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Abstract

Magnesium ions (Mg2þ) are vital for RNA structure and cellular functions. Present efforts in
RNA structure determination and understanding of RNA functions are hampered by the
inability to accurately locate Mg2þ ions in an RNA. Here we present a machine-learning
method, originally developed for computer visual recognition, to predictMg2þ binding sites in
RNA molecules. By incorporating geometrical and electrostatic features of RNA, we capture
the key ingredients of Mg2þ-RNA interactions, and from deep learning, predict the Mg2þ

density distribution. Five-fold cross-validation on a dataset of 177 selected Mg2þ-containing
structures and comparisons with different methods validate the approach. This new approach
predicts Mg2þ binding sites with notably higher accuracy and efficiency. More importantly,
saliency analysis for eight different Mg2þ binding motifs indicates that the model can reveal
critical coordinating atoms for Mg2þ ions and ion-RNA inner/outer-sphere coordination.
Furthermore, implementation of the model uncovers new Mg2þ binding motifs. This new
approach may be combined with X-ray crystallography structure determination to pinpoint
the metal ion binding sites.

Introduction

The phosphodiester backbone of RNA carries an electronic charge per nucleotide, thus, metal
ions, through binding to RNA, play a critical role in stabilizing an RNA structure. In particular,
magnesium ions (Mg2þ) are essential for RNA tertiary structure folding (Pan et al., 1999;
Moghaddam et al., 2009; Chen et al., 2012; Denesyuk and Thirumalai, 2015; Welty et al.,
2018; Chen and Pollack, 2019), stability (Misra and Draper, 1998, 2002; Tinoco and Bustamante,
1999; Draper, 2004, 2008, 2013; Koculi et al., 2006, 2007; Auffinger et al., 2011; Fischer et al.,
2018), and function in biological processes (Pyle, 1993; Sigurdsson and Eckstein, 1995; Cate et al.,
1997;Hermann et al., 1997; Shan et al., 1999;Hanna andDoudna, 2000; Brännvall andKirsebom,
2001; Moghaddam et al., 2009; Schnabl and Sigel, 2010; Auffinger et al., 2011; Denesyuk and
Thirumalai, 2015). Previous experiments and theoretical studies of ion-RNA interactions have
revealed some important mechanisms of specifically-boundMg2þ, such as the observation of the
cooperativity betweenMg2þ and ligand in SAM riboswitches (Hennelly et al., 2012;McPhie et al.,
2016), and the stabilization of the group I ribozyme from the bacterium Azoarcus by the
coordination of Mg2þ to specific nucleotides (Rangan and Woodson, 2003; Chauhan et al.,
2009; Denesyuk and Thirumalai, 2015), and so forth. The results from the study of the SAM
riboswitches confirm that three chelation sites ofMg2þ in key regions of the aptamer domain can
cooperate with SAM in preventing the association of the anti-terminator strand (Hennelly et al.,
2012), and the coarse-grained molecular simulations of the group I ribozyme indicate that the
binding of the specific Mg2þ ions correlates to the formation of the individual structural
elements, and the majority of high-affinity sites are consistent with the positions of ions resolved
in the crystal structure of the intron (Denesyuk and Thirumalai, 2015). The study also shows that
although the principal helical domains in the Azoarcus ribozyme can also fold in Ca2þ, their
correct relative orientation and the organization of the active site still require Mg2þ (Denesyuk
and Thirumalai, 2015). These findings definitely contribute to the crucial role of the Mg2þ in
biology.

However, experimental studies of RNA-Mg2þ interactions are challenging. As flexible
RNAs can fold to an ensemble of low-energy conformations (Sclavi et al., 2005; Ritz et al.,
2013; Kutchko et al., 2015;Woods et al., 2017), experimental determination ofMg2þ binding to
RNA can be challenging because ions can bind to different RNA conformations in different
ways. Furthermore, using electron density maps to distinguish Mg2þ from water (H2O) and
sodium ion (Naþ) is challenging because they all have 10 electrons and can be distinguished
only in high-resolution structures, so Mg2þ can be easily mistaken for H2O or Naþ (Nayal and
Cera, 1996; Auffinger et al., 2011; Zheng et al., 2015; Leonarski et al., 2016). Alternatively,Mg2þ

QRB Discovery

www.cambridge.org/qrd

Research Article

Cite this article: Zhou Y, Chen S-J (2022).
Graph deep learning locates magnesium ions
in RNA. QRB Discovery, 3: e20, 1–11
https://doi.org/10.1017/qrd.2022.17

Received: 06 June 2022
Revised: 28 September 2022
Accepted: 29 September 2022

Keywords:
Magnesium ion; RNA-ion interaction; ion
binding site/motif; machine learning;
convolutional neural network

Author for correspondence:
*Shi-Jie Chen,
E-mail: chenshi@missouri.edu

© The Author(s), 2022. Published by Cambridge
University Press. This is an Open Access article,
distributed under the terms of the Creative
Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0), which
permits unrestricted re-use, distribution and
reproduction, provided the original article is
properly cited.

https://doi.org/10.1017/qrd.2022.17 Published online by Cambridge University Press

https://orcid.org/0000-0003-1858-3067
https://orcid.org/0000-0002-8093-7244
https://doi.org/10.1017/qrd.2022.17
mailto:chenshi@missouri.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
https://doi.org/10.1017/qrd.2022.17


may be simplymissing from crystal structures (Zheng et al., 2015).
A significant number of misidentified Mg2þ binding sites can
impose a strong and incorrect bias on Mg2þ binding analysis
and prediction.

