RINGS CHARACTERIZED BY THEIR WEAKLY-INJECTIVE MODULES

by SERGIO R. LÓPEZ-PERMOUTH

(Received 14 June, 1991)

1. Introduction. The notation in this paper will be standard and it may be found in [2] or [8]. Throughout the paper, the notation $A \subset B$ will mean that A is an essential submodule of the module B. Given an arbitrary ring R and R-modules M and N, we say that M is weakly N-injective if and only if every map $\varphi: N \to E(M)$ from N into the injective hull E(M) of M may be written as a composition $\sigma \circ \hat{\varphi}$, where $\hat{\varphi}: N \to M$ and $\sigma: M \to E(M)$ is a monomorphism. This is equivalent to saying that for every map $\varphi: N \to E(M)$, there exists a submodule X of E(M), isomorphic to M, such that $\varphi(N)$ is contained in X. In particular, M is weakly R-injective if and only if, for every $x \in E(M)$, there exists $X \subset E(M)$ such that $x \in X \cong M$. We say that M is weakly-injective if and only if it is weakly N-injective for every finitely generated module N. Clearly, M is weakly-injective if and only if, for every finitely generated submodule N of E(M), there exists $X \subset E(M)$ such that $N \subset X \cong M$.

Any weakly N-injective module M satisfies the closely related property that, for every submodule K of N, if N/K embeds in E(M) then N/K embeds in M. Following [10], we refer to any such module as being N-tight. If M is N-tight for every finitely generated module N, we say that M is tight.

Weakly-injective (tight) modules are closed under finite sums and under essential extensions. However, they remarkably fail to be closed under direct summands [11]. A natural question would be to ask for what rings is it true that summands of weakly-injective (tight) modules are weakly-injective (tight). We show that these rings are precisely the weakly-semisimple rings. Following [11], a ring R such that every right R-module is weakly-injective will be referred to as a right weakly-semisimple ring. It is not hard to see, following the arguments in [10] and [11], that a ring R is weakly-semisimple if and only if every right R-module is tight. Weakly-semisimple rings are right QI-rings. That is, if R is a weakly-semisimple ring then every quasi-injective right R-module is injective (see [3], [4], [5], [8], [9] for background on right QI-rings). If R is hereditary and noetherian then R is a right weakly-semisimple ring if and only if it is a right OI-ring [11].

The opposite extreme to weakly-semisimple rings consists of those rings over which the only weakly-injective modules are the trivial ones (i.e. the injective modules). We show that this happens if and only if the ring is semisimple artinian.

A ring R is said to be a right q.f.d. ring if and only if every cyclic right R-module has finite Goldie dimension. This is equivalent to the requirement for every cyclic right R-module to have finitely generated (possibly zero) socle [12]. Examples of right q.f.d. rings include rings with right Krull dimension. In particular, right noetherian rings are also right q.f.d. rings. R is a right q.f.d. ring if and only if every finitely generated right R-module has finite Goldie dimension [6]. It is easy to see that if R is a right q.f.d. ring then every right R-module contains, as an essential submodule, a direct sum of uniform submodules. Right q.f.d. rings have also been studied in [1], and in [13]. Arbitrary sums of (weakly-)injective right modules over a ring R are weakly-injective if and only if R is a right q.f.d. ring [1].

Glasgow Math. J. 34 (1992) 349-353.

SERGIO R. LÓPEZ-PERMOUTH

A ring R is said to be right semi-artinian if every (cyclic) right module has non-zero (and thus essential) socle (see [7], for example). Right semi-artinian rings are called right socular in [8].

2. Direct summands of weakly-injective modules.

PROPOSITION 2.1. Every completely reducible module over an arbitrary ring R is a direct summand of a weakly-injective R-module.

Proof. Let M be a completely reducible right R-module. Let us write $M = \bigoplus_{i \in I} [S_i]$,

