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Abstract

Obtaining corn hybrid seeds (Zea mays L.) with high
vigour depends on the parental lines and the direction
of the cross, and this relates to seed desiccation toler-
ance and composition. This research studied reciprocal
crosses between pairs of proprietary, elite parent lines
(L1 and L5; L2 and L4) producing hybrid seeds with dif-
ferent qualities attempting to correlate vigour with seed
composition, focusing on storage proteins, starch and
soluble sugar amounts. Four corn hybrid seed lots pro-
duced from reciprocal crosses were compared (HS 15
with HS 51, andHS 24with HS 42) by assessing germin-
ation, vigour, and seedling emergence in the field. Seed
composition was assessed in mature, dehydrated
seeds. Proteins were extracted, quantified, and ana-
lysed by electrophoresis and densitometry. Starch
amounts were assessed using a kit and soluble
sugars were determined using high performance
liquid chromatography with pulsed electrochemical
detection. The L1 and L2 lineages, used as
female parents, provided seeds with lower vigour;
however, the quantification of major protein bands,
and sucrose, raffinose and stachyose were similar
between seed lot pairs. While both total seed protein
and starch varied between reciprocal hybrids for
one of the two sets of crosses, the amounts of neither
correlated with seed vigour. Interestingly, hybrids with
low seed vigour (HS 15, HS 24) accumulated greater
amounts of fructose relative to their reciprocal; correl-
ation analysis confirmed these results. We demonstrate
different effects on seed vigour dependent on the
maternal parent in reciprocal crosses producing

hybrid corn seeds. We also show that vigour is nega-
tively correlated with seed reducing sugar contents.
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Introduction

Hybrid corn (Zea mays) seed, the progeny arising from
crosses of specific endogamic lineages (true breeding
inbred parents), provides the possibility of producing
seeds with high physiological potential, defined in
this manuscript as superior seed vigour. Superior
seed vigour (characterized by an amalgam of axiomatic
traits) from such hybrids is contingent on fortuitous
combinations of parental morphological and chemical
constitutions, resulting in vigorous hybrids and high
productivity (Duvick, 2001), collectively referred to as
heterosis. The continuing importance of hybrid seeds
for helping to increase the production of the corn
crop can be inferred from the United States Crop
Production 2014 Summary (USDA, 2015). Despite
decreases in the area harvested from 2013 to 2014 (35
to 33 million hectares), grain production increased
approximately 3% in the same period (USDA, 2015).
To guarantee that hybrid seeds have high quality, it
is essential to use compatible parental lineages. Even
this is insufficient to guarantee high-quality corn
seed, as several reports have demonstrated different
phenotypes between reciprocal first generation (F1)
hybrids in corn (Egesel et al., 2003; Ordas et al., 2008;
Lisec et al., 2011). These can sometimes be attributed
to cytoplasmic effects, so-called maternal effects, from
mitochondrial and chloroplast genomes (Rao and
Fleming, 1978; Kollipara et al., 2002) inherited from
the female, dosage effects in the endosperm, or
imprinting (Guo et al., 2003), but variation in transcript
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amounts can also be attributed to the paternal parent
(Swanson-Wagner et al., 2009).

It is important to point out that the nuclear genetic
contribution of the parents to the various components
of the maize seed are unequal. The pericarp (ovary
wall) is of purely maternal genotype, the endosperm,
including the aleurone layer, consists of two maternal
and one paternal set of chromosomes (triploid), while
the embryo is a diploid entity with equal parental gen-
etic contributions. Thus the performance of hybrid
seeds changes according to the selected genotypes,
and differences between reciprocal crosses exist
(Navratil and Burris, 1984; Roveri-José et al., 2004).
This manifestation of phenotype may be attributable
to seed chemical composition, especially regarding
the quantity, identity and mobilization of storage pro-
teins, lipids, starch and soluble sugars, as these can
influence seed physiological potential (Footitt et al.,
2002; McDonough et al., 2004; Vandecasteele et al.,
2011), including quality (Wang and Frei, 2011).

The primary function of storage proteins is the sup-
ply of amino acids for the synthesis of enzymes and
structural proteins during germination and subsequent
early seedling growth (Bewley and Black, 1994;
Herman and Larkins, 1999; Buckeridge et al., 2004).
Amino acids produced from hydrolysis of the storage
proteins can also be deaminated and, along with
starch and lipid reserves, catabolized for energy pro-
duction. In this way, greater storage reserve amounts
in seeds can result in seedlings with greater vigour
(Lowe and Ries, 1973; Bortolotto et al., 2008; Carvalho
and Nakagawa, 2012). In addition, problems realizing
full physiological potential in seeds can lead to poor
desiccation tolerance (Hay and Probert, 1995; Faria
et al., 2004). Desiccation tolerance is a characteristic
acquired during orthodox seed development and mat-
uration, and refers to the ability of seeds to endure
dehydration, slow their metabolic activity and survive
in the dehydrated state, increasing their longevity
(Zhao et al., 2004; Li et al., 2011). This phenomenon
ensures the transition of seeds from developmental to
the germination stage (Kermode, 1997).

Many seeds with desiccation tolerance accumulate
raffinose family oligosaccharides (RFOs) (Li et al.,
2011, Dinakar and Bartels, 2013) and have relatively
few reducing monosaccharides (e.g. glucose and fruc-
tose) when dehydrated (Amuti and Pollard, 1977).
The reduction in the monosaccharide content results
in a decrease in substrates for respiration and can
bring about metabolic quiescence, limiting the source
of free radicals (Carvalho et al., 2008). Furthermore,
monosaccharides contain reactive groups (aldehydes,
ketones) and are therefore capable of attacking cellular
constituents through Maillard reactions, thereby
decreasing seed vigour (Murthy and Sun, 2000).
Seeds and other desiccation-tolerant organisms usually
convert these reducing sugars into non-reducing

oligosaccharides (e.g. sucrose, RFOs) and polymers
such as starch, thus avoiding such deleterious reactions
(Koster and Leopold, 1988; Ingram and Bartels, 1996).
In addition to being non-reducing sugars, RFOs are
proposed to play important roles in seeds: functioning
to protect biomembranes, proteins and intracellular
structures during seed desiccation (Taji et al., 2002); act-
ing as scavengers of reactive oxygen species (ROS;
Nishizawa-Yokoi et al., 2008); and providing a source
of rapidly metabolized carbohydrate for germination
(Li et al., 2011). These soluble sugars may replace
water on membranes and macromolecules by formation
of anhydrous glass, vitrify the cytoplasm and fill and
stabilize vacuoles (Dinakar and Bartels, 2013). In a pre-
vious study with sugars and tolerance to high tempera-
ture drying in corn seeds, it was verified that variation
in the presence of sugars among hybrid seeds exists
depending on the direction of the cross, but it was
impossible to establish a relationship between tolerance
to high temperature drying and sucrose, raffinose or a
ratio of these sugars (Roveri-José et al., 2006).

