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Gyrokinetic simulations of drift waves in low-magnetic-shear stellarators reveal
that simulation domains comprised of multiple turns can be required to properly
resolve critical mode structures important in saturation dynamics. Marginally stable
eigenmodes important in saturation of ion temperature gradient modes and trapped
electron modes in the Helically Symmetric Experiment (HSX) stellarator are observed
to have two scales, with the envelope scale determined by the properties of the local
magnetic shear and an inner scale determined by the interplay between the local shear
and magnetic field-line curvature. Properly resolving these modes removes spurious
growth rates that arise for extended modes in zero-magnetic-shear approximations,
enabling use of a zero-magnetic-shear technique with smaller simulation domains
and attendant cost savings. Analysis of subdominant modes in trapped electron mode
(TEM)-driven turbulence reveals that the extended marginally stable modes play an
important role in the nonlinear dynamics, and suggests that the properties induced
by low magnetic shear may be exploited to provide another route for turbulence
saturation.
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1. Introduction
Experimental successes over the past decade have led to renewed interest in the

stellarator as a viable path for fusion energy. The Helically Symmetric Experiment
(HSX, Anderson et al. 1995) demonstrated that a quasi-helically symmetric magnetic
configuration (Boozer 1981) reduces neoclassical transport to levels below that
of the equivalent tokamak (Canik et al. 2007). The large helical device (LHD)
has achieved record length steady-state discharges (Yoshimura et al. 2005) and
core ion temperatures in excess of 8 keV (Nagaoka et al. 2015). Recently, the
Wendelstein 7-X experiment reported some of the highest energy confinement
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times observed in stellarators (Dinklage et al. 2018). A defining feature of the
stellarator is avoiding a reliance on plasma currents for confinement by providing
the requisite rotational transform necessary for particle confinement through external
shaping of the magnetic field. The resulting confining magnetic field is necessarily
three-dimensional (Boozer 1998; Helander 2014). While there are distinct advantages
to this approach, such as the elimination of destructive magnetohydrodynamic
instabilities and the ability to manipulate the magnetic geometry to target specific
physics issues, using three-dimensional (3-D) magnetic fields increases complexity
in both theory and experiment (Gates et al. 2018). Paralleling the rise of interest in
stellarators, computing capabilities have reached a level enabling comprehensive
simulations of computationally challenging problems in a stellarator geometry,
such as modelling turbulence with gyrokinetic codes (Xanthopoulos & Jenko 2007;
Baumgaertel et al. 2011; Proll, Xanthopoulos & Helander 2013; Faber et al. 2015;
Xanthopoulos et al. 2016). In this work, gyrokinetic simulations are employed to
describe the microturbulence properties of stellarators in the limit of small averaged
magnetic shear.

A significant body of literature exists studying turbulence in toroidal geometries
by means of gyrokinetic simulation in flux-tube simulation domains, see e.g. Dimits
et al. (1996), Dorland et al. (2000), Jenko et al. (2000), Candy & Waltz (2003),
Sugama & Watanabe (2006), Peeters et al. (2009), Chen et al. (2013). A challenge
to performing flux tube simulations for stellarators is that by design, global magnetic
shear for many modern stellarators configurations is small. Magnetic shear tends to
localize fluctuations, in tokamak core plasmas typically to the outboard midplane. In
the absence of large global magnetic shear, mode localization is determined by the
interplay of local shear and curvature, which is non-trivial for stellarators. This can
manifest with modes that extend far along field lines or balloon in locations other than
the outboard midplane (Merz 2008; Faber et al. 2015), adding significant complexity
to the simulation and analysis of stellarator turbulence. Furthermore, the computational
domain dimensions for flux tube simulations are inversely proportional to global
magnetic shear, which can make flux-tube simulations for low-magnetic-shear
stellarators comparatively expensive in the conventional formulation (Beer, Cowley &
Hammett 1995). One method to reduce the computational cost is to approximate
a low-magnetic-shear flux tube with a zero-magnetic-shear domain, where the
domain dimensions are independent of global magnetic shear and can be specified to
reasonable values.

In this paper, a gyrokinetic study of the low-magnetic-shear stellarator HSX
demonstrates that properly resolving parallel correlation lengths with extended
simulation domains is crucial for accurate theoretical predictions. Turbulence is studied
in the ‘bean’ flux tube of the quasi-helically symmetric (QHS) configuration of HSX,
used previously in Faber et al. (2015) and shown for different geometry elements
in figure 1. The rotational transform ι- for HSX is constrained such that ι-axis ≈ 1.05
and ι-edge ≈ 1.1 and at the half-radius in the toroidal flux coordinate Ψ/Ψedge = 0.5,
where ψedge is the toroidal flux at the last closed flux surface. For the focus of
this analysis, the global magnetic shear is ŝ ≈ −0.046. Modes that extend far along
field lines tend to have subdominant growth rates with growth rates 0 < γ < γmax
and usually do not merit detailed investigation. For HSX geometry these modes
prove essential to determining the final turbulent state. In particular, when the
zero-shear computational technique was used with an insufficiently large parallel
simulation domain, the resulting simulations showed no flux, in direct contradiction
with finite-shear simulations. Using parallel simulation domains comprised of multiple
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(b)

(a)

FIGURE 1. Comparison of HSX geometry terms for a flux tube constructed from one
poloidal turn (black) and four poloidal turns (red solid lines). The FLR term, defined by
(2.10), is shown in (a), while the curvature drive, defined by (2.11), is shown in (b). Both
quantities are plotted as functions of the parallel coordinate.

poloidal turns resolves parallel correlation lengths and leads to agreement between
finite-shear and zero-shear simulations. It is observed that despite the extended modes
being linearly stable for the larger parallel simulation domains, they play a prominent
role in the nonlinear dynamics of the turbulence, acting as both an energy drive and
an important nonlinear energy transfer channel at long wavelengths. Fundamentally,
the results shown in the present paper can be seen as part of a larger picture, where
subdominant eigenmodes and stable eigenmodes with γ < 0 have a significant impact
on the nonlinear state (Terry, Baver & Gupta 2006; Hatch et al. 2011a,b; Pueschel
et al. 2016). This should motivate the consideration of such modes in the design of
reduced models.

The remainder of the paper is organized as follows. Section 2 discusses flux-tube
simulations and the necessary considerations to resolve parallel correlation lengths in
low-magnetic-shear stellarators. Section 3 presents linear eigenvalue calculations for
both strongly driven trapped electron modes (TEMs) and ion temperature gradient
(ITG) modes in HSX. Also discussed in § 3 is the zero-magnetic-shear simulation
technique and the importance of properly resolving parallel correlation lengths
for accurate simulations. Nonlinear results are presented in § 4, focusing on the
role subdominant, extended modes play in the dynamics of nonlinear simulations.
Concluding remarks are presented in § 5.

2. Geometry considerations at low magnetic shear
2.1. Flux-tube geometry

Gyrokinetic simulations of local plasma turbulence utilize the flux-tube approach
(Beer et al. 1995), where the gyrokinetic equations are solved in a small domain
around a magnetic field line. This approach takes advantage of the anisotropic
nature of plasma turbulence, where perpendicular wavelengths of fluctuations are
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generally much smaller than parallel wavelengths, k‖ � k⊥. Only a small domain
perpendicular to the field line, of the order of a few perpendicular correlation lengths,
need be simulated with periodic boundary conditions. The scale Leq of perpendicular
variations of background quantities such as the equilibrium magnetic field is assumed
to be much larger than turbulent correlations lengths λturb. Equilibrium quantities are
then expanded to first order in the perpendicular direction around the centre of the
simulation domain while still incorporating non-trivial dependence along the parallel
field-line coordinate.