where $[S_i]$ represents the homogeneous component of M corresponding to the simple submodule $S_i \subset M$. It follows that, for every $i \in I$, there exists a cardinal \aleph_i such that $[S_i] \cong S_i^{(\aleph_i)}$. Let \aleph be an infinite cardinal greater than both the cardinality of R and the number of summands of *M*. In particular, for every $i \in I$, $\aleph > \aleph_i$. Notice that for every finitely generated right R-module N, if $\bigoplus_{\alpha \in \Gamma} U_{\alpha}$ is an internal direct sum of nonzero submodules of N then the cardinality of Γ is less than N. Let $V = M \oplus E(M^{(\aleph)})$. We claim that V is weakly-injective. Notice, first of all, that $E(V) \cong E(M^{(\aleph)})$ and Soc V = Soc $E(V) \cong \bigoplus_{i \in I} [S_i]^{(\aleph)} \cong \bigoplus_{i \in I} (S_i^{(\aleph_i)})^{(\aleph)} \cong \bigoplus_{i \in I} S_i^{(\aleph)}$. Let N be a finitely generated submodule of E(V). Then the number of simple summands in any decomposition of Soc N is less than X. Let us say that Soc $N = \bigoplus_{i \in I} [[S_i]]$, where $[[S_i]]$ denotes the (possibly zero) homogeneous component of Soc N corresponding to S_i . Since, for every $i \in I$, the number of simple summands in $[S_i]$ is less than \aleph , we conclude that the homogeneous component of Soc E(V) corresponding to S_i equals $[[S_i]] \oplus K_i$ for some $K_i \cong (S_i)^{(\aleph)}$. Hence, we get Soc $V = \text{Soc } N \oplus T$ for some $T \cong \text{Soc } V$. Therefore, $E(\text{Soc } V) = E(V) = E(N) \oplus E(T)$, and $E(T) \cong E(V)$. Let Y be a submodule of E(T) isomorphic to V and define $X = E(N) \oplus Y$. Then

$$X \cong E(N) \oplus M \oplus E(M^{(\aleph)}) = M \oplus E(N \oplus M^{(\aleph)}) = M \oplus E(\operatorname{Soc} N \oplus (\operatorname{Soc} M)^{(\aleph)})$$
$$\cong M \oplus E\left(\bigoplus_{i \in I} [[S_i]] \oplus \bigoplus_{i \in I} (S_i)^{(\aleph)}\right) \cong M \oplus E\left(\bigoplus_{i \in I} (S_i)^{(\aleph)}\right) \cong M \oplus E(M^{(\aleph)}) = V.$$

Since $N \subset X$, this concludes our proof.

COROLLARY 2.2. Over a right semi-artinian ring R, every right R-module is a summand of a weakly-injective right module.

Proof. This follows from the previous proposition since weak-injectivity is preserved by essential extensions.

PROPOSITION 2.3. Over arbitrary rings, every module is a summand of a tight module. If R is a right q.f.d. ring, every right R-module is a summand of a weakly-injective right module.

Proof. Let M be a right module over the right q.f.d. ring R and let \aleph be any infinite cardinal. Consider the module $N = M \oplus E(M^{(\aleph)})$. Since E(N) is isomorphic to a submodule of N, N is tight. In light of Theorem 3.1 ahead, if R is a right q.f.d. ring then N is weakly-injective.

THEOREM 2.4. Let R be a ring. Then

(1) direct summands of weakly-injective (tight) right R-modules are weakly-injective (tight) if and only if R is a right weakly-semisimple ring, and

(2) every weakly-injective (tight) right module is injective if and only if R is semisimple-artinian.

Proof. If weakly-injective (tight) right R-modules were closed under direct summands, Proposition 2.1 implies that every completely reducible right R-module would be weakly-injective (tight) and thus injective. This implies that R is right noetherian (see [8] or [12]). Then, by Proposition 2.3 and the hypothesis, R is right weakly-semisimple. One can argue in the same way to prove that if every weakly-injective module is injective then every right R-module is injective and hence R is semisimple artinian.

3. Weak-injectivity versus tightness.

THEOREM 3.1. Let R be a right q.f.d. ring. Then every tight right R-module is weakly-injective.

Proof. Let M be a tight right R-module over the right q.f.d. ring R. Let N be a finitely generated submodule of E(M). Since R is a right q.f.d. ring, N contains as an essential submodule a finite direct sum $\bigoplus_{i \in I_1} U_i$ of uniform submodules. By the tightness of M, there exists an embedding $\varphi: N \to M$. Let K be a complement of $\varphi(N)$ in M, and let $\bigoplus_{i \in I_2} U_i$ be a direct sum of uniform submodules of M which is essential in K. For convenience, assume $I_1 \cap I_2 = \emptyset$ and set $I = I_1 \cup I_2$. Then $E(M) = E(\varphi(N)) \oplus E(K)$ contains as an essential submodule the sum

$$\bigoplus_{i\in I_1} E(\varphi(U_i)) \oplus \bigoplus_{j\in I_2} E(U_j) \cong \bigoplus_{i\in I} E(U_i).$$