Therefore, this research studied reciprocal crosses
between pairs of proprietary, elite parent lines producing
hybrid seeds with different qualities. It was our objective
to correlate vigour, assessed using a battery of tests, with
aspects of seed composition, focusing on proteins, starch
and soluble sugar amounts present in the seeds.

Materials and methods

Seed lot production, treatment and storage

This research was conducted using four dent corn
hybrid seed lots resulting from reciprocal crosses
involving four endogamic lineages (L1 crossed with
L5, and L2 crossed with L4) of propriety, elite lines,
the hybrid progeny of which were designated as HS
15, HS 51, HS 24 and HS 42 (HS: hybrid seed; the
first number corresponds to the maternal lineage and
the second is the paternal lineage). The seeds were pro-
duced in Mocambinho, MG, Brazil (15°5′10′′S latitude,
44°0′58′′W longitude; altitude 462 m); the sowing date
was 15 April 2012, flowering time was 10 June 2012,
and the ears were harvested on 6 August 2012 (average
cycle for second-crop corn production in Brazil), when
seeds reached physiological maturity (identified by the
presence of the kernel black layer – approximately 30%
moisture content fresh weight). After the harvest, the
ears were dried in a single-pass reversing dryer (35–
40°C) and seeds were manually extracted from the
cobs (SWC in Table 1). The seed lots (defined as all
fully developed, healthy kernels combined from each
of the four reciprocal crosses named above) were iden-
tified, treated with fludioxonil and metalaxyl-M (1.5 ml
kg−1 of seeds) and stored in a cold room (10°C and 50%
air relative humidity) for the duration of the study.
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Fungicides were added to the seeds to guard against
fungal infection during storage.

Seed lot tests

After 9 months of storage, the lots were evaluated for
seed water content, germination, vigour (first count
of germination, cold test, accelerated ageing and elec-
trical conductivity) and seedling emergence in field
tests, according to the procedures detailed below.

Seed water content: two replications of 25 seeds were
subjected to the oven-drying method, which uses 105
± 3°C for 24 h (International Seed Testing Association,
2016). Results were expressed as percentage moisture
content on a fresh weight basis.

Germination: four replications of 50 seeds per lot were
distributed in rolls of germination paper (substrate)
moistened with deionized water equivalent to 2.5
times the dry substrate mass, and kept in a germination
chamber at 25°C in the constant light. Seedling evalua-
tions were performed at 4 and 7 days after sowing;
results were expressed as percentage of normal seed-
lings (International Seed Testing Association, 2016).

First count of germination: this was performed in con-
junction with the germination test (above) recording
the percentage of normal seedlings observed (defined
according to International Seed Testing Association
standards for this species; International Seed Testing
Association, 2016) on the fourth day after sowing.

Cold test: four replications of 50 seeds per lot were dis-
tributed in rolls of germination paper moistened with
deionized water equivalent to 2.5 times the dry sub-
strate mass. After covering with a thin layer of soil,
the rolls were placed inside a plastic box and kept in
a cold room (10°C) for 7 days in the dark. The rolls

were subsequently transferred to a germination cham-
ber at 25°C in the light, and seedling evaluations of
normal seedlings (as a percentage of the total) were
performed on the fourth day (International Seed
Testing Association, 2016).

Accelerated aging: samples of 250 seeds per lot were
spread in a single layer on stainless-steel screens and
placed in plastic germination boxes (11 × 11 × 3.5 cm)
containing 40 ml of deionized water at the bottom.
The boxes were maintained in a germination chamber
at 45°C in the dark for 72 h (International Seed
Testing Association, 2016). After the ageing period,
two replications of 25 seeds were used to determine
seed water content and four replications of 50 seeds
were submitted to the germination test (see above),
evaluated on the fourth day and expressed as a per-
centage of normal seedlings.

Electrical conductivity: after two days at ambient tem-
perature prior to testing, four replications of 50 seeds
per lot were individually weighed (0.01 g precision)
and soaked in 75 ml deionized water at 25°C for 24 h.
Electrical conductivity was then measured on a MS
Tecnopon mCA 150; results were expressed in μS
cm−1 g−1 (International Seed Testing Association, 2016).

Seedling emergence in the field: four replications of 50
seeds per lot were manually distributed in 2.5-m
rows at 3-cm depth and 0.05-m spacing between
rows. Seedling emergence was recorded 14 days after
sowing and the results were expressed as percentages
(Nakagawa, 1999).

Total protein extraction, quantification and
electrophoresis

To extract total protein, five mature dehydrated corn
seeds from each lot were weighed, ground in an

Table 1. Seed water content before (SWC) and after (SWCa) accelerated ageing, germination (GE), first count of germination
(FC), cold test (CT), accelerated ageing (AA), seedling emergence in the field (SE), and electrical conductivity (EC) tests of
four corn hybrid seed lots originating from two reciprocal crosses after 9 months of storage

Lots SWC SWCa GE FC CT AA SE EC

% μS m−1 g−1

HS 15 12.6 ± 0.11 25.1 ± 0.21 90 ± 2.22b 75 ± 5.07b 61 ± 2.52b 0 ± 0.50b 84 ± 2.45b 19.4 ± 0.79a

HS 51 12.3 ± 0.16 25.5 ± 0.14 100 ± 0.50a 95 ± 3.11a 90 ± 2.16a 8 ± 1.50a 98 ± 0.82a 18.0 ± 0.33a

CV (%) – – 3.8 9.9 6.2 55.9 4.0 6.4

HS 24 12.0 ± 0.03 24.4 ± 0.09 99 ± 0.48a 86 ± 3.74a 100 ± 0.50a 75 ± 3.32b 100 ± 0.50a 11.2 ± 0.11b
HS 42 12.3 ± 0.13 23.9 ± 0.08 100 ± 0.00a 96 ± 1.7a 99 ± 0.58a 95 ± 1.00a 96 ± 1.26a 7.8 ± 0.20a
CV (%) – – 0.82 6.4 1.1 5.8 2.0 3.4

Means ± standard error followed by the same letter in the column within each endogamic cross do not differ significantly at 5% level of
probability according to Tukey’s test. CV (%), coefficient of variation.
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electric coffee grinder and then pulverized in liquid
nitrogen using a pestle and mortar. Three buffers
(A1, A2 and B), used sequentially, extracted albumins,
globulins and prolamins/glutelins, respectively,
according to their solubility in different solvents
(Osborne, 1924). To the dry seed powder, 5 ml of buffer
A1 [25 mmol l−1 potassium phosphate, pH 7.0, 10
mmol l−1 dithiothreitol [(2S,3S)-1,4-disulfanyl-2,3-
butanediol] (DTT) and 0.1 mol l−1 NaCl] was added
for homogenizing using a pestle and mortar. The
slurry was transferred to a 15-ml disposable tube for
centrifugation (15,000 g, 20 min at 4°C) and the result-
ing supernatant was recovered as the albumin fraction.
To the pellet, 5 ml of buffer A2 (25 mmol l−1 potassium
phosphate, pH 7.0, 10 mmol l−1 DTT and 1 mol l−1

NaCl) was added; and the suspension was vortexed
prior to centrifugation (as above) to recover the super-
natant representing the globulin fraction. The same
procedure was conducted on the resulting pellet
using 5 ml of buffer B [62.5 mmol l−1 Tris-HCl, pH
6.8, 2% (w/v) sodium dodecyl sulfate (SDS) and 10%
(v/v) glycerol] to recover the prolamin/glutelin frac-
tions (Krochko and Bewley, 1990).