The flux-tube approach is related to the ballooning transformation formulated for
axisymmetric geometries (Connor, Hastie & Taylor 1978, 1979) and subsequently
extended to general three-dimensional systems (Dewar & Glasser 1983), which
transforms a multi-dimensional eigenvalue calculation into a sequence of one-
dimensional eigenvalue equations along field lines. This transformation is facilitated
by the assumption k‖ � k⊥ for ballooning modes, allowing one to assume a
Wentzel–Kramers–Brillouin-like solution where the slow scale only appears in
the mode amplitude: ξ(x, t) = ξ̂ (x, ε) exp(iS(x)/ε − iωt), where ξ is the plasma
displacement. ε � 1 is an expansion parameter and denotes the rapid variation of
the wave phase perpendicular to the magnetic field line. At lowest order in ε, the
instabilities are approximately incompressible, ∇ · ξ ≈ (i∇S(x)/ε) · ξ = 0. We can
identify ∇S(x) as the wavevector k. Requiring the displacement at lowest order to
be perpendicular to the magnetic field gives k⊥ · B= 0. We may write the magnetic
field in Clebsch form,

B=∇ψ ×∇α, (2.1)

where ψ is the poloidal magnetic flux function and α = q(ψ)θ − ζ is the field-line
label defined in terms of the straight field-line poloidal and toroidal angles θ and ζ ,
respectively, and q(ψ) is the safety factor. The condition k⊥ ·B= 0 implies S(x) is a
function of (ψ, α) alone, yielding an instructive form for k⊥:

k⊥ = kα[q∇θ −∇ζ + q′(θ + θk)∇ψ]. (2.2)

Here, q′ = dq/dψ is the flux-tube-averaged global magnetic shear and θk = kψ/q′kα
is the ballooning angle. This implies that radial variations (finite-kψ effects) are
transformed by global magnetic shear into a dependence along the field line.
Furthermore, it is easy to see that (2.2) is invariant under the substitution θ→ 2πM,
θk → −2πM for some integer M. Thus, in principle, one may compute effects for
increasing θ by considering the geometry from a limited range of θ , say θ ∈ (−π,π)
and incrementing kψ→−2πMq′kα for integer M.

The flux-tube simulation domain is defined in straight field-line (SFL) coordinates
(ψ, α, z). Depending on whether one chooses α = qθ − ζ or α = θ − ι-ζ , ψ is the
poloidal or toroidal flux label, respectively, and the rotational transform ι- is related
to q by ι- = 1/q. For subsequent discussion and to be consistent with the formalism
employed by the gyrokinetic code GENE (Jenko et al. 2000), we will choose ψ to
be the poloidal flux and α = q(ψ)θ − ζ . The parallel coordinate z is chosen to be
identical to the straight field-line poloidal angle θ . In these coordinates, the flux-tube
simulation domain is defined to be a small rectangular domain centred around ψ0 and
α0 in SFL coordinates, given by

ψ0 −1ψ 6ψ <ψ0 +1ψ,

α0 −1α 6 α < α0 +1α,

−z0/2 6 z< z0/2.

 (2.3)
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The flux-tube approach assumes periodic boundary conditions in the perpendicular
directions, however this is an assumption of statistical, not physical, periodicity; that
is, the statistical properties of the fluctuations at ψ and ψ + 21ψ while holding α
fixed, or at α and α+ 21α while holding ψ fixed, are the same. Provided the domain
dimensions are larger than physical correlation lengths of the fluctuations, which are
typically of the order of tens of gyroradii in the radial direction, periodic boundary
conditions are an efficient means to represent turbulent eddies entering and leaving
the domain. A benefit of prescribing periodic perpendicular boundary conditions is
that quantities can be decomposed in a Fourier basis in ψ and α:

f (ψ, α, z, t)=
∞∑

m=−∞

∞∑
n=−∞

f̂m,n(z, t) exp[imπ(ψ −ψ0)/1ψ + inπ(α − α0)/1α], (2.4)

for each physical quantity f .
A more subtle treatment is required for the parallel boundary condition as enforcing

strictly periodic boundary conditions in the parallel direction, f (ψ, α, −z0, t) =
f (ψ, α, z0, t), leads to rational field lines, which is inaccurate for toroidal magnetic
confinement configurations. Like the perpendicular boundary conditions, the parallel
boundary condition should be an expression of the statistical properties of the
fluctuations, which physically should be statistically invariant at the same poloidal
angle along the field line. In order for this to successfully be satisfied, the parallel
simulation domain must be longer than the parallel correlation length of the
fluctuation. This is accomplished by applying periodic boundary conditions at different
θ values, while holding ψ and ζ fixed, rather than holding ψ and α fixed, which
leads to every field line being rational. The detailed derivation of the parallel boundary
condition is given in appendix A, giving the final form as

f̂m−δm,n(θ + 2πN, t)Cn = f̂m,n(θ, t), (2.5)

δm= nM, M = 2πNq′
1ψ

1α
. (2.6)

Equation (2.5) expresses that the amplitude of a mode with index m at one end of the
parallel simulation domain is coupled to a mode with index m− δm at the other end
of the parallel simulation domain, with the coupling dependent on the global magnetic
shear, q′. Equation (2.5) contains the phase factor Cn= exp(i2πNnq0/1α). For further
use in GENE, the following field-aligned coordinate system is used:

x=
q0

B0r0
(ψ −ψ0), y=

r0

q0
(α − α0), z= θ, (2.7a−c)

where r0 is the geometrical radius of the magnetic surface at the centre of the
simulation domain, ψ0 = ψ(r0), with q0 the safety factor, B0 the magnetic field and
α0 the field-line label at the centre of the simulation domain. Similarly, the radial
wavenumber kψ and binormal wavenumber kα can be redefined as

kx =
mπB0r0

q01ψ
, ky =

nπq0

r01α
. (2.8a,b)

Finally, the perpendicular coordinates x and y are normalized to a reference gyroradius
length scale: x̂= x/ρref, ŷ= y/ρref, yielding k̂x= kxρref and k̂y= kyρref. For discussion of
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the following results, the normalized coordinates will be used, however the over hat
symbols will be dropped. The local magnetic shear is defined by the vector relation

sloc(z)= b̂(z)×∇n̂(z) · ∇× (b̂(z)×∇n̂(z)), (2.9)

where b̂ is the unit vector in the direction of the magnetic field and n̂ = ∇ψ(z)/
|∇ψ(z)|. Due to the complicated magnetic field structures in stellarators, equation (2.9)
has non-trivial dependence along field lines. The global magnetic shear is defined as
the flux surface average of (2.9) and can be shown to be equal to ŝ= (r0/q0) dq/dr.

2.2. Parallel correlations
Drift-wave instabilities in flux-tube simulations typically have ballooning nature, thus
k⊥ takes on the same form as (2.2). Instead of solving the gyrokinetic equations
over a long parallel domain, one may make use of this form of k⊥ and the parallel
boundary condition to construct fluctuations that extend along field lines by adding
more radial modes, which takes advantage of fast Fourier transform techniques
(Dorland et al. 2000; Jenko et al. 2000; Peeters et al. 2009). The approach is
well suited for axisymmetric configurations. After one poloidal turn (θ → θ + 2π),
all geometric quantities are periodic, even though the flux-tube ends generally lie at
different ζ values. This is guaranteed by axisymmetry, as ζ is an ignorable coordinate
and the flux tube is parameterized only by θ . Thus, one may use the geometric data
from one poloidal turn and ‘build’ an extended flux tube by adding more radial
modes. A geometrically accurate computational domain can then be constructed for
fluctuations that have arbitrarily large parallel correlation lengths, as one may always
add a sufficient number of radial modes to resolve parallel scales.

