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Abstract

The question of the location of the eigenvalues of a linear operator is con-
sidered. In particular, a numerical technique is developed which can be used
to demonstrate the absence of eigenvalues in certain segments of the real line.

1. Introduction

The eigenvalue problem

Lu = lu (1)

arises in many applications and is therefore of considerable interest in numerical
analysis. For approximate computation the problem is generally replaced by its
discretized version

L.uH = \um, (2)

where Ln is an n x n matrix. The basic problem is to determine the relation between
the eigenvalues of L and those of Ln. Much of the work that has been done in this
connection is concerned with convergence analysis; that is, if Aea(L), one shows
that for sufficiently large n there is a A e a(Ln) arbitrarily close to X. A variety of
results for integral operators can be found in Anselone [1], Atkinson [2] and
Spence [12], while Chatelin [4] and Grigorieff [5] present a more general theory.

Convergence analysis is the first question to consider since it gives us some
assurance that the method works. The associated order of convergence gives some
indication of effectiveness of the method, but it rarely provides a way for computing
useful error estimates. Thus the need arises for easily computable and realistic error
bounds. For integral equations Wielandt [15] and Brakhage [3] provide some
answers, while Hubbard [7], Wendroff [14], Weinberger [13] and Kuttler [9]
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consider certain differential operators. A general approach is described in [10],
where it is shown how to use the computed eigenvector un to find an e such that
[A —e,A+e] contains at least one eigenvalue of L. Some examples indicate that
the e so computed is quite realistic, that is, it is of the same order of magnitude as
the actual error.

These results, while useful, are incomplete since the question of the exact
number of eigenvalues in an interval is left open. Of particular concern is whether
the absence of an eigenvalue of Ln in some interval can be used to prove that L
does not have any eigenvalues in a corresponding interval. This is the problem we
consider here by examining exclusion regions, defined to be intervals of the real
line known not to contain eigenvalues of L. The more difficult question of the
exact multiplicity of a known eigenvalue is beyond the scope of this paper, but
some results may be found in Hennagin [6].

We will make a few simplifying assumptions, which, in the light of the proposed
applications, are quite reasonable. It will be assumed that L is a linear operator
with domain and range in some (generally infinite-dimensional) linear space X.
For the purpose of discussion we take X to be C[0,1], but obviously other
choices are possible. We also assume that, with the possible exception of A = 0,
the spectrum a(L) contains only eigenvalues, that is, it is a pure point spectrum
op{L). Furthermore, we consider only the case of real eigenvalues. The matrices Ln

will be assumed to be symmetric or symmetrizable, which is a natural requirement
in light of the assumptions on L.

To connect the space X with R" we use linear operators rn: X-*R", called
restrictions. A general discussion and motivation for these operators can be found
in Linz [11]; here we simply define rn by

r.x= -2 , (3)

.*('„)-
where tlt t2, ...,/„ are distinct points in [0,1].

2. Computation of exclusion regions

The following theorem is used to develop results on exclusion regions. The
theorem first appeared in Keller [8], where it was used to investigate the spectrum
of differential and integral operators. For our discussion the norm on R" will be
denned as
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THEOREM 1. Let Ln be a matrix which can be symmetrized by the transformation
DnLnD~l. Let Xeap(L) and let u be an eigenfunction corresponding to X. Then there
exists at least one A e <x(Ln) such that

where

^tt) = r , lK-I / , i ( , (5)

and

Pn = \\D-l\\\\Dn\\.

PROOF. Substituting (1) into (5) we have

where Sn=DnLnD~1. If Xeff(Ln) there is nothing to prove. Otherwise, since
<x(Ln) = <r(Sn), (XI- Sn) is invertible and

Since Sn is symmetric it follows that

Thus

and (4) follows.
This result is similar to one stated in [10]. However, in [10] the factor j8n was

erroneously omitted so that the results there hold only if Ln is symmetric.
The difficulty in applying Theorem 1 lies in the quantity a = || 8n(u) \\j\\ rn(u) ||,

since it involves the unknown eigenfunction u. For many problems of interest a
can be bounded above by a function which depends on the eigenvalue X but not
on the eigenfunction. Therefore, we assume the existence of a function F(X) such
that

M?* (6)
for each Xsop(L), where Lu = Xu. Note that the linearity of 5n and rn makes F(X)
independent of the normalization of u.
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THEOREM 2. Let a ^ b be any numbers and define

[4]

(7)

If Ln has no eigenvalues in [a — y},b+rj] then L has no eigenvalues in \_a,b~\.