After extraction, the albumin and globulin fractions
from each lot were quantified against a bovine serum
albumin standard (BSA; 0, 2, 4, 8, 12, 16 and 20 µg
μl−1) using a Coomassie Plus (Bradford) Assay Kit
(Pierce Biotechnology, Rockford, IL, USA) according
to the manufacturer’s instructions. Three samples of
each fraction from each lot were assayed and the
absorbance (595 nm) measured on a Shimadzu UV-
2101 spectrophotometer (Shimadzu Scientific Instru-
ments, Columbia, MD, USA). Due to the presence of
sodium dodecyl sulfate (SDS), the prolamin/glutelin
fractions were quantified by dilution with water before
using the DC Protein Assay (Bio-Rad Laboratories Inc.,
Hercules, CA, USA) following the manufacturer’s

instructions with measurement at 750 nm. Results
were calculated as mg g−1 of seeds.

Protein samples were separated on a variety of SDS
polyacrylamide gels with 4–20% gradient Mini-PRO-
TEAN® TGX™ precast gels (Bio-Rad Laboratories) giv-
ing the best resolution. For all gels, proteins were
fractionated by electrophoresis conducted using
the Mini-PROTEAN Tetra Cell system (Bio-Rad
Laboratories) using SDS-PAGE running buffer
(Laemmli, 1970). The protein samples (20 µl), the
molecular weight marker (low range SDS-PAGE
standards; Bio-Rad Laboratories) and buffer (for
empty lanes) were mixed with 10 µl of 3X loading
buffer [187.5 mmol l−1 Tris-HCl, pH 6.8, 6% (w/v)
SDS, 15% (v/v) β-mercaptoethanol, 30% (w/v) sucrose
and 0.006% (w/v) bromophenol blue], boiled for
5 min and centrifuged at 16,000 g for 30 s prior to
loading. After 1–2 h at a constant 80 V, the gels
were stained with Coomassie Blue and destained
(Hames and Rickwood, 1998) until there was good
contrast for the lowest molecular weight proteins with-
out losing staining of the highest molecular weight
proteins.

Scanned gel images from two separate gels where
protein fractions from seeds for all four crosses (HS
15, HS 51, HS 24, HS 42) were run in adjacent lanes
through the same gel (e.g. Fig. 1) were uploaded into
GelAnalyzer 2010 (GelAnalyzer.com, Dr Istvan
Lazar). The various bands in each lane were identified
and each band quantified on an arbitrary scale after
background subtraction according to the manual
instructions. These amounts were normalized for the
total protein amount per lane among gels, specific
band amounts adjusted based on this normalization,
and average band quantities compared between recip-
rocal crosses using ANOVA (Statistical Analysis
System, Inc., Cary, NC, USA).

Figure 1. One-dimensional gel electrophoresis (SDS-PAGE) of albumins (Buffer A1), prolamins/glutelins (Buffer B) and
globulins (Buffer A2) of four corn hybrid seed lots originating from two reciprocal crosses, after 9 months of storage. Std.,
standard molecular weight proteins; KDa, kilodaltons.
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Starch extraction and quantification

Three replications of five dehydrated corn seeds each
per lot were weighed and, from them, the starch
extracted and quantified using a kit (Total Starch
Assay Kit, Megazyme, Inc., Wicklow, Ireland) accord-
ing to the manufacturer’s instructions.

Sugar extraction, separation and quantification

To extract sugars, three replications of five dehydrated
corn seeds each per lot were weighed, ground in an
electric coffee grinder and then pulverized in liquid
nitrogen using a pestle and mortar. One aliquot of
1 ml 80% (v/v) ethanol containing 1 mmol l−1 2-deoxy-
glucose (2-DG), used as internal standard, was added
to the seed powder, ground to produce a slurry, and
transferred to a 15-ml polypropylene tube on ice. The
process was repeated four times with 1 ml aliquots of
70% (v/v) ethanol. Each time, after grinding the slurry,
the 1 ml was transferred to the same tube. This 5 ml
homogenate was centrifuged at 15,000 g for 20 min at
4°C, the supernatant collected, diluted to 35 ml with
distilled, deionized water (precipitating the prolamins)
and centrifuged again at 10,000 g for 10 min at 4°C. The
supernatant was recovered (40 ml) and 10 ml of each
sample was added to 10 ml of water in 50-ml polypro-
pylene tubes. After freezing at−80°C, the samples were
lyophilized to dryness and reconstituted in 1 ml
distilled, deionized water by vortexing the samples
(kept on ice) every hour for 8 h. After transferring the
sample to 1.5-ml microtubes and centrifuging (16,000
g for 30 min at 4°C), the supernatants were collected
and stored overnight at−20°C. Once filtered
(CoStar Spin-X HPLC 0.45 µm nylon filter, Corning
Incorporated, Corning, NY, USA), the samples were
diluted ten times with water prior to analysis or 100
times and re-analysed for better quantification of fruc-
tose and sucrose.

To identify and quantify the sugars, the diluted
extracts were injected onto a Carbo-Pac PA1 guard
column using a BioLC HPLC system with pulsed
electrochemical detection (HPLC-PED) [ED50 detector
and PeakNet software (version 6.0); Dionex
Corporation, Palo Alto, CA, USA]. The separation via
anion exchange used isocratic conditions of 19 mmol
l−1 NaOH at 1 ml min−1. Sugars were identified and
quantified by comparing their retention times
and peak areas with that of known standards.
Reintegration of the peak start- and stop-times, base-
line identification, and areas under the curve were per-
formed using Chromeleon software (version 6.8;
Dionex Corporation). Estimates of sugar amounts per
seed fresh weight were adjusted for losses during pro-
cessing by comparing external standard 2-DG quan-
tities with the recovery of 2-DG added during

extraction (internal standard; Downie and Bewley,
2000; Nosarzewski et al., 2012).

Treatment design and statistical analyses

The treatments were distributed in a completely rando-
mized design with four replications for germination,
vigour and seedling emergence in the field tests, and
three observations for the quantification of seed storage
proteins, two gel observations for protein band inten-
sities, and three replications for starch, and soluble
sugars. A Pearson correlation analysis was performed
between germination, vigour and seedling emergence
in the field tests and the quantity of soluble sugars
assessed by HPLC using three independent observa-
tions (replications) and two seed lots per reciprocal
cross for a total of six points. The coefficient of vari-
ation in the tables is provided for the Pearson correl-
ation analysis and is defined as the ratio of the
standard deviation to the mean. This measurement
indicates the amount of the variance of the female par-
ent within each endogamic cross on each of the vari-
ables in the column, and expresses the precision and
repeatability of the test. Mean values were compared
with Tukey’s test at a 5% level of probability.