While often yielding reasonably accurate results, this procedure is formally incorrect
for most stellarator simulations. In general, geometric quantities for stellarators are not
periodic after one poloidal turn, which can have serious consequences for stellarator
flux-tube simulations. As a fluctuation extends along a field line in a stellarator, it
samples different geometry depending on the field-line label. The exact geometry may
be important in setting the physical parallel correlation length. Due to the complicated
interplay of magnetic trapping regions, curvature drive and local magnetic shear, it
has been observed that drift-wave instabilities in stellarators may be most unstable in
regions away from θk = 0 at the outboard midplane (Merz 2008; Faber et al. 2015),
where one might naively expect the fastest-growing instabilities are centred. This
is readily apparent in low-global-magnetic-shear stellarators, such as HSX, where
fluctuations have been observed to extend to |θ |> 30π or peak well away from θ = 0,
depending on wavenumber ky (Faber et al. 2015). Increasing global magnetic shear
has a localizing and stabilizing effect on drift-wave fluctuations due to the energy
cost associated with field-line bending (Pearlstein & Berk 1969; Nadeem, Rafiq &
Persson 2001; Plunk et al. 2014). When the global magnetic shear is small, such as
|ŝ|. 0.05 for the HSX core region, fluctuations can extend long distances along the
field line and consequently have long parallel correlation lengths. While these effects
are accentuated in low-shear stellarators, they are not unique to it. Recent studies
of strongly driven regions of axisymmetric configurations, such as the important
pedestal region in tokamaks, show slab-like ITGs and micro-tearing modes can exist
with strong finite-θk dependence (Fulton et al. 2014; Hatch et al. 2016b; Chen &
Chen 2018).

It is crucial then that the geometry spanned by a fluctuation in the flux-tube domain
have the proper instability drive and damping physics. Due to the lack of periodicity
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in a stellarator after one poloidal turn, the procedure to extend the parallel flux-tube
domain using geometry elements for only one poloidal turn will result in physically
incorrect geometric elements after one poloidal turn. This can lead to unfaithful drive
and damping physics, which can in turn induce artificial self-correlations, leading to
a breakdown of the statistical invariance posited by the parallel boundary condition.
A superior way to deal with this issue is to construct the flux-tube domain using a
geometry from multiple poloidal turns npol > 1. In principle, one must choose npol to
be large enough that the magnetic field geometry over a parallel correlation length
is accurate. In practice, for modes with very long correlation lengths, one cannot
in certain cases accurately capture all of the geometry due to computational cost
constraints. However, using multiple poloidal turns decreases the deviation between
the flux-tube geometry and the physical geometry at higher radial wavenumber,
leading to a more accurate simulation domain. One can measure self-correlation
by comparing parallel correlation lengths as function of poloidal turns used for the
flux-tube geometry. As such, the npol parameter is part of the convergence checking
procedure.

An example of this is readily seen in figure 1, where the finite Larmor radius
(FLR) term and the normal curvature term are shown for flux tubes constructed from
different numbers of poloidal turns. The FLR term is expressed as

k2
⊥
(z)= k2

xgxx(z)+ 2kxkyg
xy(z)+ k2

ygyy(z), (2.10)

with elements of the metric tensor gxx(z) = ∇x(z) · ∇x(z), gxy(z) = ∇x(z) · ∇y(z),
gyy(z)=∇y(z) · ∇y(z) and the curvature drive at β = 0 is

K=
1

B(z)
b̂(z)×∇B(z) · ∇y(z). (2.11)

It is clear that the geometry terms diverge after z = π, which is a manifestation of
the lack of periodicity in the poloidal angle for stellarators. Comparing the curvature
drive and the FLR terms at z= 2π, one can see that for one poloidal turn, there is
bad curvature and a small value of the FLR term, favourable conditions for driving
a mode unstable. If a mode has parallel correlation lengths longer than one poloidal
turn, the drive and damping terms at z = 2π will be unphysical with artificially
high drive. This can lead to self-correlation and artificial pumping of the instability.
Increasing the number of poloidal turns more realistically captures the geometry
and enables the mode to sample geometry corresponding to more physical parallel
correlation lengths. It should be stressed however, that this phenomenon is geometry
dependent. Low-global-magnetic-shear geometries can exist where the local magnetic
shear has large enough variation to provide mode localization within one poloidal
turn or where the geometry is essentially periodic after one poloidal turn. In such
circumstances, accurate flux-tube simulations can be performed using the geometry for
only one poloidal turn, as was done in Xanthopoulos & Jenko (2007), Xanthopoulos
et al. (2007).

Recently, a more accurate parallel boundary condition for stellarator symmetric
flux tubes has been derived in Martin et al. (2018). This approach removes the
discontinuities present at the ends of the simulation domain in the current conventional
treatment, which can be seen at θ = ±4π of the k2

⊥
curve in figure 1. Without a

doubt, this is a step forward towards more accurate simulation of turbulence in
stellarators. However, if the parallel correlation lengths of modes remain large, the
above considerations will still apply and multiple poloidal turns will be needed.
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2.3. Impact of small global magnetic shear
In order to minimize deleterious effects from large near-resonant Pfirsch–Schlüter
currents and low-order rational surfaces, stellarators are often designed to operate
in regions where the rotational transform is considerably constrained (Boozer 1998;
Helander 2014), such that the global magnetic shear |ŝ|. 0.1. Magnetic shear tends to
have a localizing effect on drift-wave instabilities, primarily by making the stabilizing
FLR effects large. In figure 1, it is observed that modes localize along the field line
to regions between local shear maxima. Curvature can also provide mode localization
by modulating the drift frequency along a field line (Plunk et al. 2014).

The structure of local magnetic shear along a field line is known to lead to different
eigenmode types in the limit of small global magnetic shear. The work of Waltz &
Boozer (1993) indicated that local magnetic shear can provide mode confinement
along field lines and Plunk et al. (2014) demonstrated increased mode localization
by artificially enhancing local shear spikes, essentially by ‘boxing’ the mode in,
similar to a quantum state in a potential well. In the limit of zero magnetic shear, as
has been studied for reverse-shear regions of internal transport barriers in tokamaks
(Candy, Waltz & Rosenbluth 2004; Connor & Hastie 2004) and recently for the
low-shear stellarator Wendelstein 7-X (Zocco et al. 2018), the gyrokinetic equation
is known to take the form of a Mathieu equation. In the analysis of ITG modes
in the Wendelstein 7-AS configuration, Bhattacharjee et al. (1983) demonstrated the
existence of weakly localized eigenmodes that extend far along field lines. These
modes are bound due to resonances between the wave period and effective bounding
potential and occur in regions where the Mathieu function is decaying. These regions
are determined by the particular form and magnitude of the local shear along the
field line and will vary between stellarator configurations. This subject was explored
in depth for magnetohydrodynamic ballooning modes in 3-D geometry in Cuthbert
& Dewar (2000) and Hegna & Hudson (2001) and numerically for drift waves by
Nadeem et al. (2001) for the H-1NF configuration, which demonstrated a transition
between localized and extended modes dependent on decreasing global magnetic
shear.

