-\Delta_p u(x) \in \partial J(x, u(x))$ almost everywhere in Ω .

PROOF. Set $U := A^{-1}(L^{p'}(\Omega))$, $\Phi(u) := u$, and $\Psi(u) := A(u)$ for all $u \in U$. Property (p_1) ensures that the operator $\Psi : U \to L^{p'}(\Omega)$ is bijective. Let $v_h \to v$ in $L^{p'}(\Omega)$. Because of the compact embedding $L^{p'}(\Omega) \subseteq W^{-1,p'}(\Omega)$ and (p_2) we obtain, up to subsequences, $\Phi(\Psi^{-1}(v_h)) \to \Phi(\Psi^{-1}(v))$ almost everywhere in Ω . Hence, (i_1) is verified once we prove (2.4). Since p > N, gathering (2.1), (2.2), and (p_3) together, one has

$$\|\Phi(u)\|_{\infty} \le a\|u\| = a\|\Psi(u)\|_{W^{-1,p'}(\Omega)}^{1/(p-1)} \le a(b\|\Psi(u)\|_{p'})^{1/(p-1)} = \varphi(\|\Psi(u)\|_{p'}), \quad u \in U,$$

with φ given by (3.1), and (i₁) follows.

Now define $F(x, z) := \partial J(x, z), (x, z) \in \Omega \times \mathbb{R}$. A simple computation shows that

$$F(x, z) = [-J^0(x, z; -1), J^0(x, z; +1)],$$
(3.2)

where, as usual,

$$J^{0}(x, z; \pm 1) := \limsup_{w \to z, t \to 0^{+}} \frac{J(x, w \pm t) - J(x, w)}{t}$$

Thanks to (a_1) the functions $x \mapsto J^0(x, z; \pm 1)$ are measurable in Ω for every $z \in \mathbb{R}$. So, taking account of [13, Proposition 1.1], condition (i₂) of Theorem 2.2 holds.

Let us next verify (i₃). Pick $\{z_h\}, \{y_h\} \subseteq \mathbb{R}$ fulfilling

$$z_h \to z$$
, $y_h \to y$, $y_h \in F(x, z_h) \quad \forall h \in \mathbb{N}$.

The upper semicontinuity of $\zeta \mapsto J^0(x, \zeta; \pm 1)$, combined with (3.2), yield, as $h \to +\infty$,

$$-J^{0}(x, z; -1) \le y \le J^{0}(x, z; +1),$$
 namely $y \in F(x, z),$

which represents the desired conclusion.

[5]

Finally, to prove (i_4) observe at first that

$$|J^0(x, z; \pm 1)| \le k(M) \quad \forall M > 0, z \in (-M, M).$$

This implies

$$m(x) := \sup_{|z| \le \varphi(r)} \inf\{|y| : y \in F(x, z)\} \le \sup_{|z| < \varphi(r) + \epsilon} \inf\{|y| : y \in F(x, z)\} \le k(\varphi(r) + \epsilon)$$

almost everywhere in Ω . Consequently, by (a₃),

$$\|m\|_{p'} \le m(\Omega)^{1-1/p} k(\varphi(r) + \epsilon) \le r.$$

Now Theorem 2.2 can be applied, and we obtain $u \in U \subseteq W_0^{1,p}(\Omega)$ such that

$$-\Delta_p u(x) = \Psi(u)(x) \in F(x, u(x)) = \partial J(x, u(x))$$

for almost all $x \in \Omega$.

A meaningful special case occurs when *J* is given by (1.3), where $j: \Omega \times \mathbb{R} \to \mathbb{R}$ fulfils the following hypotheses.

- (a_4) *j* turns out to be measurable in each variable separately.
- (a₅) To every M > 0 there corresponds k(M) > 0 such that $|j(x, z)| \le k(M)$ almost everywhere in Ω and for all $z \in [-M, M]$.

Indeed, under (a_4) – (a_5) , the function J satisfies (a_1) , (a_2) , and we get

$$\partial J(x, z) = [j(x, z), j(x, z)],$$

with j, \overline{j} being as in (1.4); see [12, Example 1]. Hence, Theorem 3.1 directly leads to the following corollary.

COROLLARY 3.2. If (a_4) – (a_5) , besides (a_3) , hold true then there exists $u \in W_0^{1,p}(\Omega)$ such that $j(x, u(x)) \leq -\Delta_p u(x) \leq \overline{j}(x, u(x))$ for almost every $x \in \Omega$.

In particular, when

$$|j(x,z)| \le c_1 + c_2 |z|^{p-1} \quad \forall (x,z) \in \Omega \times \mathbb{R},$$
(3.3)

where $c_1, c_2 > 0$, from the above result we deduce the following corollary.

COROLLARY 3.3. Let the function *j* comply with (a_4) and (3.3). Assume also that

$$m(\Omega)^{1-1/p}a^{p-1}bc_2 < 1.$$

Then the conclusion of Corollary 3.2 holds.