Results and Discussion

Although seed water content increased during acceler-
ated ageing, it varied little between lots before or after
accelerated ageing, and was within the recommended
limit of two percentage points (Marcos-Filho, 2015a)
(Table 1). This similarity between lots is important, as
it relates to assessment standardization and result con-
sistency (Rosseto et al., 2004).

All studied seed lots presented high germination
percentages, above the minimum required for commer-
cial sale, which is 80% (USDA, 2015) (Table 1).
Nevertheless, despite similar unstressed germination
percentages, several of the standardized vigour tests
revealed underlying differences between hybrid seed
lots dependent on the direction of the cross (Table 1).
This distinction is possible because deterioration pro-
cesses involve a continuum of events first manifest as
a vigour loss and only subsequently as a reduction of
germination percentage, emphasizing the importance
of the use of vigour tests to precisely identify seed
physiological potential (Marcos-Filho, 2015b).

The L1 lineage used as female parent (HS 15) had
lower physiological potential than the reciprocal (HS
51) as evidenced by all the vigour tests, except elec-
trical conductivity (Table 1). For the lots HS 24 and
HS 42, both the accelerated ageing and electrical con-
ductivity tests allowed their separation based on vig-
our, and in both tests HS 24 was less vigorous than
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HS 42 (Table 1). These two instances demonstrate that,
in these reciprocal crosses, one line can produce seeds
that are consistently and demonstrably inferior, viz. a
reciprocal cross effect (Table 1). However, whether
this substandard performance is attributable to the
line used as the paternal parent or due to the maternal
parent line is not evident from this study. Analyses
from seeds of many additional reciprocal crosses with
one or the other line serving in the same parental
role recurrently would have to be assessed to attribute
substandard performance to a particular line when
used as a particular parent.

The same phenomenon has been observed in stud-
ies using popcorn and other corn hybrid seeds
(Moterle et al., 2011; Cabral et al., 2013). In particular,
the reciprocal cross effect in hybrid corn has been
demonstrated in studies involving high drying tem-
peratures (Roveri-José et al., 2004, 2006), physiological
quality (Gomes et al., 2000) and in its influence on
cold germination and desiccation tolerance (Kollipara
et al., 2002). Findings reported here corroborate those
in the literature which have steered long-standing pro-
duction practices of choosing designated male and
female parents during the installation of production
fields. This practice maximizes the vigour of the hybrid
progeny as it is influenced by cytoplasmic effects of
maternal origin (Roveri-José et al., 2004) as well as
gene dosage in the endosperm/aleurone layer (Chen,
2010), and the genetic identity of the pericarp which,
as the ultimate tissue interface between the rhizosphere
and the living seed tissues, may potentially influence
vigour.

Another characteristic that can be determined gen-
etically is the chemical composition of the seeds, such
as storage protein, starch and soluble sugar contents
(Bewley and Black, 1994; Song and Messing, 2003;
Vandecasteele et al., 2011; Wu and Messing, 2014),
and these can also influence seed vigour (Han et al.,
2014). The mature maize endosperm is a major storage

site for starch and protein, valuable storage reserves for
the establishing seedling. Furthermore, only the aleur-
one layer of the maize endosperm is alive after matur-
ation desiccation and functions primarily in reserve
catabolism. Due to the different parental genetic contri-
butions to the endosperm we anticipated possible gene
dosage effects on vigour due to alterations in endo-
sperm starch/protein content and/or the rapidity with
which these reserves could be mobilized by the aleur-
one for use by the seedling. However, there was no cor-
relation between starch content, protein content and
seed vigour. The quantification of the seed storage pro-
tein fractions and the total extractable protein quan-
tities did not differ between lots, except for the
amounts of albumin in the crosses HS 24 and HS 42
(Table 2). Most enzymes are classified as albumins
and are required for homeostasis, including enzymes
involved in carbohydrate and proteinmetabolism
(Tomić et al., 2015). Since the seeds were not submitted
to stress, were not subjected to different storage condi-
tions, and were not imbibed when sampled, the greater
quantity of albumins in lot 24 can only indicate
that this difference arose during seed development.
Differences in seed soluble protein content have been
determined to contribute to altered seed vigour previ-
ously (Lowe and Ries, 1973; Strelec et al., 2007; Borba
et al., 2014) and seed storage reserve amounts, includ-
ing protein, are known to be influenced by the mater-
nal parent (Letchworth and Lambert, 1998).

The major storage proteins in corn seeds are the
prolamins, also known as zeins, and they represent
more than 50% of the total proteins in the endosperm
(Reyes et al., 2011). A variety of genetic perturbations
can reduce the synthesis of zeins and increase the syn-
thesis of the other storage proteins (Wang and Larkins,
2001) and so we examined the quantities of specific
proteins in one dimensional SDS-polyacrylamide gel
electrophoretic profiles using densitometry. The elec-
trophoretic profile of the storage protein fractions

Table 2. Quantification of seed storage protein fractions (albumins, globulins and prolamins/glutelins) and total extractable
proteins of four corn hybrid seed lots originating from two reciprocal crosses after 9 months of storage

Lots Albumins Globulins Prolamins/glutelins
Total extractable
proteins

mg g−1 of tissue fresh weight

HS 15 4.94 ± 0.82 (46.2)a 2.70 ± 0.35 (25.3)a 3.04 ± 0.13 (28.5)a 10.68 ± 0.50a

HS 51 3.82 ± 0.15 (43.9)a 1.78 ± 0.37 (20.5)a 3.10 ± 0.19 (35.6)a 8.70 ± 0.67a

CV (%) 23.5 27.8 9.3 10.5

HS 24 4.73 ± 0.25 (43.5)a 3.13 ± 0.62 (28.8)a 3.01 ± 0.08 (27.7)a 10.87 ± 0.95a

HS 42 3.62 ± 0.19 (41.8)b 1.91 ± 0.24 (22.1)a 3.13 ± 0.09 (36.1)a 8.66 ± 0.50a

CV (%) 9.3 32.4 4.8 13.4

Means ± standard error followed by the same letter in the column within each endogamic cross do not differ significantly at 5% level of prob-
ability according to Tukey’s test. Values within parentheses correspond to the percentage of the fraction in relation to the total proteins. CV
(%), coefficient of variation.
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showed obvious differences between endogamic
lineages (but not reciprocal F1 hybrids) in buffer A2,
responsible for the extraction of globulins (Fig. 1). An
examination of the protein bands, extracted in buffer
A2, from just above 66.2 to just below 45 kDa for HS
15/51 and HS 24/42 (dashed box in Fig. 1) revealed a
qualitative disparity in proteins of possible relevance
to the vigour differences observed when progeny 51,
15 (weaker) were compared with progeny 24, 42 (stron-
ger) (Fig. 1, Table 1). However, densitometry did not
reveal remarkable differences in the electrophoretic
profiles within any of the protein fractions between
reciprocal crosses (Fig. 1).