Now, since R is a right q.f.d. ring, this sum is weakly-injective (by [1]) and therefore there exists an embedding $\psi : \bigoplus_{i \in I} E(U_i) \to E(M)$ such that $N \subset \bigoplus_{i \in I} \psi(E(U_i))$. Since N is finitely generated, $N \subset \bigoplus_{i \in J} \psi(E(U_i))$ for some finite subset $J \subset I$. Then E(N) is a summand of $\bigoplus_{i \in J} \psi(E(U_i))$. Using the Krull-Schmidt theorem, we may then, without losing generality, assume that $N \subset \bigoplus_{i \in J} \psi(E(U_i))$. It follows that $|I_1| = |J|$ and, by the Azumaya-Krull-Schmidt theorem, that there exists an isomorphism $\rho : \bigoplus_{i \in I_2} E(U_i) \to \bigoplus_{j \notin J} \psi(E(U_j))$. This isomorphism ρ extends to another isomorphism $\hat{\rho} : E(K) \to E\left(\bigoplus_{j \notin J} \psi(E(U_j))\right)$. The isomorphism $\varphi : N \to \varphi(N)$ extends in turn to an isomorphism $\hat{\varphi} : E(N) = \bigoplus_{i \in J} \psi(E(U_i))$. It follows that $\eta = \hat{\varphi}^{-1} \oplus \rho : M_1 \oplus K \to E(M)$ is an embedding satisfying that $N \subset \eta(M_1 \oplus K)$. Since $M_1 \oplus K \subset M$, there is an extension $\hat{\eta} : M \to E(M)$ of η such that $N \subset \hat{\eta}(M)$. Therefore M is weakly-injective, as claimed.

SERGIO R. LÓPEZ-PERMOUTH

The following theorem comes close to being a converse for Theorem 3.1.

THEOREM 3.2. Let R be a ring such that every tight right R-module is weaklyinjective. Then for every cyclic right R-module M, the homogeneous components of Soc Mare finitely generated.

Proof. Suppose N is cyclic and Soc N contains an infinitely generated homogeneous component $[S] \cong S^{(\aleph)}$, where \aleph is some infinite cardinal and S is a simple submodule of N. Let K be a complement of [S] in N. Then N/K is a cyclic module with infinitely generated homogeneous and essential socle. So, without loss of generality, let us assume that Soc $N \subset 'N$ and Soc $N \cong S^{(\aleph)}$ for some simple submodule $S \subset N$ and an infinite cardinal \aleph . It follows that $M = S^{(\aleph)} \oplus E(S^{(\aleph)})$ is tight since $E(M) \cong \{0\} \oplus E(S^{(\aleph)}) \subset M$. However, $S^{(\aleph)} \subset 'N$ and the embedding of $S^{(\aleph)}$ as an essential submodule of E(M) such that $\varphi(N) \subset X \cong M$, by the modular law, $\varphi(N)$ would have a summand isomorphic to $S^{(\aleph)}$. However this is impossible since $\varphi(N)$ is cyclic. Therefore M is tight but not weakly-injective, concluding our proof.

The proof of the above theorem suggests how one can create an example of a tight module which is not weakly-injective.

EXAMPLE 3.3. Let R be the ring of endomorphisms of an infinite dimensional vector space V over a division ring D. Then there exists a tight R-module M which is not weakly-injective.

Proof. The socle of R is essential in R and it consists of a direct sum of \aleph pairwise isomorphic minimal right ideals, where $\aleph = \dim_D V$. So, it follows as in the proof of Theorem 3.2 that if S is a minimal right ideal of R, the module $M = S^{(\aleph)} \oplus E(S^{(\aleph)}) \cong$ Soc $R \oplus R$ is tight but not weakly-injective.

REFERENCES

1. A. H. Al-Huzali, S. K. Jain and S. R. López-Permouth, Rings whose cyclics have finite Goldie dimension, to appear in *J. Algebra*.

2. F. W. Anderson and K. R. Fuller, Rings and categories of modules (Springer, 1974).

3. A. K. Boyle, Hereditary QI-rings, Trans. Amer. Math. Soc. 192 (1974), 115-120.

4. A. K. Boyle, Injectives containing no proper quasi-injective submodules, *Comm. Algebra* 4 (1976), 775–785.

5. A. K. Boyle and K. R. Goodearl, Rings over which certain modules are injective, *Pacific J. Math.* 58 (1975), 43-53.

6. V. P. Camillo, Modules whose quotients have finite Goldie dimension, *Pacific J. Math.* 69 (1977), 337-338.

7. N. V. Dung and P. F. Smith, On semi-artinian V-modules, J. Pure Appl. Algebra, to appear.

8. C. Faith, Algebra II, Ring theory (Springer, 1976).

9. C. Faith, On hereditary rings and Boyle's conjecture, Arch. Math. (Basel) 27 (1976), 113-119.

10. J. S. Goland and S. R. López-Permouth, QI-filters and tight modules, Comm. Algebra 19 (1991), 2217-2229.

352

11. S. K. Jain, S. R. López-Permouth and S. Singh, On a class of QI-rings, *Glasgow Math. J.* 34 (1992), 75-81.

12. R. P. Kurshan, Rings whose cyclic modules have finitely generated socle, J. Algebra 15 (1970), 376-386.

13. R. C. Shock, Dual generalizations of the Artinian and Noetherian conditions, *Pacific J.* Math. 54 (1974), 227-235.

Ohio University Athens Ohio 45701 U.S.A.