
SIMPLEX ALGEBRAS AND THEIR REPRESENTATION

by M. S. VUAYAKUMARf

(Received 17 January, 1972; revised 9 May, 1972)

0. Summary and preliminaries. This paper establishes a relationship (Theorem 4.1)
between the approaches of A. C. Thompson [8, 9] and E. G. Effros [2] to the representation
of simplex algebras, that is, real unital Banach algebras that are simplex spaces with the unit
for order identity. It proves that the (nonempty) interior of the associated cone is contained
in the principal component of the set of all regular elements of the algebra. It also conjectures
that each maximal ideal (in the order sense—see below) of a simplex algebra contains a maximal
left ideal of the algebra. This conjecture and other aspects of the relationship are illustrated
by considering algebras of n x n real matrices.

A general reference for this paper is [4], by Graham Jameson. The following is a summary
of results taken from [2]; these are used in the sequel.

Let {A, :£) be a partially ordered real linear space, and let P be the associated cone. We
call A an L-space (respectively, an M-space) if it is a Banach lattice such that the norm is
absolutely monotonic on A and additive on P (respectively, preserves the sup operation on P).
It is called a simplex space if it is a Banach space, P is closed, and the dual space A' is an L-
space with respect to the dual norm and dual cone P'. We call it a complete function system
if it has an Archimedean order unit e inducing a complete order unit norm. In this case, the
set P(A) of all positive linear functionals on A is a cone in the space dual to A with respect to
the order-unit norm. Further, the set S(A) = {feP(A) :f(e) = 1} is a base for P(A).

Proposition 2.8 of [2] proves that A is a complete function system with S(A) for a simplex
(that is, with P(A) for a lattice cone) if and only if A is a simplex space with e for order identity
(i.e.,/(e) = 1 whenever/is in P' and | | / | | = 1).

We call a subspace / of A (i) an order ideal if JP = JnP is a face of P, (ii) an ideal (a proper
ideal) if, in addition, JP generates / (and / i=- A), and (iii) a maximal ideal if it is a proper ideal
that coincides with any proper ideal containing it.

Let A be a simplex space with order identity and B the set of all positive functionals of
norm one. Section 4 of [2] shows that maximal ideals are all closed and in one-to-one corre-
spondence with ext 5, the set of extreme points of B (Indeed, a subspace J is a maximal ideal
if and only if it is the null space of a member of ext B). Further, Theorem 4.8 of [2] shows that
there is a linear, isometric, order isomorphic representation of A onto C(ext-B) if and only if
ext B is closed in the a{A', /4)-topology (where A' denotes the dual space of A), which is so if
and only if A is an M-space.

We abbreviate maximal left ideal to m.l.i. and maximal ideal (always considered in the
order sense) to m.i.

I am indebted to Professor A. C. Thompson for his assistance in the preparation of this
paper. I wish to thank Professor K. K. Tan for helpful discussions concerning the example
in §2.

t This research was supported by NRC Grant A-4066.
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1. A representation theorem for real unital Banach algebras. This theorem is similar to
that for complex unital Banach algebras, proved in [9]. However, some important modifica-
tions, characteristic of the real case, occur in its proof, an outline of which is presented below.

Let £ be a real Banach algebra with unit e of norm one. Let / be an m.l.i. of E. Then /
is closed, e$J, and, by the Hahn-Banach theorem,/(e) = | | / | | = 1 and/(/) = (0) for some/
in £', the dual space of E. The following sets are therefore nonempty:

M={feB :f{J) = (0) for some m.l.i. / of E),

SI = w*-cl M (weak*-closure of M),

S = w*-cl co M (w*-cl of convex span of M),

K' = {J{kS:X^0),

K = {xeE:f(x) ^ 0 for all/in K'}.

The construction of these sets is intrinsic to the norm and algebraic structures of E. B, S, and
SI are compact Hausdorff spaces in the w*-topology. B and S are also convex. Hence, by
Theorems 15.1 and 15.2 of [6], we have extS = extfi # 0. The set X = w*-cl extfi is w*-
compact and Hausdorff and X £ SI s S £ B.

Let C(X) be the space of all real-valued continuous functions on X with sup norm. The
usual evaluation mapping x -> x is a linear, homomorphic representation of E into C{X). Our
aim is to study this representation with and without additional conditions on the sets con-
structed above and on the norm.