The quantification of total protein did not allow dif-
ferentiation between the seeds from reciprocal crosses
(Table 2), nor have others observed striking differences
in the general transcriptome profile (Stupar and
Springer, 2006), or total protein amounts (Pollmer
et al., 1979), between seeds of reciprocal crosses.
However, in the current situation where qualitative dif-
ferences between endogamic lineages were evident, it
was surprising that no specific band intensity differ-
ences between reciprocal crosses were significant, espe-
cially given the differences in seed vigour (e.g.
accelerated ageing results; Table 1). Because the lanes
on SDS-polyacrylamide gels were loaded based on spe-
cific protein amounts (20 µg lane–1) it was anticipated
that there would be a significant difference in at least
two protein species within a reciprocal cross for at
least one of the extraction buffers. The corn proteome
is known to undergo ‘rebalancing’ whereby a decline
in abundance of a major protein species is compen-
sated for by an increase in abundance of a, or a few,
specific proteins (Schmidt et al. 2011; Herman, 2014;
Wu and Messing, 2014), hence the anticipation of at

Figure 2. Total starch quantities (mg g–1 dry weight) of four
corn hybrid seed lots originating from two reciprocal crosses,
after 9 months of storage. Different upper case letters above
the bars depict statistically significant differences among
reciprocal hybrids within a cross using Tukey’s experiment
wise comparison at alpha = 0.05. Bar height represents the
mean ± standard error. T
ab
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least two differences when lanes were loaded on an
equal protein basis. Nevertheless, no significant pro-
tein band intensity differences were evident between
seeds of these reciprocal crosses, regardless of their dif-
ferences in vigour.

Starch amounts between reciprocal crosses were not
correlated with the vigour of the seed lot (Fig. 2). Thus
starch quantities in the mature, dehydrated seed are
apparently contributing little, if anything, to seed vig-
our performance in this study.

Considering the quantification of the soluble sugars
in the seeds, lot HS 15 had greater concentrations of
myo-inositol in relation to lot HS 51 (Table 3).
According to Karner et al. (2004), studying barley and
pea seeds, this sugar-like carbohydrate, associated
with sucrose, positively affects the accumulation of
RFOs. The non-reducing sugar sucrose, in conjunction
with raffinose and stachyose, is thought to be import-
ant in the stabilization of the membrane system and
in the protection of proteins in dehydrated seeds, posi-
tively correlated with desiccation tolerance and the
maintenance of viability during storage (Singh et al.,
2015). Therefore, a greater amount of sucrose was
anticipated in lots with high vigour (Tables 1 and 3);
and yet, no statistically significant differences between
seeds from reciprocal crosses were identified for

sucrose quantities, or for those of the RFOs, even
when these seeds were of considerably different vigour
(Tables 1 and 3). In fact, sucrose amounts were remark-
ably similar between lots from reciprocal crosses and
the same was true for the RFO amounts. This is incon-
sistent with results obtained in other studies with bean
(Bailly et al., 2001), corn (Chen and Burris, 1990;
Roveri-José et al., 2006) and soybean seeds (Blackman
et al., 1992), where lots with high physiological poten-
tial had greater concentrations of these sugars.

Seed lots with low vigour (HS 15 and HS 24) pos-
sessed high fructose amounts (Tables 1 and 3). There
was a difference, especially evident between the HS
15 and HS 51 crosses, that fructose at least, was nega-
tively correlated with vigour. Reducing sugar abun-
dance was also found to be negatively correlated
with seed vigour in suboptimal storage conditions in
studies with mung bean (Murthy and Sun, 2000;
Murthy et al., 2003). The negative relation between
reducing sugar amounts and seed quality and longev-
ity may be justified by the occurrence of Maillard reac-
tions, which consist of a series of non-enzymatic
reactions between reducing sugars and proteins or
nucleic acids (Wettlaufer and Leopold, 1991; Lahuta
et al., 2007). Maillard reactions may contribute to seed
deterioration once they chemically alter proteins, thus

Table 4. Pearson correlation analysis between germination (GE), first count of germination (FC), accelerated ageing (AA), cold
test (CT), electrical conductivity (EC), and seedling emergence in the field (SE) tests and the quantity of soluble sugars of two
corn hybrid seed lots originating from reciprocal crosses (HS 15 and HS 51)

myo-Inositol Sorbitol Mannitol Galactose Glucose Fructose Sucrose Raffinose Stachyose Ratio†

GE −0.73* −0.70n.s. −0.58n.s. −0.70n.s. −0.72* −0.70n.s. −0.33n.s. 0.29n.s. −0.30n.s. 0.64n.s.

FC −0.70n.s. −0.78* −0.62n.s. −0.72* −0.74* −0.64n.s. −0.43n.s. −0.25n.s. −0.38n.s. 0.52n.s.

AA −0.61n.s. −0.27n.s. −0.22n.s. −0.34n.s. −0.41n.s. −0.62n.s. 0.14n.s. 0.27n.s. 0.09n.s. 0.90*
CT −0.83* −0.63n.s. −0.58n.s. −0.65n.s. −0.72* −0.81* −0.26n.s. 0.15n.s. −0.34n.s. 0.78*
EC 0.49n.s. 0.70n.s. 0.50n.s. 0.96n.s. 0.63n.s. 0.53n.s. 0.50n.s. 0.04n.s. 0.38n.s. −0.25n.s.

SE −0.84* −0.64n.s. −0.62n.s. −0.74* −0.77* −0.88* −0.32n.s. 0.14n.s. −0.34n.s. 0.78*

†Ratio = sum of sucrose, raffinose and stachyose divided by the sum of glucose and fructose. Ratio: (Σ(Suc,Raf,Stc)/Σ(Glc, Frc)). n.s., non-
significant at 5%; *significant at 5% level of probability according to Tukey’s test.

Table 5. Pearson correlation analysis between germination (GE), first count of germination (FC), accelerated ageing (AA), cold
test (CT), electrical conductivity (EC), and seedling emergence in the field (SE) tests and the quantity of soluble sugars of two
corn hybrid seed lots originated from reciprocal crosses (HS 24 and HS 42)

myo-Inositol Sorbitol Mannitol Galactose Glucose Fructose Sucrose Raffinose Stachyose Ratio†

GE –0.39n.s. 0.47n.s. −0.38n.s. 0.33n.s. −0.48n.s. −0.44n.s. −0.22n.s. −0.13n.s. −0.36n.s. 0.58n.s.

FC –0.38n.s. 0.21n.s. −0.57n.s. 0.10n.s. −0.37n.s. −0.08n.s. −0.30n.s. −0.35n.s. −0.61n.s. 0.20n.s.

AA –0.51n.s. 0.63n.s. −0.48n.s. 0.47n.s. −0.60n.s. −0.78* −0.14n.s. −0.19n.s. −0.25n.s. 0.82*
CT 0.35n.s. 0.03n.s. 0.16n.s. 0.12n.s. 0.38n.s. 0.32n.s. 0.41n.s. 0.28n.s. 0.28n.s. –0.42n.s.