PROOF. Assume that there exists a l e ap(Q such that a < X < b. By Theorem 1
this implies that there exists a A e o(Ln) such that

Thus there must exist a A e a(Ln) such that

X-n < A < X + t],

and, since a ^ X ^ b,

a—n < A < b+n.

This contradiction proves the theorem.
In order to apply this theorem, we must be able to establish a relation between

X and || <5n(«) ||/|| rn(u) \\ through (6). We now present some examples to show how
this can be done.

3. Some numerical examples

EXAMPLE 1. The integral operator eigenvalue problem

Lx(s)= eslx(t)dt=Xx(s)
J o

(8)

has been used as an example by several authors (for instance, Brakhage [3] and
Linz [10]). To approximate the eigenvalues of L we use equidistant points
tt = (i— l)h, h = l/(«— 1), replace the integral by Simpson's rule on these points,
and satisfy the equation at tt, i = 1,2,...,«. The resulting matrix is easily seen to
be symmetrizable with

~1

£>„ =

' 2
1

Thus 0n = 2. With n = 21 the two largest eigenvalues of Ln are 1.35303 and 0.10598.
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To determine exclusion regions we obtain an upper bound on || 5n(u) || and a
lower bound on || rn(u) ||. First, from the definition of <5n we have

(9)«), = exp (/, 0 u(t) dt - h £ wj exp (f, tj) u(tj),

where (<5n«)j denotes the ith component of 5n(u) and {w,} = £{1,4,2, ...,4,1} is
the set of Simpson's rule weights. From elementary results on Simpson's rule we
have

eh*
(10)

To bound the various derivatives of u we simply differentiate (8) repeatedly to
obtain

With u normalized by || u \\K = 1, the inequality (10) becomes

180A

so that

|| *„(«) || < 0.66AV(")M- 00

To bound || rn(u) ||, we use the assumed normalization || u \\x = 1 to conclude that

, eh -
1 , for some i.

2A
Thus

2A

This completes the steps necessary to compute F(X) and we get
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With n=2l, h =0.05 we now apply Theorem 2, choosing a = 1.35307 and
b = +oo. This yields

>7<3.OxlO-5.

Since the computations showed no eigenvalues of Ln in (1.353031, +oo) we can
conclude that L has no eigenvalues in (1.35307, +oo).

Next, if we take a =0.107, b = 1.352, we rind that

indicating that there are no eigenvalues of L in (0.107, 1.352).
The details of computation carried out above were deliberately kept simple in

order not to obscure the underlying idea. Somewhat lengthier computations
yielding more precise answers can be found in [6].

EXAMPLE 2. The technique is also applicable to differential equations. For
example, to approximate the eigenvalues of

u"=ku, j
M(O)=ll(l)=O,J

we can use the standard technique of replacing the second derivative by a three-
point centred difference. The error in such an approximation is bounded by
h2 II «(iv) Hco/12, so that we can find F(l) by expressing w(iv) in terms of u and A.
This can be done simply by differentiating (12); the rest of the computations are
then analogous to those shown in Example 1. This example is of course too
simple to be of practical interest. However, the technique can be applied to more
general cases, such as the Sturm-Liouville equation. The computation of bounds
on the higher derivatives requires a few manipulations, but is manageable. A
detailed discussion may be found in [6].

4. Conclusions

We have shown how exclusion regions can be found for eigenvalues of linear
operators. This, together with the technique outlined in [10] for finding errors in
computed eigenvalues, allows a complete description of the spectrum of certain
linear operators. The method presented here is useful whenever the function F(X)
defined in (6) can be found. This is generally the case whenever higher derivatives
of the eigenfunctions u can be expressed in terms of A and u. For integral equations
and ordinary differential and integro-differential equations this requirement is
usually met by elementary techniques, as demonstrated by the examples. For
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partial differential operators we know of no comparable method. Thus applic-
ability is restricted to special cases where bounds for the higher derivatives of the
eige nfunctions are known.
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