As in the complex case [9, § 1], the set K' is a w*-closed cone. It is contained in the cone
generated by B, that is, the set of all functional that attain their norm at e. It is also normal
(indeed, the dual norm is monotonic on K'\ if/, g, and g-fare in K', then 0 ̂  | | # - / | | =

\\
The set ^remains unchanged if, in its definition, we replace K' by .Sf (or M or SI or S). It

is a wedge with e for an order unit (indeed, it is an interior point of K: .K contains the e-translate
of the unit ball). These facts imply that, for each x in E, there is an a > 0 such that ae + x
are in K; equivalently, - a ^f{x) g a for al l / in X. Therefore the order unit and function
seminorms (say || ||e and || ~ ||) induced by e and X, respectively, are identical:

| |x | | , = i n f { o > 0 : | / ( x ) | g o for all feX}

= sup{\f(x)\:feX}

where, by evaluation mapping, x is an element of C(X). As in the complex case [9, §2, §3],
K is weakly (hence norm) closed; it induces an Archimedean ordering (say ^ ) ; its (nonempty)
interior is contained in the principal component of the set of all left regular elements of E and
Proposition 7.1 shows that, in general, ^Tis not closed under multiplication.
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The evaluation mapping is, as in the complex case [9, §4], a linear, continuous, order
homomorphic representation (in fact, it maps K into the cone of nonnegative functions in
C(X)). It is further an isomorphism (respectively, a homeomorphism) if and only if K is a
cone (respectively, a normal cone).

2. The unit e and one-one representation. Consider the real plane U2 with complex
multiplication. Let E = R2©R2; then E is, with respect to the maximum norm induced by
the usual inner product norms on its components and the usual pointwise operations, a unital
Banach algebra with U2 x {(0, 0)} and {(0, 0)} x U2 for its maximal ideals and e = (1, 0, 1, 0)
for its unit (identify E with K4). One has: B = {(A, 0, l-X, 0 ) e £ ' : O ^ A ^ l } and
Q = M = X = {(1, 0, 0, 0), (0, 0, 1, 0)}. The unit e is clearly not a vertex of the unit ball, that
is, {e} is properly contained in the intersection of all the hyperplanes supporting the unit ball
at e. The representation on X is evidently not one-one.

(Since K = {{xu x2, x3, x4)eE: Xi ^ 0, x3 ^ 0}, this example also shows that, in general,
K is not a cone, but a wedge.)

This vertex property of e is therefore necessary for one-one representation; however, it
may not be sufficient, for, even if e is a vertex, S, Q, and X may be too small.

As we shall see, for simplex algebras, e is a vertex of the unit ball. This is due to a result
of A. C. Thompson [8], presented below in a strengthened form; it is proved for the complex
case only, the proof being similar for the real case with obvious modifications. See also
Bohnenblust and Karlin [1] and L. Ingelstam [3].

Let A be a complex normed linear space, e an element of A of norm one, and A' the dual
of A. The following sets are nonempty:

B = {feA':f(e) =
C" = cone generated by B,
P' = C"-iC",
P = {xe.4 : Re/(;c) ^ 0 for al l / in /»'}.

(In the real case, P' = C" and Re/(x) =/(*).) Clearly, P is a wedge.

2.1. THEOREM. The following statements are equivalent:

(a) P'—P' is a w*-dense subspace of A'.
(b) Pis a cone.
(c) e is a vertex of the unit ball.

Proof. It is easily seen that (a) implies (b) and (c).
If P'—P' is not w*-dense in A', then some element of A' can be strictly separated from

the w*-closure of P'—P', by a w*-closed hyperplane. Thus, for some nonzero v in A,f(v) = 0
for all / in P'-P', or, equivalently, for all / in P'.

Hence v and — v are in P and v ^ 0. Thus (b) implies (a).
Again, for any complex number n,f(e+fxv) =/(e) = | | / | | for a l l / in C". Therefore the

e-translate of the complex plane determined by v is contained in the intersection of all hyper-
planes supporting the unit ball at e. Thus e is not a vertex and (c) implies (a).
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3. In§ l , we saw that | | x | | e = \\x\\ for all *in E, where eis the unit in E. Using this fact,
we shall now prove the following lemma.

3.1. LEMMA. 5 = {/eE': f(e) = 11/1|e = 1} and K' is the cone dual to K.

Proof. Let K" be the wedge dual to K:

K" = {feE' :/(x)^0 for all xinK}.