EC 0.61n.s. −0.58n.s. 0.49n.s. −0.42n.s. 0.71n.s. 0.90* 0.20n.s. 0.25n.s. 0.22n.s. −0.91*
SE 0.34n.s. −0.53n.s. 0.28n.s. −0.40n.s. 0.41n.s. 0.79* 0.18n.s. 0.20n.s. 0.25n.s. −0.86*

†Ratio = sum of sucrose, raffinose and stachyose divided by the sum of glucose and fructose. Ratio: (Σ(Suc,Raf,Stc)/Σ(Glc, Frc)). n.s., non-
significant at 5%; *significant at 5% level of probability according to Tukey’s test.
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reducing the ability of the metabolic system to neutral-
ize free radicals and to repair damage during germin-
ation (Wettlaufer and Leopold, 1991; Murthy and
Sun, 2000).

Others have suggested that, rather than specific
quantities of sucrose, RFOs and monosaccharides
available in the dehydrated seed, it may be the relative
amounts of these molecules that influences seed desic-
cation tolerance, longevity and vigour (Brenac et al.,
1997; Vandercasteele et al. 2011). The ratio between
the sum of oligosaccharides (sucrose and RFOs) and
the sum of the monosaccharide reducing sugars (glu-
cose and fructose) [ratio: (Σ(Suc,Raf,Stc)/Σ(Glc, Frc))]
revealed that the reducing sugar quantities were rela-
tively greater in low vigour lots than in high vigour
lots (Table 3). This is potentially one reason why the
seed lots HS 15 and HS 24, even with high amounts
of sucrose, presented lower physiological potential
than seeds produced from the reciprocal cross (Table 1).

To investigate how soluble sugar amounts might
influence parameters assessing seed vigour, a Pearson
correlation analysis was made between the parameters
measuring these two attributes (Tables 4 and 5). For
lots HS 15 and HS 51, the content of glucose in the
corn seeds showed a negative correlation with germin-
ation, first count of germination, cold test and seedling
emergence in the field tests. Fructose content also cor-
related negatively with the cold test and seedling emer-
gence in the field test. The ratio presented a positive
correlation with the accelerated ageing, cold test and
seedling emergence in the field tests (Table 4).

For lots HS 24 and HS 42, fructose content pre-
sented a negative correlation with the accelerated age-
ing test and a positive correlation with electrical
conductivity and seedling emergence in the field
tests. The opposite was observed for the ratio correla-
tions (Table 5).

In conclusion, reciprocal effects of parental lines on
seed composition and seed vigour were established for
the seed lots tested in this project. Of the various com-
positional influences, the most consistent negative cor-
relation with seed vigour between reciprocal crosses
was with fructose amounts (a reducing sugar), and
the ratio between oligosaccharide and monosaccharide
amounts. Lower reducing sugar concentrations and
greater amounts of non-reducing oligosaccharides
are a hallmark of greater seed vigour (Koster and
Leopold, 1988; Murthy and Sun, 2000) which was cap-
able of differentiating between hybrid seed lots pro-
duced from reciprocal crosses of differing vigour in
this study, potentially defining one determinant of het-
erosis. This relationship between reducing sugar pres-
ence and identity in maize seeds and seed vigour is
one that is being investigated in attempts to better
understand how different sugar species may differen-
tially influence maize seed storability and seedling vig-
our through participation in Maillard reactions.

Acknowledgements

The authors wish to thank Dow AgroSciences for
supplying the seed lots.

Financial support

The authors also thank FAPESP, São Paulo Research
Foundation (processes 2011/23257-1 and 2014/01121-
9) and CNPq, National Counsel of Technological and
Scientific Development (process 305364/2013-8) for
their scholarship and financial support throughout
the project.

Conflicts of interest

None.

References

Amuti, K.S., and Pollard, C.J. (1977) Soluble carbohydrates
of dry and developing seeds. Phytochemistry 16, 529–532.

Bailly, C., Audigier, C., Ladonne, F., Wagner, M.H., Coste,
F., Corbineau, F. and Côme, D. (2001) Changes in oligo-
saccharide content and antioxidant enzyme activities in
developing bean seeds as related to acquisition of drying
tolerance and seed quality. Journal of Experimental Botany
52, 701–708.

Bewley, J.D. and Black, M. (1994) Seeds: Physiology of
Development and Germination, 2nd edition. New York:
Plenum Press.

Blackman, S.A., Obendorf, R.L. and Leopold, A.C. (1992)
Maturation proteins and sugars in desiccation tolerance
of developing soybean seeds. Plant Physiology 100,
225–230.

Borba, I.C.G., Bandeira, J.M., Marini, P., Martins, A.B.N.
and Moraes, D.M. (2014) Antioxidative metabolism to
separate seed lots with different homogeneity degrees
[in Portuguese, with English abstract]. Revista Brasileira
de Biociências 12, 20–26.

Bortolotto, R.P., Menezes, N.L., Garcia, D.C. and Mattioni,
N.M. (2008) Protein content and physiological quality
of rice seeds [in Portuguese, with English abstract].
Bragantia 6, 513–520.

Buckeridge, M.S., Santos, H.P., Tiné, M.A.S. and Aidar, M.
P.M. 2004. Reserves mobilization [in Portuguese]. In
Ferreira, A.G. and Borghetti, F. (eds), Germination: From
the Basics to the Applied, pp. 163–185. Porto Alegre,
Brazil: Artmed.

Brenac, P., Horbowicz, M., Downer, S.M., Dickerman, A.
M., Smith, M.E. and Obendorf, R. (1997) Raffinose accu-
mulation related to desiccation tolerance during maize
(Zea mays L.) seed development and maturation. Journal
of Plant Physiology 150, 481–488.

Cabral, P.D.S., Amaral-Júnior, A.T., Vieira, H.D., Santos, J.
S., Freitas, I.L.J. and Pereira, M.G. (2013) Genetic effects
on seed quality in diallel crosses of popcorn. Ciencia
Agrotecnologia 37, 502–511.

Juliana F. Santos et al.214

https://doi.org/10.1017/S0960258517000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258517000095


Carvalho, M.L.M., Nery, M.C., Oliveira, L.M., Hilhorst, H.
W.M. and Guimarães, R.M. (2008) Morphophysiological
development of Tabebuia serratifolia Vahl Nich. seeds.
Sciencia Agricola 65, 643–651.

Carvalho, N.M. and Nakagawa, J. (2012) Seeds: Science,
Technology and Production [in Portuguese], 5th edition.
Jaboticabal, Brazil: FUNEP.

Chen, J.Z. (2010) Molecular mechanisms of polyploidy and
hybrid vigor. Trends in Plant Science 15, 57–71.

Chen, Y. and Burris, J.S. (1990) Role of carbohydrates in des-
iccation tolerance and membrane behavior in maturing
maize seed. Crop Science 30, 971–975.

Dinakar, C. and Bartels, D. (2013) Desiccation tolerance in
resurrection plants: new insights from transcriptome,
proteome, and metabolome analysis. Frontiers in Plant
Science 4, 1–14.

Downie, B. and Bewley, J.D. (2000) Soluble sugar content of
white spruce (Picea glauca) seeds during and after germin-
ation. Physiologia Plantarum 110, 1–12.

Duvick, D. (2001) Biotechnology in the 1930s: the develop-
ment of hybrid maize. Nature Reviews 2, 69–74.