A significant consequence of both 3-D geometry and small global shear is
the existence of a plethora of unstable, but subdominant eigenmodes at every ky

wavenumber (Merz 2008; Faber et al. 2015). Modes localized to the outboard
midplane, modes with strong finite-kx dependence (amplitudes peaking at θ 6= 0), and
modes that extend along field lines can all be unstable concurrently at the same ky

wavenumber. These subdominant modes have been shown to play an important role
in the saturation dynamics of ITG turbulence in the HSX configuration (Pueschel
et al. 2016; Hegna, Terry & Faber 2018). In particular, Hegna et al. (2018) present a
theory describing ITG turbulence saturation in stellarator geometry, where saturation
occurs through nonlinear energy transfer to stable modes (Terry et al. 2006). It is
found that for the HSX configuration, energy is primarily transferred to stable modes
through subdominant, marginally stable modes. Furthermore, this observation was
shown to be a function of geometry and was not observed in a quasi-axisymmetric
configuration, which showed behaviour similar to conventional stellarators and high-ŝ
tokamaks. There, typically only at most a few modes tend to be destabilized at
each wavenumber, and the turbulence is strongly influenced by unstable mode/zonal
flow interactions (Hatch et al. 2011b; Hegna et al. 2018; Terry et al. 2018; Whelan,
Pueschel & Terry 2018). Thus care must be taken to properly simulate not only the
most unstable eigenmode, but also a significant part of the subdominant spectrum.
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3. Linear mode calculations
Calculations of linear eigenmodes are performed using the GENE code (Jenko et al.

2000). GENE has previously been applied to examine drift waves and turbulence in a
variety of stellarator configurations (Xanthopoulos & Jenko 2007; Xanthopoulos et al.
2007; Merz 2008; Proll et al. 2013; Faber et al. 2015; Xanthopoulos et al. 2016).
The GIST package (Xanthopoulos et al. 2009) is used to generate the necessary
components for flux-tube simulations of the magnetic geometry along a field line
from reconstructed equilibria. Linear calculations may be performed as initial value
calculations, converging onto the most unstable mode. However, given the importance
of resolving the subdominant eigenmode spectrum, the calculations presented below
are accomplished using fast iterative eigenvalue routines implemented from the
scalable library for eigenvalue problem computations (SLEPc) package (Hernandez,
Roman & Vidal 2005). The calculations make use of the recently implemented
‘matrix function’ computation technique, which has shown significant improvement
in efficiency for the calculation of the subdominant spectrum for stellarator geometry.
More traditional iterative techniques, such as Jacobi–Davidson methods, proved
ineffective in accessing the subdominant spectrum, often failing to return a single
subdominant eigenmode in 103 CPU hours. The accuracy of the iterative method has
been confirmed by finding agreement with the entire unstable spectrum obtained in
Pueschel et al. (2016) through full-matrix inversion performed with the ScaLAPACK
code (Blackford et al. 1997). More detailed discussion of the matrix function
technique is given in appendix B.

To more thoroughly examine the impact of low global magnetic shear, ITG and
TEM eigenmode calculations have been performed for the quasi-helically symmetric
(QHS) configuration of the HSX device. The calculations are done in flux-tube
domains centred on the half-toroidal flux surface, where the global magnetic shear
is ŝ ≈ −0.046 in the QHS configuration. This radial location has previously been
used to study TEM turbulence in HSX (Faber et al. 2015). To demonstrate that
low-magnetic-shear effects are not limited to the choice of instability, results for both
ITG and density-gradient-driven TEM will be shown.

3.1. Trapped electron modes
Calculations of TEM, relevant for HSX operation (Faber et al. 2015) focuses on high-
density-gradient drive, where the impact of extended modes is the most prominent.
The parameters used are a/Ln = 4, a/LTi = 0, a/LTe = 5 × 10−4, Ti/Te = 1, β = 0.
The gradient scales for the density and temperature normalized to the average plasma
minor radius are a/Ln,T , where Lξ =|∇ξ |/ξ . The ion and electron temperatures are Ti,e
and β = 8πneTe/B2

0 is the normalized ratio of electron pressure to magnetic pressure.
The eigenspectrum is examined for ky = (0.2, 0.4, 0.6, 0.8) and kx = j2πnpol|ŝ|ky for
integer j= (0,±1, . . . ,±8), and is shown in figure 2. As expected for pure ∇n-driven
TEM, almost all of the unstable modes are propagating in the electron-diamagnetic
direction, corresponding to negative value for real frequency using GENE conventions.
Examples of different mode types are given by the letter labels and the corresponding
mode structures are shown in figure 3. There is a clustering of modes around zero real
frequency, labelled by ‘C’, which have extended structure along field lines, consistent
with the previous findings of Nadeem et al. (2001). The modes with definite non-zero
frequencies, ‘A’ and ‘B’ tend to be much more strongly localized in helical drift
wells. These modes do not need to balloon around θ = 0, and they display significant
finite-kx amplitudes as well as tearing parity in electrostatic potential Φ, consistent
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FIGURE 2. Eigenspectrum for the strongly driven ∇n TEM in HSX. The horizontal axis is
the growth rate γ and the vertical axis is the real frequency ω. Different ky are indicated
different symbols and colours. Examples of different types of modes are given by the
labels ‘A’ (ky = 0.8), ‘B’ (ky = 0.4), ‘C’ (ky = 0.8) and ‘D’ (ky = 0.4), and the mode
structure is shown in figure 3.

FIGURE 3. Electrostatic potential eigenmode structures for the TEM branches labelled ‘A’
(upper left), ‘B’ (upper right), ‘C’ (lower left) and ‘D’ (lower right) from figure 2. The
modes show conventional ballooning behaviour (A), finite kx dependence (B), extended
structure along the field line (C) and two-scale structure with an extended envelope along
the field line (D).

with previous observations of TEMs in HSX (Faber et al. 2015). For most modes
in the spectrum, increasing the number of poloidal turns leads to a decrease in the
growth rates, and is shown in figure 4 for ky = 0.2 for one and four poloidal turns.
This behaviour is connected to the fact that by using more poloidal turns to construct
the flux tube, more correct drive and damping physics is included, leading to a more
accurate growth rate and frequency calculation for extended modes.

A peculiar branch of eigenmodes, labelled ‘D’ in figure 2 is characterized by
marginal stability modes, with a real frequency proportional to ky in the ion
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FIGURE 4. TEM eigenspectrum at ky= 0.2 for different poloidal turn values. Modes from
one poloidal turn are the solid red diamonds and from four poloidal turns are the hollow
blue diamonds. Generally, the modes at four poloidal turns are more stable, and there
are fewer unstable modes than for one poloidal turn. Importantly, the extended ion mode
branch (mode ‘D’ in figure 3), transitions from unstable to stable at four poloidal turns.

diamagnetic direction. The structure of the electrostatic potential along the field line
for the eigenmodes in HSX, shown in figure 3 D, displays an extended, two-scale
structure, with the outer scale varying on scales much longer than local helical drift
wells. While these modes appear connected to small-global-magnetic-shear values,
the exact mechanism responsible for setting the outer-scale envelope has not yet
been determined. In the reverse-shear tokamak scenario studied in Candy et al.
(2004), the small, but non-zero global magnetic shear set the envelope scale. In
3-D configurations, variations in the local shear can determine mode localization
through Mathieu resonances (Bhattacharjee et al. 1983) or through a method similar
to Anderson localization, where incommensurate helical periods in the magnetic
equilibrium cause localization (Cuthbert & Dewar 2000; Hegna & Hudson 2001).
The mode branch displays eigenmode structures with higher-harmonic envelopes that
are increasingly damped.

Like the other eigenmodes, the growth rate of the extended ion mode branch is
sensitive to the number of poloidal turns used to resolve the geometry. Figure 4 shows
the extended ion mode branch at ω≈ 0.8 is sensitive to the number of poloidal turns
and that the linear damping increases with number of poloidal turns. At one poloidal
turn, this mode branch even shows slight instability at ky = 0.2. This sensitivity is
observed despite the parallel correlation lengths of these modes being significantly
larger than a few poloidal turns. In the analysis presented in Cuthbert & Dewar (2000)
and Candy et al. (2004), the eigenvalue is dependent on the solution to the inner-
scale equation. More accurately resolving the inner-scale solution associated with the
helical drift wells serves to stabilize the overall growth rate. Improperly resolving this
extended scale mode has consequences for nonlinear simulation, as will be detailed
in § 4.
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FIGURE 5. ITG eigenmode spectrum for different ky values, denoted by different symbols
and colours. The modes at ky = 0.9 labelled ‘A’, ‘B’ and ‘C’ are modes with two-scale
behaviour, and the mode structures are shown in figure 6.