Since K generates E, K" is in fact a cone. Clearly, K" contains K'.
Since the ordering induced by Kis Archimedean, the || ||e-unit ball is the order interval

[-<?, e],f(e) = | | / | | e for all/in K", and | | / | | e is a norm on K" (These follow from Theorem
3.7.2 of [4]). Hence the convex set S' = {feK" :/(«?) = 1} is a base for K". We observe that

The assertion follows by proving that S = S".
If S # S", then, since S is w*-closed, some/0 in S" can be strictly separated from S by a

u>*-closed hyperplane. Hence, for some x0 in E, we have

sup{#(x0): geS} </0(x0). (1)

We may now assume that x0 is in K, without loss of generality. (To see this, observe that the
number A = inf {g(x0) : geS} is finite, as S is w*-compact. Clearly, xo — ke = y0 is in K and
(1) holds with y0 in place of x0.) Thus #(*<)) ̂  0 f°r aU 9 m S. In (1), we can replace S by
X; we therefore have

a contradiction. Thus S = S".

3.2. REMARK. Since S = 5", the dual unit balls for the given norm and the order unit
seminorm have some parts of their surfaces in common; in particular, the associated dual
norms are identical on K'.

3.3. REMARK. The second part of the above lemma, which is an immediate consequence
of the first, also follows from the results due to V. L. Klee [6, Theorems 3.1 and 2.5]. I am
grateful to the referee for bringing this to my attention.

3.4. REMARK. Since the given dual norm is additive on K', we find that, if K' is also a
generating lattice cone, E in general lacks just one property for being an L-space, namely, the
absolute monotonicity of the norm (Example 4.2 illustrates this). However, this property
of the norm is satisfied under the conditions stated in the next theorem, which is our main result.

4. In what follows, we need the results from [2], a summary of which is given in §0.
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140 M. S. VIJAYAKUMAR

4.1. THEOREM. Let Ebea real Banach algebra with unit e of norm one. Then the following
statements are equivalent (notations are as before):

(a) E is a simplex space with efor order identity.
(b) || x || = || x \\e for all x in E, and S is a simplex.

When these conditions are satisfied we have S — B.

Proof By Lemma 3.1, AT' is the cone dual to K. Hence (a) implies (b), by Proposition 2.8
of [2]. If (b) holds, then the order unit seminorm is a norm, identical with the given norm.
Since K is also closed, £ is a complete function system such that S is a simplex. By Proposition
2.8 of [2], (a) holds. Thus (a) and (b) are equivalent. Since S = S" and || x|| = || x \\e for all
x in E, it follows that S = B.

REMARK. Since S = B, S and B both induce the cone K and so, by Theorem 2.1, e is a
vertex of the unit ball, which is the order interval [ — e, e]. The dual unit ball is the convex
span of B and —B. The cones K and K' are normal, closed and generating.

4.2. EXAMPLE. This shows that, in (b) above, the second condition does not imply the
first. This is true even if S = B.

Let E = R2, the real plane, with pointwise multiplication and let the unit ball have
vertices at the points e = (1,1) (the unit), —e, ± (1 , 0) and ±(0, 1). The dual norm is given by

We have: B — S = co {(1, 0), (0, 1)}, which is clearly a simplex; but, since the || ||c-unit ball
is the /^-unit ball, | |JC|| # | | x | | e for all x. Further, K=K' = the positive quadrant is a
generating lattice cone; however, the points (—1, 1) and (3/4, 1/2) show that the dual norm is
not absolutely monotonic (See Remark 3.4).

We later give Example 7.2 to show that the first condition in (b) does not imply the second.
In view of the above examples, Theorem 4.1, and the intrinsic nature of the sets in § 1, we

define a simplex algebra as a real Banach algebra with unit of norm one such that it satisfies
statement (b) of Theorem 4.1; the associated norm is called a simplex norm.

4.3. REMARK. We observe that a finite direct sum of simplex algebras Ex (i = 1, 2 , . . . , «)
is a simplex algebra with respect to pointwise multiplication and the /^-norm induced by the
norms on Ev

5. The set M and maximal right ideals. We have derived the above results by using
m.l.i.'s in the definition of the set M. We clearly obtain results analogous to the above by
using m.r.i.'s (maximal right ideals) instead. Let the sets in § 1 be now denoted by Mr, Qr,
etc. and let us study some particular cases. Note that the set B is independent of m.l.i.'s and
m.r.i.'s.