S. A. Marano

REMARK 3.4. Applications of Theorem 3.1 and its consequences can basically be constructed only if one knows explicit estimates of constants a and b. As already observed in Section 2, thanks to [16, Formula (6b)] we get

$$a \leq \frac{N^{-1/p}}{\sqrt{\pi}} \left(\frac{p-1}{p-N}\right)^{1-1/p} \left(\Gamma\left(1+\frac{N}{2}\right)\right)^{1/N} m(\Omega)^{1/N-1/p},$$

with Γ being the gamma function. Since, for every $u \in W_0^{1,p}(\Omega)$,

$$||u||_p \le m(\Omega)^{1/p} ||u||_{\infty} \le m(\Omega)^{1/p} a ||u||_p$$

Remark 2.1 provides

$$b \le \lambda_1^{-1/p} \le m(\Omega)^{1/p} a \le \frac{N^{-1/p}}{\sqrt{\pi}} \left(\frac{p-1}{p-N}\right)^{1-1/p} \left(m(\Omega)\Gamma\left(1+\frac{N}{2}\right)\right)^{1/N}$$

REMARK 3.5. Condition (3.3), with $c_2 < \lambda_1$, appears also in [7, Proposition 4.1]. It is a simple matter to realize that this result and Corollary 3.3 are mutually independent.

Remark 3.6. The main difficulty in treating the case $\Omega := \mathbb{R}^N$ is to verify (i₁). However, if the operator $A : W^{1,p}(\mathbb{R}^N) \to W^{-1,p'}(\mathbb{R}^N)$ given by

$$\langle A(u), v \rangle := \int_{\mathbb{R}^N} (|\nabla u|^{p-2} \nabla u \cdot \nabla v + c(x)|u|^{p-2} uv) \, dx \quad \forall u, v \in W^{1,p}(\mathbb{R}^N),$$

where $c \in L^{\infty}(\mathbb{R}^N)$ and ess $\inf_{x \in \Omega} c(x) > 0$, takes the place of the one defined in (2.3), it can be done, as we shall see in a future work.

References

- [1] D. Averna and S. A. Marano, 'Existence theorems for inclusions of the type $\Psi(u)(t) \in F(t, \Phi(u)(t))$ ', Appl. Anal. 72 (1999), 449–458.
- [2] D. Averna, S. A. Marano and D. Motreanu, 'Multiple solutions for a Dirichlet problem with *p*-Laplacian and set-valued nonlinearity', *Bull. Aust. Math. Soc.* **77** (2008), 285–303.
- [3] G. Bonanno and G. Molica Bisci, 'Infinitely many solutions for a Dirichlet problem involving the *p*-Laplacian', *Proc. Roy. Soc. Edinburgh Sect. A* **140** (2010), 737–752.
- [4] S. M. Bouguima, 'A quasilinear elliptic problem with a discontinuous nonlinearity', *Nonlinear Anal.* **25** (1995), 1115–1122.
- [5] H. Brézis, Analyse Fonctionnelle—Théorie et Applications (Masson, Paris, 1983).
- [6] V. I. Burenkov and V. A. Gusakov, 'On precise constants in Sobolev imbedding theorems', Sov. Math. Dokl. 35 (1987), 651–655.
- [7] S. Carl and S. Heikkilä, '*p*-Laplacian inclusions via fixed points for multifunctions in posets', *Set-Valued Anal.* **16** (2008), 637–649.
- [8] S. Carl, V. K. Le and D. Motreanu, *Nonsmooth Variational Problems and Their Inequalities* (Springer, New York, 2007).
- [9] J. Chabrowski, Variational Methods for Potential Operator Equations, de Gruyter Series in Nonlinear Analysis and Applications, 24 (de Gruyter, Berlin, 1997).
- [10] L. Gasiński and N. S. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Series in Mathematical Analysis and Applications, 8 (Chapman and Hall/CRC Press, Boca Raton, 2005).

[7] On a Dirichlet problem with *p*-Laplacian and set-valued nonlinearity

- [11] P. Lindqvist, 'On the equation $\operatorname{div}(|\nabla u|^{p-2}\nabla u) + \lambda |u|^{p-2}u = 0$ ', *Proc. Amer. Math. Soc.* **109** (1990), 157–164, Addendum: *Proc. Amer. Math. Soc.* **116** (1992), 583–584.
- [12] R. Livrea and S. A. Marano, 'Non-smooth critical point theory', in: *Handbook of Nonconvex Analysis and Applications* (eds. D. Y. Gao and D. Motreanu) (International Press of Boston, Somerville, 2010), pp. 353–407.
- [13] S. A. Marano, 'Existence theorems for a semilinear elliptic boundary value problem', Ann. Polon. Math. 60 (1994), 57–67.
- [14] S. A. Marano and N. S. Papageorgiou, 'On some elliptic hemivariational and variationalhemivariational inequalities', *Nonlinear Anal.* 62 (2005), 757–774.
- [15] I. Peral, 'Multiplicity of solutions for the p-Laplacian', in: ICTP Lecture Notes of the Second School of Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997.
- [16] G. Talenti, 'Some inequalities of Sobolev type on two-dimensional spheres', in: *General Inequalities 5*, International Series of Numerical Mathematics, 80 (ed. W. Walter) (Birkhäuser, Basel, 1987), pp. 401–408.

S. A. MARANO, Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy e-mail: marano@dmi.unict.it