3.2. Ion temperature gradient modes
Calculations of ITG eigenmodes in the HSX configuration have been performed,
focusing on a pure collisionless ITG drive with kinetic electrons and the following
parameters: a/LTi = 3, a/LTe = 0, a/Ln = 0, Ti/Te = 1, β = 5 × 10−4. Because
the impact of eigenmodes with large parallel correlation lengths is more prevalent
at low ky, the eigenspectrum is shown for ky < 1 in figure 5. As was observed
with the TEM calculations, there are many unstable eigenmodes for every ky. A
similar mix of mode structures is observed, including strongly ballooning modes,
kx 6= 0 modes, and extended modes along the field line. Also observed are two-scale,
ion-direction-propagating modes with extended-envelope structure, labelled by ‘A’, ‘B’
and ‘C’ in figure 5. The corresponding mode structures are shown in figure 6. While
these modes have similar envelope behaviour as in the TEM case, a distinguishing
characteristic of the ITG case is that these modes are much more unstable and do not
become stable with increasing poloidal turns. Additionally, instability of the extended
ion modes is observed at high ky for the ITG case, as shown for ky= 0.9 in figure 5,
while only marginal instability is observed at low ky in figure 2 for the TEM case.

Despite these differences, given that these two-scale, extended-envelope ion modes
are observed in both TEM and ITG calculations, the existence of these modes is
connected to the low-magnetic-shear nature of devices such as HSX rather than a
particular instability drive. An important observation is that these modes are not
observed in the unstable eigenspectrum when an adiabatic electron approximation
is used. This is shown in figure 7, where the eigenvalue spectrum is computed for
both the adiabatic and kinetic electron treatment for a particular ky. Thus to fully
resolve the drift-wave dynamics in a low-shear stellarator like HSX, it is important
that kinetic electrons are used, so that crucial physics is not overlooked.

3.3. Zero-magnetic-shear approximation
The HSX shear value, ŝ = −0.046, represents only a small deviation from ŝ = 0.
Equation (2.2) shows that order-unity variations in ∇θ and ∇ζ terms will dominate
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FIGURE 6. Electrostatic potential for eigenmodes ‘A’ (top), ‘B’ (middle) and ‘C’ (bottom)
from figure 5. The real part is the solid line and the imaginary part is the dotted black
line. Similar to the mode ‘D’ in figure 3, the ITG eigenmodes display two-scale structure,
with an outer-scale envelope and inner-scale structure set by the helical magnetic structure.

over the secular ∇ψ term, provided θ − θk is small. A reasonable approximation
for ballooning modes is then to neglect the global magnetic shear, which will be
referred to as the zero-shear technique. In the zero-shear approach, linear modes no
longer couple through magnetic shear, as the boundary condition is strictly periodic.
A substantial benefit of this approach to low-magnetic-shear configurations is that
the radial box size of the simulation is no longer determined by (A 7), which states
Lx ∝ (ŝkmin

y )−1. For HSX, using kmin
y = 0.1 yields Lx ≈ 220ρs, a value comparable

with macroscopic equilibrium scale lengths (Faber et al. 2015). Despite such
large simulation domains, this is not physically problematic provided the turbulent
correlation lengths are both smaller than experimental correlation lengths and the
background length scales, such as Ln,T . A large radial box can be thought of as
equivalent to multiple ‘independent’ simulation domains and turbulent statistics can
be accumulated quickly. The numerical resolution, however, must also be scaled
appropriately, making such simulations expensive to carry out. With zero magnetic
shear, one may choose a more reasonable radial domain size and resolution, potentially
reducing computational costs.

With ŝ = 0, an extended parallel computational domain cannot be constructed by
adding radial modes, as demonstrated in § 2. Zero-shear calculations then require
that the parallel computation domain extend sufficiently far along the field line
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FIGURE 7. Comparison of the ITG eigenmode spectrum at ky = 0.9 for kinetic electrons
(red) and adiabatic electrons (blue). Adding kinetic electron effects primarily the real
frequency and reduces the number of unstable modes. However the extended ion modes
that are unstable for kinetic electrons are absent from adiabatic electron calculations.

to better accommodate physical parallel correlation lengths. The strictly periodic
boundary condition makes it easier to enhance growth rates through self-correlation
if an eigenmode is not sufficiently decayed at the ends of the simulations domain.
This is not only an issue for linear eigenmode calculations. A nonlinear simulation
can be dominated by artificial linear self-correlation if growth rates are large enough
compared to nonlinear decorrelation rates, which is demonstrated in § 4.

Figure 8 shows the application of the zero-shear computational technique to HSX
for dominant TEM eigenmode calculations where only one poloidal turn was used
for the geometry. In a finite-shear simulation, due to linear kx coupling, the fastest
growing connected kx mode determines the overall mode growth rate. As linear
modes are not coupled in zero-shear simulations, one must independently scan
over kx to capture finite kx effects. At higher ky, the finite-shear and zero-shear
calculations agree quite well for kx = 0, where the most unstable modes strongly
balloon at the outboard midplane and are sufficiently localized within one poloidal
turn. For intermediate values 0.3 6 ky 6 0.7, strong growth at finite kx is observed
and scanning kx for the zero-shear modes reproduces the finite-shear values. However,
for ky < 0.2, clear divergences are observed between the zero-shear and finite-shear
calculations. The zero-shear growth rates exhibit significantly larger growth rates than
the finite-shear counterparts and can be identified as the zero-shear counterpart to
the extended envelope ion modes in the finite-shear case. As is shown in figure 9,
for geometry using one poloidal turn, this zero-shear mode branch (red diamonds)
tracks the finite-shear (black diamonds) growth rates and frequencies relatively well
for higher ky values. Around ky= 0.3, the zero-shear growth rates diverge and become
significantly more unstable. This is problematic for nonlinear simulations that require
kmin

y 6 0.1, and will be discussed in § 4.
Linear mode differences between the finite and zero-shear techniques become small

when multiple poloidal turns are utilized, and in particular, growth rate differences
at wavenumbers ky 6 0.1 are significantly reduced. The periodic parallel boundary
conditions coupled with geometry from one poloidal turn does not allow modes to
sufficiently decay and the growth rate is artificially enhanced. This indicates that for
the low-ky modes, the parallel correlation lengths for HSX are longer than one poloidal
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FIGURE 8. Linear growth rate spectrum of TEMs for one poloidal turn for the finite-shear
approach (red) and the zero-shear approach (black and blue). The blue points are from
calculations where the kx value was varied to find the maximum growth rate, while the
black points are the kx = 0 streamer instability. The non-zero kx effects are required to
reproduce the finite-shear spectrum for 0.3 6 ky 6 0.7.

FIGURE 9. Eigenspectrum of the artificially enhanced mode (red diamonds) of figure 8
for a range of wavenumbers ky. Select ky modes are identified by the outlined symbols
and compared with the finite-shear counterpart for one poloidal turn (black diamonds). All
finite-shear eigenvalues are clustered near marginal stability, whereas zero-shear modes are
artificially enhanced at one poloidal turn.

turn and that the enhanced growth rates for the zero-shear calculations were due to
self-correlating fluctuations. For the half-toroidal flux surface in HSX, linear TEMs
show convergence at 4 poloidal turns.