Suppose that S contains Sr. Then Kr contains K. The interior of K is therefore contained
in that of Kr, which is itself contained in the principal component of the set of all right regular
elements. Since every element of mtK (interior of K) is left regular, it follows that intK is
contained in the principal component of all regular elements. The same conclusion holds for
Kr if Sr contains S.
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It is clear that for simplex algebras we have: K= Kr and S = Sr = B. Hence the above
conclusions hold for simplex algebras. Here one may have M # Mr; Example 7.8 is a non-
commutative simplex algebra for which M ^ Mr (This follows from its counterpart for the
complex case [9, Proposition 5.6(a)]). But if M and Mr are identical, then so are S and Sr;
Example 7.3 is a simplex algebra that is noncommutative and for which M = Mr (This follows
from its counterpart for the complex case [9, Proposition 5.6(b)]).

6. (a) Representation of simplex algebras. Let £ be a simplex algebra. Then it is clear
from the foregoing that the evaluation mapping is a linear, isometric, order isomorphic repre-
sentation of E onto a closed linear subspace of C(X). Since S = B implies that exti? = extQ,
Theorem 4.8 of [2] shows that, if ext .6 is w*-closed, then the evaluation mapping is onto C(X).

(b) Relationship between maximal ideals and maximal left ideals. Let £ be a simplex
algebra. If the set M is w*-closed, then M = Q, so that ext B = ext Q = ext M. Equivalently,
every element of ext B annihilates a maximal left ideal, that is, each maximal ideal, being the
kernel of a unique element in ext B, contains an m.l.i. This may be true even if M is not un-
closed (Example 7.8). Hence we make the following

CONJECTURE. Each maximal ideal of a simplex algebra contains a maximal left ideal of the
algebra.

Indeed, the examples in the next section establish the following facts. An m.i. may contain
uncountably many m.l.i.'s whose union may either be identical with it or be properly contained
in it. Conversely, an m.l.i. may be contained in not more than a fixed number of m.i.'s, even
though this number may not be the same for all simplex algebras. In addition, some m.l.i.'s
may be ideals.

7. Examples. These are drawn from the algebra E = Mn(U) of all nxn (n ̂  2) real
matrices. With respect to the operator norm induced by the maximum modulus norm
(/,„-norm) on W, £ is a noncommutative real Banach algebra with unit / (the identity matrix)
of norm one. The maximal left ideals of E and the computations of various sets and semi-
norms (See § 1) are similar, with some obvious modifications, to their counterparts in the
complex case [9, § 5]. Hence we merely list the results here (the indices /, j , etc., range from 1
to M, and the unit basis vectors ex of W are regarded as column vectors in describing the elements
/((within braces) of ext B below).

(2)

B = S = {/= (pu)eE': |P l J | g pu £ 1 =
r

extB = {/,££':/, = fog,}, a, = 1, a, = ±1 (t # i)},

J

7.1. PROPOSITION. In general, K is not closed under multiplication.
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REMARK. This shows that the representation theorem obtained above is different from
the representation theorem obtained by Kung Fu Ng [7] for Banach algebras with given cones
closed under multiplication.

Proof. In (2) above, K' contains K. The element x ={0^) whose only nonzero entries
are a n = a12 = a22 = 2 and a21 = 1, belongs to K and (therefore) to K'. But the element
x2 = (bij), whose only nonzero entries are 2>u = b22 = 6, b2x = 4 and bl2 = 8, does not belong
to K' and (therefore) does not belong to K. The assertion follows.

7.2. PROPOSITION. In general, even ifS = B, the first condition in statement (b) of Theorem
4.1 does not imply the second.

Proof. From (2) it follows that for E one has: 5 = 5 and || x || = || x \\e for all x. How-
ever, extB = extS has n2"~l points. Therefore S is a simplex if and only if n2"~i = n2

(dimension of E), which is so if and only if n = 2. Hence, for all n > 2, E is not a simplex
algebra.

We now consider examples which illustrate the conjecture and several aspects of the
relationship mentioned in § 6(b).

7.3. The algebra M2(R). From the proof of Proposition 7.2 and Theorem 4.1, it follows
that the /^-operator norm is a simplex norm for M2(R). B is thus a solid tetrahedron with
vertices at the points ft (1 _ i ^ 4) given respectively by

n n p - n ro o-i r o 01ro o-i r o
Li i j L-i

M is the union of the convex spans of the pairs of points {/i, /2}, {fz,h}, {/1./3}
{/2»/t}- ^ is clearly a part of the boundary of B. We have: K' = K.