Egesel, C.O., Wong, J.C., Lambert, R.J. and Rocheford, T.R.
(2003) Gene dosage effects on carotenoid concentration in
maize grain. Maydica 48, 183–190.

Faria, M.A.V.R., Von-Pinho, R.G., Von-Pinho, E.V.R.,
Guimarães, R.M. and Freitas, F.E.O. (2004) Germin-
ability and desiccation tolerance in corn seeds harvested
at different maturation stages [in Portuguese, with
English abstract]. Revista Brasileira de Milho e Sorgo 3,
276–289.

Footitt, S., Slocombe, S.P., Larner, V., Kurup, S., Wu, Y.,
Larson, T., Graham, I., Baker, A. and Holdsworth, M.
(2002) Control of germination and lipid mobilization by
COMATOSE, the Arabidopsis homologue of human
ALDP. EMBO Journal 21, 2912–2922.

Gomes, M.S., Von-Pinho, E.V.R., Von-Pinho, R.G. and
Vieira, M.G.G.C. (2000) Heterosis effect on the physio-
logical quality of corn seeds [in Portuguese, with
English abstract]. Revista Brasileira de Sementes 22, 7–17.

Guo, M., Rupe, M.A., Danilevskaya, O.N., Yang, X. and Hu,
Z. (2003) Genome-wide mRNA profiling reveals hetero-
chronic allelic variation and a new imprinted gene in
hybrid maize endosperm. Plant Journal 36, 30–44.

Hames, B.D. and Rickwood, D. (1998) Gel Electrophoresis of
Proteins: A Practical Approach, 2nd edition. Oxford, UK:
Oxford University Press.

Han, Z., Ku, L., Zhang, Z., Zhang, J., Guo, S., Liu, H., Zhao,
R., Ren, Z., Zhang, L., Su, H., Dong, L. and Chen, Y.
(2014) QTLs for seed vigor-related traits identified in
maize seeds germinated under artificial aging conditions.
PLoS ONE 9, e92535.

Hay, F.R. and Probert, R.J. (1995) Seed maturity and the
effects of different drying conditions on desiccation toler-
ance and seed longevity in Foxglove (Digitalis purpurea
L.). Annals of Botany 76, 639–647.

Herman, E.M. (2014) Soybean seed proteome rebalancing.
Frontiers in Plant Science 5, 437. doi: 10.3389/fpls.2014.00437.

Herman, E.M. and Larkins, B.A. (1999) Protein storage bod-
ies and vacuoles. Plant Cell 11, 601–613.

Ingram, J. and Bartels, D. (1996) The molecular basis of
dehydration tolerance in plants. Annual Review of Plant
Physiology and Plant Molecular Biology 47, 377–403.

International Seed Testing Association (ISTA) (2016)
International Rules for Seed Testing. Zurich: ISTA.

Karner, U., Peterbauer, T., Raboy, V., Jones, D.A., Hedley,
C.L. and Richter, A. (2004) myo-Inositol and sucrose con-
centrations affect the accumulation of raffinose family oli-
gosaccharides in seeds. Journal of Experimental Botany 55,
1981–1987.

Kermode, A.R. (1997) Approaches to elucidate the basis of
desiccation-tolerance in seeds. Seed Science Research 7,
75–95.

Kollipara, K.P., Saab, I.N., Wych, R.D., Lauer, M.J. and
Singletary, G.W. (2002) Expression profiling of reciprocal
maize hybrids divergent for cold germination and desic-
cation tolerance. Plant Physiology 129, 974–992.

Koster, K.L. and Leopold, A.C. (1988) Sugars and desiccation
tolerance in seeds. Plant Physiology 88, 829–832.

Krochko, J.E. and Bewley, J.D. (1990) Identification and
characterization of the seed storage proteins of alfalfa
(Medicago sativa L.). Journal of Experimental Botany 41,
505–514.

Laemmli, U.K. (1970) Cleavage of structural proteins during
the assembly of the head of bacteriophage T4. Nature 227,
680–685.

Lahuta, L.B., Górecki, R.J., Zalewski, K. and Hedley, C.L.
(2007) Sorbitol accumulation during natural and acceler-
ated ageing of pea (Pisum sativum L.) seeds. Acta
Physiologia Plantarum 29, 527–534.

Letchworth, M. and Lambert, R. (1998) Pollen parent effects
on oil, protein, and starch concentration in maize kernels.
Crop Science 38, 363–367.

Li, X., Zhuo, J., Jing, Y., Liu, X. and Wang, X. (2011)
Expression of a GALACTINOL SYNTHASE gene is posi-
tively associated with desiccation tolerance of Brassica
napus seeds during development. Journal of Plant
Physiology 168, 1761–1770.

Lisec, J., Romisch-Margl, L., Nikoloski, Z., Piepho, H.P.,
Giavalisco, P., Selbig, J., Gierl, A. and Willmitzer, L.
(2011) Corn hybrids display lower metabolite variability
and complex metabolite inheritance patterns. Plant
Journal 68, 326–336.

Lowe, L.B. and Ries, S.K. (1973) Endosperm protein of wheat
seed as a determinant of seedling growth. Plant
Physiology 51, 57–60.

Marcos-Filho, J. (2015a) Seed Physiology of Cultivated Plants [in
Portuguese], 2nd edition. Londrina, PR, Brazil:
ABRATES.

Marcos-Filho, J. (2015b) Seed vigor testing: an overview of
the past, present and future perspective. Sciencia
Agricola 72, 363–374.

McDonough, C.M., Floyd, C.D., Waniska, R.D. and
Rooney, L.W. (2004) Effect of accelerated aging on
maize, sorghum, and sorghum meal. Journal of Cereal
Science 39, 351–361.

Moterle, L.M., Braccini, A.L., Scapim, C.A., Pinto, R.J.,
Gonçalves, L.S., Amaral-Júnior, A.T. and Silva, T.R.
(2011) Combining ability of tropical maize lines for seed
quality and agronomic traits. Genetics and Molecular
Research 10, 2268–2278.

Murthy, U.M.N., Kumar, P.P. and Sun, W.Q. (2003)
Mechanisms of seed ageing under different storage con-
ditions for Vigna radiata (L.) Wilczek: lipid peroxidation,
sugar hydrolysis, Maillard reactions and their relation-
ship to glass state transition. Journal of Experimental
Botany 54, 1057–1067.

Murthy, U.M.N. and Sun, W.Q. (2000) Protein modification
by Amadori and Maillard reactions during seed storage:

Reciprocal effects on corn hybrid seed vigour 215

https://doi.org/10.1017/S0960258517000095 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258517000095


roles of sugar hydrolysis and lipid peroxidation. Journal of
Experimental Botany 51, 1221–1228.

Nakagawa, J. (1999) Vigor tests based on seedlings assess-
ment [in Portuguese]. In Krzyzanowski, F.C. et al. (eds),
Seed Vigour: Concepts and Tests, pp. 2.1–2.21. Londrina,
Brazil: ABRATES.