As noted previously, for stellarator purposes, it is not sufficient to just examine
convergence of the most unstable mode, as subdominant modes can play an important
role in the turbulent dynamics. Figure 10 shows a comparison of the eigenmode
spectrum between the finite and zero-shear techniques for a TEM case in HSX,
using four poloidal turns at ky = 0.7. The zero-shear eigenmodes are computed by
scanning kx values that would be coupled via the parallel boundary condition in the
finite-shear calculation. Figure 10 shows that both the zero-shear and finite-shear
growth rates across the spectrum are replicated. It is not necessary to match exactly
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FIGURE 10. Comparison of the finite-shear (hollow red diamonds) and zero-shear (solid
black diamonds) eigenspectrum at ky= 0.7 for the ∇n-driven TEM. Sufficient agreement is
observed between the two computational approaches when multiple poloidal turns are used.
In particular, the zero-shear technique recovers the appropriate clustering of eigenmodes,
including the marginally stable ion mode branch (branch ‘D’ of figure 2).

every single subdominant mode between the two approaches. Pueschel et al. (2016)
demonstrated the impact of the subdominant modes in HSX is to generate broadband
turbulence, lessening the impact of any particular eigenmode. More importantly,
the clustering of eigenmodes in the spectrum is very well reproduced between the
calculation techniques in figure 10, which leads to consistent turbulence energy drive
and dissipation. This gives confidence that the zero-shear technique is accurately
calculating the eigenmode spectrum when the parallel correlation length is sufficiently
resolved.

4. Nonlinear effects
The impact of multiple poloidal turns and the necessity to accurately resolve

the subdominant spectrum can be seen in nonlinear simulations. TEM turbulence
simulations are performed using the plasma parameters of § 3.1 with 0.1155 6
|kx| 6 14.784, kmax

y = 3.1 and two separate kmin
y values, kmin

y = 0.05, 0.1. Figure 11
shows values of electron electrostatic heat flux from ∇n-driven TEM turbulence
simulations of HSX as a function of number of poloidal turns used to construct
the flux-tube geometry. The heat flux shows numerical convergence only at four
poloidal turns. Furthermore, agreement is seen between the finite-shear and zero-shear
flux-tube approaches, but again only when multiple poloidal turns are used. For the
high-density-gradient case here, with a/Ln = 4, it is seen that with only one poloidal
turn, even the finite-shear flux tubes with different kmin

y values have different transport
levels, and only after four poloidal turns do the flux values agree. This suggests it is
necessary to check for convergence in the number of poloidal turns used to construct
the geometry when performing nonlinear simulations.

A striking observation from ∇n-driven TEM simulations in HSX (Faber et al.
2015) is a peak in the electrostatic heat flux spectrum at kmin

y ≈ 0.1. This feature
becomes more prominent as a/Ln increases. The flux spectrum for the nonlinear
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FIGURE 11. Nonlinear TEM heat fluxes for HSX as function of poloidal turns. In red
and blue are finite-shear simulations with kmin

y =0.1 and 0.05 respectively, while zero-shear
simulations are shown in black. Simulations agree for npol > 4.

FIGURE 12. Flux spectrum from nonlinear TEM simulations for HSX. The different
curves represent different combinations of poloidal turns used for the geometry and kmin

y
values. All curves, except for the black curve, were simulations with non-zero shear. The
blue and teal dashed curves have been scaled by a factor of two due to having twice the
ky resolution as the solid curves.

TEM simulations of figure 11 is shown in figure 12. At only one poloidal turn,
the magenta and teal curves, the flux peaks at the lowest non-zero ky and increases
significantly as kmin

y is decreased. However, when 4 poloidal turns are used, the flux
continues to peak at ky = 0.1, and is substantially smaller at ky = 0.05 for the
kmin

y = 0.05 simulation. This again indicates that only with four poloidal turns are
the low-ky modes sufficiently resolved in the parallel direction such that accurate
turbulence simulations are achieved.
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Insight into the physics driving transport at ky≈ 0.1 and why simulations with only
one poloidal turn are not converged can be obtained from nonlinear energy transfer
considerations. For example, the equation for entropy transfer between modes at
wavenumbers k and k′ can be written as (Bañón Navarro et al. 2011):

T k,k′
f =

∫
dz dv‖ dµπB0n0i

[
T0i

F0i
f ∗k ((k− k′)φ̄1(k−k′)k′y fk′ − (k− k′)φ̄1(k−k′)k′x f ′k)

]
, (4.1)

where the perturbed distribution function at wavenumber k, fk, is a function the parallel
coordinate z and velocity space coordinates v‖ and µ. The gyro-averaged fluctuating
potential φ̄1k is a function of z alone. While other nonlinear transfer terms can be
identified in the energy budget equations, Bañón Navarro et al. (2011) shows this term
is the dominant transfer mechanism. The amount of entropy transferred by (4.1) can
be increased by two methods. Large values of T k,k′

f can be achieved when eigenmodes
are correlated in both the parallel direction and in velocity space. Eigenmodes that are
not well correlated, but still have some overlap, can have large T k,k′

f if the amplitudes
are large enough to compensate for the lack of mode correlation.

These considerations make it clear why zonal flows, which are uniform in z, can
efficiently transfer energy. Zonal flows, however, are linearly stable and only driven
to large amplitudes by nonlinear energy transfer and cannot input energy into the
system. Similar to zonal flows, the marginally stable ion mode branch has extended
structure along field lines and Maxwellian velocity space structure, enabling efficient
transfer of energy between modes. As seen in § § 3.1 and 3.2, however, the ion modes
can be linearly unstable when an insufficient number of poloidal turns are used for
the computational domain. These modes, which are more unstable at low ky, can then
also provide an energy drive for turbulence. This can be problematic for nonlinear
simulations, as simulations of ion scale turbulence generally require kmin

y . 0.1, and
an important factor for converged nonlinear simulations is the avoidance of significant
energy drive at the domain scales. The contribution to the linear energy drive from
the modes at ky = 0.2 can be seen in figure 13, where the non-conservative energy
evolution terms, including terms proportional to the driving density gradient, are
plotted as a function of (kx, ky). In situations where a single instability dominates,
such as in most high-shear situations, figure 13 would show only the conical yellow
structure seen for |ky|& 0.3. The presence of strong energy drive at |ky| = 0.2 suggests
a connection to the extended ion modes, possibly through nonlinear, finite-amplitude
instability as described in Friedman et al. (2013), Friedman & Carter (2014), or a
pseudospectral response (Hatch et al. 2016a). Techniques for directly analysing the
energy dynamics of specific eigenmodes (Whelan et al. 2018) will be employed on
these data in future work.

The impact of the stability of the extended ion modes on nonlinear convergence are
not just limited to the direct linear energy drive. If these modes are linearly unstable,
they can grow to significant amplitudes and enhance nonlinear entropy and energy
transfer. Due to their extended structure along the field line and Maxwellian velocity
space structure, they can provide efficient coupling between eigenmodes, similar in
manner to a zonal flow, and by extension also efficiently couple directly to zonal
flows. This can have significant consequences for nonlinear simulations. Erroneously
large zonal flow amplitudes will enhance the ability of zonal flows to transfer energy
nonlinearly to damped modes. This is the mechanism responsible for the near zero
heat flux observed in the zero-shear simulations at one poloidal turn in figure 11.
The linear growth rates at low ky for the zero-shear simulations are significantly
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FIGURE 13. Spectrum of non-conservative energy terms in units of n0eT0ecsρ
2
s /a

3 for the
high-∇n TEM simulation for HSX. A positive (red) dE/dt value at a (kx, ky) indicates
energy is being input into the system. The modes at ky=0.2 have the largest dE/dt values,
coinciding with the heat flux peak at ky = 0.2 in figure 12.