The kernels (say) N(ft) of the/ f are m.i.'s. The maximal left ideal (m.l.i.) generated by
f2 is Jfl = N(fi)nN(f3); similarly, Jfi = N(J2)r\N(f4). Therefore the conjecture of §6(b)
is verified and, in addition, each m.i. contains exactly one m.l.i., which is also an ideal. Each
m.l.i. is contained in at most two m.i.'s.

7.4. REMARK. Other simplex norms for M2(U) include the operator norms induced by
vector norms p of U2 such that the p-unit ball is a parallelogram. We conjecture that there are
no other simplex norms.

7.5. REMARK. Noncommutative simplex algebras of dimension exceeding 4 include, in
the sense of Remark 4.3, finite direct sums of M2(R) with itself and (or) M{(U). These are in
one-to-one correspondence with decompositions of U" into direct sums of R2 and (or) U.

7.6. REMARK. Since the /^-operator norm is a simplex norm for Mn(U) if and only if
n = 2, one may try to see whether it continues to be a simplex norm for suitable subalgebras of
Mn(R) (n > 2). One such is clearly the finite direct sum discussed above. Another, which is not
such a finite direct sum, is considered below.

7.7. A noncommutative subalgebra of M3(U). This consists of the elements of the form
(atJ) with a13 = a23 =a2l =a3l = 0 . Clearly, it does not arise from any decomposition of R3.
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It can be verified that the /^-operator norm is a simplex norm for this algebra. Its m.l.i.'s
(say) 7 j , J2 and Jap consist of the elements that are respectively of the forms

a
0
0

b
c
d

0
0
0

0
0
0

b
c
d

0
0
e

>
a
0
0

— aa
0

-Be

0
0
e

where a, b, c, d, e, a, B are real numbers. The extreme points (say) / , (1 ^ ii ^ 5) of B are
respectively given by

1
0
0

±1
0
0

0
0
0

»
0
0
0

0
1
0

0
0
0

}

0
0
0

0
0

+ 1

0
0
1

The m.i.'s, that is, the kernels (say) N(ft) of these (extreme) points consist of the elements that
are respectively of the forms

a —a
0 c
0 d

a
0
0

a
c
d

0
0
e

a
0
0

b
0
d

a
0
0

b
c

-e

0"
0
e_

a b
0 c
0 e

Similarly, the m.l.i.'s annihilated by/ ; consist of the elements that are respectively of the forms

a
0
0

— a
0

-fie

0"
0
e

a
0
0

a
0

-Be

0
0
e

5

a
0
0

—aa
0

-Be

0
0
e

J

a
0
0

— aa
0

— e

0
0
e

a
0
0

—aa
0
e

0
0
e

Here, a and B are arbitrary. Hence each/) annihilates uncountably many m.l.i.'s; if It denotes
the union of these m.l.i.'s, we then have: 73 = N(f3) and, for all i # 3, N(fj) contains 7(

strictly. It is clear that the m.l.i. Jat (with a = B = 1) is contained in (indeed, equal to) the
intersection of N(fj) ( /= 1, 3, 4). Thus each m.l.i. is contained in at most three m.i.'s, as
compared with two for M2(R).

Of course, the conjecture in § 6(b) is verified together with some of the other observations
made following it.

We now consider a simplex algebra of dimension less than four.

7.8. A noncommutative subalgebra of M2(U). This is the algebra £ of all 2 x 2 upper-
triangular real matrices. The /^-operator norm is a simplex norm for E. This follows from
its counterpart for the complex case [9, Proposition 5.5]. The extreme points of B are

/ l = [o of /2 = |_o of
Therefore B is the triangle with/, as vertices and, as in the complex case, M is B without the
interior of the set co {/i,/2}. Thus M is not (w*-) closed and still ext.fi £ M, i.e., extfi =
ext M. This verifies the conjecture of § 6. In addition, the following are also true.

The m.l.i.'s are Jt and J2k consisting of the elements that are respectively of the forms
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144 M. S. VUAYAKUMAR

and . N(fi), the null spaces of ft or the m.i.'s of E, consist of the elements

f the forms

[ a a] [a -a] [a

o «]• [o «J and Lo

that are respectively of the forms

It is clear that

•Tzi-D = N(f1)nN(f3),

J21 = N(f2)nN(f3),

J
ksR

These show that only two m.l.i.'s are ideals and no m.l.i. is contained in more than two m.i.'s.
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