Navratil, R.J. and Burris, J.S. (1984) The effect of drying tem-
perature on corn seed quality. Canadian Journal of Plant
Sciences 64, 487–496.

Nishizawa-Yokoi, A., Yabuta, Y. and Shigeoka, S. (2008)
The contribution of carbohydrates including raffinose
family oligosaccharides and sugar alcohols to protection
of plant cells from oxidative damage. Plant Signaling
and Behaviour 3, 1016–1018.

Nosarzewski, M., Downie, A.B., Wu, B. and Archbold, D.D.
(2012) The role of SORBITOL DEHYDROGENASE in
Arabidopsis thaliana. Functional Plant Biology 39, 462–470.

Ordas, B., Malvar, R.A., Ordas, A. and Revilla, P. (2008)
Reciprocal differences in sugary × sugary enhancer
sweet corn hybrids. Journal of the American Society of
Horticultural Science 133, 777–782.

Osborne, T.B. (1924) The Vegetable Proteins. New York:
Longmans, Green and Co.

Pollmer, W.G., Klein, D. and Dhillon, B.S. (1979)
Differences in reciprocal crosses of maize inbred lines
diverse for protein content. Euphytica 28, 325–328.

Rao, A.P. and Fleming, A.A. (1978) Cytoplasmic-genotypic
effects in the GT 112 maize inbred with four cytoplasms.
Crop Science 18, 935–937.

Reyes, F.C., Chung, T., Holding, D., Jung, R., Vierstra, R.
and Otegui, M.S. (2011) Delivery of prolamins to the pro-
tein storage vacuole in maize aleurone cells. Plant Cell 23,
769–784.

Rosseto, C.A.V., Lima, T.M. and Guimaraes, E.C. (2004)
Accelerated aging and controlled deterioration of peanut
seeds. Pesquisa Agropecuaria Brasileira 39, 795–801.

Roveri-José, S.C.B., Von-Pinho, E.V.R. and Dias, M.A.G.S.
(2006) Sugars and tolerance to high drying temperature
in corn seeds [in Portuguese, with English abstract].
Revista Brasileira de Sementes 28, 60–68.

Roveri-José, S.C.B., Von-Pinho, E.V.R., Von-Pinho, R.G.,
Ramalho, M.A.P. and Silva-Filho, J.L. (2004) Genetic
control of corn seeds tolerance to high drying tempera-
ture [in Portuguese, with English abstract]. Revista
Brasileira de Milho e Sorgo 3, 414–428.

Schmidt, M.A., Barbazuk, W.B., Sandford, M., May, G.,
Song, Z., Zhou, W., Nikolau, B.J. and Herman, E.M.
(2011) Silencing of soybean seed storage proteins results
in a rebalanced protein composition preserving seed pro-
tein content without major collateral changes in the meta-
bolome and transcriptome. Plant Physiology 156, 330–345.

Singh, S., Ambastha, V., Levine, A., Sopory, S.K., Yadava,
P.K., Tripathy, B.C. and Tiwari, B.S. (2015) Anhydrobio-
sis and programmed cell death in plants: commonalities
and differences. Current Plant Biology 2, 12–20.

Song, R. and Messing, J. (2003) Gene expression of a gene
family in maize based on non-collinear haplotypes.
Proceedings of the National Academy of Sciences USA 100,
9055–9060.

Strelec, I., Ugarčić-Hardi,Ž., Balkić, J. andŠimunić, N. (2007)
Enzymatic activity in wheat seeds of different protein
content. Agriculturae Conspectus Scientificus 72, 239–243.

Stupar, R.M. and Springer, N.M. (2006) Cis-transcriptional
variation in maize inbred lines B73 and Mo17 leads to
additive expression patterns in the F1 hybrid. Genetics
173, 2199–2210.

Swanson-Wagner, R.A., DeCook, R., Jia, Y., Bancroft, T., Ji,
T., Zhao, X., Nettleton, D. and Schnable, P.S. (2009)
Paternal dominance of trans-eQTL influences gene expres-
sion patterns in maize hybrids. Science 326, 1118–1120.

Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M.,
Kobayashi, M., Yamaguchi-Shinozaki, K. and
Shinozaki, K. (2002) Important roles of drought- and
cold-inducible genes for galactinol synthase in stress tol-
erance in Arabidopsis thaliana. Plant Journal 29, 417–426.

Tomić, J., Torbica, A., Popović, L., Strelec, I., Vaštag, Ž.,
Pojić, M. and Rakita, S. (2015) Albumins characterization
in relation to rheological properties and enzymatic activ-
ity of wheat flour dough. Journal of Agricultural Science
and Technology 17, 805–816.

United States Department of Agriculture (USDA) (2015)
Crop production 2014 summary (January 2015).
USDA, National Agricultural Statistics Service, USA.
https://www.census.gov/history/pdf/cropan15.pdf (acces-
sed 02 Apr. 2017).

Vandecasteele, C., Teulat-Merah, B., Morère-Le Paven, M.
C., Leprince, O., Vu, B.L., Viau, L., Ledroit, L.,
Pelletier, S., Payet, N., Satour, P., Lebras, C., Gallardo,
K., Huquet, T., Limami, A.M., Prosperi, J.M. and
Buitink, J. (2011) Quantitative trait loci analysis reveals
a correlation between the ratio of sucrose/raffinose family
oligosaccharides and seed vigour in Medicago truncatula.
Plant, Cell and Environment 34, 1473–1487.

Wang, Y. and Frei, M. (2011) Stressed food – the impact of
abiotic environmental stresses on crop quality.
Agriculture, Ecosystems and Environment 141, 271–286.

Wang, X., and Larkins, B.A. (2001) Genetic analysis of amino
acid accumulation in opaque-2 maize endosperm. Plant
Physiology 125, 1766–1777.

Wettlaufer, S.H. and Leopold, A.C. (1991) Relevance of
Amadori and Maillard products to seed deterioration.
Plant Physiology 97, 165–169.

Wu, Y. and Messing, J. (2014) Proteome balancing of the
maize seed for higher nutritional value. Frontiers in
Plant Science 5, 240. doi: 10.3389/fpls.2014.00240

Zhao, T.Y., Thacker, R., Corum, J.W., Snyder, J.C.,Meeley, R.
B., Obendorf, R.L. and Downie, B. (2004) Expression of
the maize GALACTINOL SYNTHASE gene family: (I)
expression of two different genes during seed develop-
ment and germination. Physiologia Plantarum 121, 634–646.

Juliana F. Santos et al.216

https://doi.org/10.1017/S0960258517000095 Published online by Cambridge University Press

https://www.census.gov/history/pdf/cropan15.pdf
https://doi.org/10.1017/S0960258517000095

	Reciprocal effect of parental lines on the physiological potential and seed composition of corn hybrid seeds
	Abstract
	Introduction
	Materials and methods
	Seed lot production, treatment and storage
	Seed lot tests
	Total protein extraction, quantification and electrophoresis
	Starch extraction and quantification
	Sugar extraction, separation and quantification
	Treatment design and statistical analyses

	Results and Discussion
	Acknowledgements
	Financial support
	Conflicts of interest
	References