(a)

(b)

FIGURE 14. Instantaneous contours of fluctuating electrostatic potential Φ ((a), in units of
ρsT0e/(ea)) and density n ((b), in units of n0eρs/a) from a zero-shear simulation with one
poloidal turn (black curve of figure 11). Both Φ and n display dominant zonal components,
and the density shows a clear coherent mode.

enhanced compared to the finite-shear simulations, as was seen in figure 8. Visually,
this impact can be seen by examining the contours of fluctuating potential and density
from a zero-shear nonlinear simulation, as shown in figure 14. The contours indicate
the simulation is dominated by a coherent interaction between the zonal flows and
a linear mode that spans the box, which for kmin

y = 0.1 is the artificially enhanced
branch in figure 8.
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FIGURE 15. Projection of TEM turbulence onto eigenmodes at ky = 0.2 using geometry
with four poloidal turns. The colour bar gives the projection value. The projection shows
subdominant and stable modes have higher projection values than the most unstable
modes. The inset figures show the potential mode structure of the high-projection modes,
emphasizing that at ky = 0.2, modes with extended structure along the field line play a
large role in the nonlinear state.

Signatures of the extended ion mode persist in the finite-shear simulations when
multiple poloidal turns are used so that the extended ion modes transition from
unstable to stable at low ky. To obtain the amplitude of an eigenmode in the nonlinear
turbulent state, one can project the nonlinear distribution function onto the eigenmodes
with the following relation:

pj =

∣∣∣∣∫ dx dvf ∗j fNL

∣∣∣∣(∫
dx dv|fj|

2
∫

dx dv|fNL|
2

)1/2 . (4.2)

Here, pj is the projection of the eigenmode fj and fNL is the nonlinear distribution
function. The eigenmodes are not orthogonal, thus the projection pj is not uniquely
associated with the amplitude for eigenmode fj, but it can illuminate general trends
in the underlying aspects of the turbulence. The projection onto the eigenmodes at
ky = 0.2 of the turbulent distribution function for the high ∇n-driven TEM case is
shown in figure 15. This wavenumber corresponds to a region of low heat flux in
figure 12.

The figure demonstrates, consistent with previous observations, that subdominant
modes have strong projection values while the most unstable modes have considerably
smaller projections. The inset figures in figure 15 show that the modes with
large projections have extended structure along the field line and that, somewhat
counter-intuitively, the stable, extended-envelope ion modes have increasingly large
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projection values with increasing damping rate. At higher ky, where the majority of
the flux is driven in figure 12, the projection selects the most unstable mode as having
the largest imprint on the turbulence, as one would expect, even when subdominant
modes are important (Pueschel et al. 2016). This provides more evidence supporting
the preceding discussion pertaining to (4.1) and figure 13 that the extended ion
modes are acting as both a linear energy drive and have a dominant role nonlinear
energy transfer.

A plausible picture then emerges concerning both the lack of nonlinear convergence
with one poloidal turn and the appearance of substantial heat flux seen in figure 12
at low ky. When the geometry is insufficiently resolved, the low-ky extended ion
modes are linearly unstable due to self-correlation effects and can grow to high
amplitudes in nonlinear simulations. Efficient nonlinear coupling can then pump
both zonal flows and finite-ky modes that further enhance transport at low ky. When
multiple poloidal turns are used to more accurately describe the geometry along the
field line, the now linearly stable extended ion modes are still efficient channels
for nonlinear energy transfer, but with much smaller amplitudes. Low-ky modes can
still be pumped to large enough amplitudes to drive the observed transport peak,
but the relative lack of linear energy drive at low-ky limits how much flux can be
produced. It should be emphasized that this is an effect of subdominant and stable
modes at low magnetic shear. If the turbulence was set by interactions between the
most unstable mode and the nonlinearity, as is generally the case for higher-shear
configurations where extended modes becomes more stable, the turbulence would
be insensitive to the parallel resolution, as the most unstable modes are accurately
resolved by geometries constructed using one poloidal turn. This indicates that for
low-magnetic-shear stellarators, one must ensure the subdominant eigenspectrum is
accurately simulated.

5. Conclusions

In this work, we have presented a detailed study of the influence of low global
magnetic shear on flux-tube gyrokinetic simulations of the HSX configuration. In order
to achieve converged nonlinear simulations, the flux tube needs to be constructed
with geometry data from multiple poloidal turns. Using multiple poloidal turns
more accurately resolves parallel mode structure and correlation crucial to accurately
describing instability drive and damping physics. When only one poloidal turn is used,
self-correlation occurs for modes that have parallel correlation lengths larger than one
poloidal turn, artificially enhancing growth rates. These artificially enhanced modes
can in turn dominate nonlinear simulations, as is observed for zero-magnetic-shear
simulations, leading to loss of numerical convergence. Numerical convergence and
agreement between finite-shear and zero-shear computational techniques is observed
when multiple poloidal turns are used. For the HSX flux tubes studied here, at least
four poloidal turns are required.

Properly resolved simulations reveal a wealth of complex behaviour for HSX
in both linear eigenmode calculations and nonlinear simulations. Many different
unstable eigenmodes are observed at each ky for both TEM and ITG calculations. Of
particular interest is a branch of modes propagating in the ion-diagmagnetic direction
that has two-scale structure, with an outer-scale envelope extending far along the
field line and the inner scale is set by the local helical structure along the field line.
These modes are marginally stable for TEM calculations, but are unstable, though still
subdominant, for ITG calculations. In nonlinear TEM turbulence simulations for HSX,
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these extended ion modes play a prominent role in the nonlinear dynamics. Owing
to their extended structure along field lines and Maxwellian velocity space structure,
they provide efficient channels for nonlinear energy transfer, similar in manner to
zonal flows. Furthermore, and unlike zonal flows since they have non-zero ky, these
marginally stable modes can also provide energy drive to the simulations if driven to
finite amplitude. This appears responsible for the observation of significant heat flux
at long wavelength in HSX.

These observations are connected to the small value of global magnetic shear in
HSX and highlight the complexity low magnetic shear can add to the drift-wave
spectrum and corresponding turbulence. As low magnetic shear is a likely property of
future advanced stellarator concepts, care should be taken to ensure proper resolution
of parallel scales when performing corresponding gyrokinetic turbulence simulations.
The role of the extended ion modes in the fully developed turbulent state to both
input energy and mediate nonlinear energy transfer suggests a more complicated
turbulence saturation picture. Zonal flows are prominent visually in both ITG and
TEM simulations for HSX, however, recent analysis in Plunk, Xanthopoulos &
Helander (2017) and Hegna et al. (2018) indicates that ITG saturation for HSX occurs
primarily through eddy–eddy interactions, rather than eddy–zonal flow interactions,
and provide evidence that turbulence saturation in HSX is occurring via energy
transfer to stable modes. The extended ion modes may then play a prominent
role in saturation, facilitating energy transfer to damped modes while exploiting
efficient nonlinear coupling to zonal flows to explain the visual prominence of zonal
structures in nonlinear simulations. In the context of stellarator optimization, this
offers a tantalizing prospect that stellarator geometry can be manipulated in a way to
enhance the capability of subdominant modes to transfer energy and affect saturation,
and motivates continued development of the theories of Hegna et al. (2018) with
more comprehensive physics in the pursuit of a turbulence-optimized stellarator.
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Appendix A. Flux-tube parallel boundary condition
This appendix will derive the parallel boundary condition for flux-tube geometry.

The distribution function is statistically 2πN periodic in the poloidal angle θ . This is
expressed as

f [ψ, α(θ, ζ ), z(θ)] = f [ψ, α(θ + 2πN, ζ ), z(θ + 2πN)], (A 1)
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where N is the number of poloidal turns necessary to resolve parallel correlation
lengths. Using (2.4) to represent f and taking α0 = 0, we have

f [ψ, α(θ, ζ ), z(θ), t] =
∞∑

m=−∞

∞∑
n=−∞

f̂m,n(z(θ), t) exp
[

iπ
m(ψ −ψ0)

1ψ
− iπ

nζ
1α
+ iπ

nq(ψ)θ
1α

]
.

(A 2)
Under the assumption that the perpendicular dimensions of the flux tube are small
compared to background variations, we can expand q(ψ) around the centre of the
domain ψ0: q(ψ) ≈ q(ψ0) + (ψ − ψ0)q′(ψ), where q′(ψ) = dq/dψ . Furthermore, let
q0 = q(ψ0). We can then write (A 2) as

f =
∞∑

m=−∞

∞∑
n=−∞

f̂m,n(θ, t) exp
[

iπ(ψ −ψ0)

(
m
1ψ
+

nq′θ
1α

)
− iπ

nζ
1α
+ iπ

nq0θ

1α

]
. (A 3)

Applying the parallel periodicity condition gives

∞∑
m=−∞

∞∑
n=−∞

f̂m,n(θ + 2πN, t)Cn exp

×

[
iπ(ψ −ψ0)

(
m
1ψ
+

nq′(θ + 2πN)
1α

)
− iπ

nζ
1α
+ iπ

nq0θ

1α

]
=

∞∑
m=−∞

∞∑
n=−∞

f̂m,n(θ, t) exp
[

iπ(ψ −ψ0)

(
m
1ψ
+

nq′θ
1α

)
− iπ

nζ
1α
+ iπ

nq0θ

1α

]
, (A 4)

where Cn = exp(i2πNnq0/1α) is a phase factor associated with the boundary
condition. For (A 4) to be valid at any ζ , the coefficient of each exp(−inπζ/1α)
term must be equal. We can re-write this in a more transparent way as

∞∑
m=−∞

f̂m,n(θ + 2πN, t)Cn exp

×

[
iπ(ψ −ψ0)

(
1
1ψ

(
m+

2πNnq′1ψ
1α

)
+

nq′θ
1α

)
+ iπ

nq0θ

1α

]
=

∞∑
m=−∞

f̂m,n(θ, t) exp
[

iπ(ψ −ψ0)

(
m
1ψ
+

nq′θ
1α

)
+ iπ

nq0θ

1α

]
. (A 5)

To make the exponential factors identical, we can reindex with m′=m+ δm, where

δm= 2πNnq′
1ψ

1α
. (A 6)

In order for δm to be integer valued, this introduces a quantization on 1ψ set by
when 1ψ is largest, which occurs at n= 1:

1ψ =
N1α
2πNq′

, (A 7)

for some integer N . We may then rewrite (A 5) as
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∞∑

m′=−∞

f̂m′−δm,n(θ + 2πN, t)Cn exp
[

iπ(ψ −ψ0)

(
m′

1ψ
+

nq′θ
1α

)
+ iπ

nq0θ

1α

]

=

∞∑
m=−∞

f̂m,n(θ, t) exp
[

iπ(ψ −ψ0)

(
m
1ψ
+

nq′θ
1α

)
+ iπ

nq0θ

1α

]
. (A 8)

As the coefficients of each term in the sum must be equal, we may drop the primes
from m. This gives the final form of the parallel boundary condition

f̂m−δm,n(θ + 2πN, t)Cn = f̂m,n(θ, t), (A 9)

δm= nM, M = 2πNq′
1ψ

1α
. (A 10)

This form shows the essential nature of flux-tube simulations, that different linear
modes are coupled at the ends of the simulation domain due to the presence of
magnetic shear, with the coupling determined by δm.

Appendix B. Eigenvalue solvers
In terms of numerical linear algebra, determining unstable modes involves the

computation of several rightmost eigenvalues (and corresponding eigenvectors) of
a large non-Hermitian matrix A ∈ Cn×n. GENE provides an interface to several of
the eigensolvers implemented in the SLEPc library (Hernandez et al. 2005), such as
Krylov or Davidson iterative methods. However, in the case that rightmost eigenvalues
(those with largest real part) have small magnitude compared with the dominant
eigenvalues, these solvers are not completely satisfactory due to slow convergence. In
this work we have taken an alternative route that makes use of the matrix exponential.

Since Krylov methods are good at approximating largest magnitude eigenvalues, the
idea is to apply them to matrix exp(τA) to compute several dominant eigenvalues θi,
then recover the rightmost eigenvalues of A as λi = log(θi)/τ . In order for this
approach to be practical, the matrix exp(τA) must not be built explicitly. Early
works such as Goldhirsch, Orszag & Maulik (1987) handled the matrix exponential
implicitly via an initial value solver for the corresponding differential equation with
integration time equal to τ . A better alternative is to employ linear algebra techniques
to compute its action on a vector, y= exp(τA)b, as is done by Meerbergen & Sadkane
(1999).

Apart from eigensolvers, SLEPc provides a parallel solver to evaluate y = f (A)b,
where f (·) is a matrix function such as the exponential, the square root, etc. This
solver is based on Krylov subspaces (Higham 2008, chap. 13) and can thus be used
for large sparse A since it computes the result y without explicitly building the matrix
f (A). We next give a brief overview of the implemented method, particularized for
the matrix exponential. In the description below, we set the parameter τ = 1 for
simplicity, although an appropriately chosen value (typically between 0 and 1) may
have a significant impact on convergence, depending on the matrix properties. In the
calculations presented in § 3, a value of τ = 0.3 was used.

The approximation to the solution vector y is picked from the Krylov subspace
defined as span{b, Ab, A2b, . . . , Am−1b}. The Arnoldi recurrence is used to build
an orthonormal basis of this subspace, Vm, resulting in the relation AVm = VmHm +

hm+1,mvm+1e∗m, where Hm is an m×m upper Hessenberg matrix. Then the approximation
of y can be computed as

y(0) = βVm exp(Hm)e1, (B 1)
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where β = ‖b‖2 and e1 = [1, 0, . . . , 0]T. As a result, the problem of computing the
exponential of a large matrix A of order n is reduced to computing the exponential of
a small dense matrix Hm of order m, with m�n. For the explicit computation of dense
matrix functions, many algorithms have been proposed (Higham 2008). For the matrix
exponential, SLEPc implements the method by Al-Mohy & Higham (2010) consisting
in a rational Padé approximation of order 13, combined with the scaling and squaring
technique.

SLEPc provides a robust and efficient parallel implementation of the Arnoldi
method. The main difficulties in implementing the above scheme are how to choose
the m parameter and how to decide whether the computed approximation is sufficiently
accurate. If m is too small the Krylov subspace will not contain enough information
to build an accurate approximation, but if it is too large the required storage for
Vm (and the associated computational cost) will be exceedingly high. On the other
hand, in the context of matrix functions it is not possible to define a residual to be
used in a stopping criterion. Both issues are solved by the Eiermann & Ernst (2006)
restart technique implemented in SLEPc. The value of m is prescribed to a fixed
value and when the subspace reaches this size, a restart of the algorithm is forced by
keeping part of the data computed so far and discarding unnecessary information. In
particular, only the last basis vector vm+1 is kept (to continue the Arnoldi recurrence),
along with the matrix Hm. At the kth restart, the new approximation is obtained by
an additive correction, y(k) = y(k−1)

+ c(k), where

c(k) = βVm[0, Im] exp(Hkm)e1. (B 2)

The upper Hessenberg matrix Hkm is formed by extending the previous one,

Hkm =

[
H(k−1)m 0

h(k−1)
m+1,me1eT

(k−1)m H(k)
m

]
, (B 3)

where H(k)
m is the matrix computed by Arnoldi in the kth restart. The stopping criterion

can be based on the norm of the correction: ‖c(k)‖< β · tol. In the results presented
in this paper, we have used a restart parameter m= 10 and a tolerance tol= 10−6.
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