In addition to the obstacles created by RNA conformational
multiplicity and misidentification of Mg2þ binding sites, a relative
dearth of high-resolution structural data also imposes a barrier to
the understanding of relevant biological processes that depend on
RNA-Mg2þ binding. As of January 4, 2022, 1,630 RNA-containing
structures with bound Mg2þ ions are available in the Nucleic Acid
Database (Berman et al., 1992; Coimbatore Narayanan et al., 2013).
Among these structures, 1,627 are X-ray structures, and only 1,001
are high-resolution (<3.0 Å) structures. Many of these structures
come from the same molecule and organism with similar Mg2þ

binding sites, and thus are effectively redundant. Experimental
determination of high-resolution structures is time-consuming,
which makes computational prediction of Mg2þ binding a much
desired complementary approach. The growing number of experi-
mentally solved RNA structures motivates us to take advantage of
the increasing amount of experimental information by developing a
data-based method to predict and analyse the interactions between
RNA and Mg2þ ions.

During the last few years, researchers have developed several
novel approaches to predict RNA-metal ion binding sites. We can
categorize these modelling efforts into physics-based approaches
and knowledge-based approaches. Physics-based methods, such
as all-atom molecular dynamics (MD) simulations (Hanke and
Gohlke, 2015; Bergonzo et al., 2016; Lemkul et al., 2016; Bergonzo
and Cheatham, 2017; Casalino et al., 2017; Fischer et al., 2018;
Hayatshahi et al., 2018; Mamatkulov and Schwierz, 2018; Cruz-
León et al., 2021; Grotz et al., 2021), Brownian dynamics simula-
tions (Hermann and Westhof, 1998; van Buuren et al., 2002),
Poisson–Boltzmann (PB)/generalized Born (GB) models (Misra
and Draper, 2000; Onufriev et al., 2000; Burkhardt and Zacharias,
2001; Tolokh et al., 2018; Onufriev and Case, 2019), and statistical
mechanical models (Tan and Chen, 2005; Hayes et al., 2015; Sun
and Chen, 2016), explicitly consider physical energetics and
dynamics for RNA-ion binding. In addition to the methods men-
tioned above, hybrid quantum mechanics/molecular mechanics
(QM/MM) simulations and density functional theory (DFT) have
been extensively used to study RNA-Mg2þ interactions and the
roles of Mg2þ in various ribozyme activities such as the self-
cleavage of HDV ribozyme (Mlỳnskỳ et al., 2015; Thaplyal
et al., 2015), the hammerhead ribozyme (Chen et al., 2017), and
the glmS ribozyme-GlcN6P cofactor complex (Zhang et al., 2016),
in the splicing mechanism of group II introns (Casalino et al.,
2016), and in the stabilization and fine-tuning for noncanonical
base pairing geometries that are otherwise unstable in the absence
of Mg2þ binding (Halder et al., 2017, 2018). However, given the
complex physical interactions considered, these approaches are
often computationally demanding with various levels of success.
Knowledge-based methods, such as FEATURE (Banatao et al.,
2003) and MetalionRNA (Philips et al., 2011), on the other hand,
rely on information extracted from experimentally determined
structures. Such methods are usually much less computationally
demanding than physics-based approaches, but the inability of
taking long-range, many-body physical features into consider-
ation limited the accuracy of these models. For example,
FEATURE (Banatao et al., 2003), a Bayesian-inference-based
statistical model, can predict the magnesium ion-binding sites
in RNA structures with the prior knowledge of the binding/non-
binding environments (i.e. microenvironments) learned from the

dataset. The microenvironment is essentially defined by a collec-
tion of physical and chemical features at different levels of detail
from atom, chemical group, and nucleotide-residue, to secondary
structural levels – that exhibit statistically significant differences
between the distributions of the known ion-binding sites and the
control non-binding sites. When given a query region in a new
structure, the Bayesian-inference-based scoring function can rank
the sites in the query region based on the prior knowledge of the
features learned from the training set. MetalionRNA (Philips
et al., 2011) uses a representative set of 113 crystallographically
determined structures to derive statistical potentials for Naþ, Kþ,
and Mg2þ ions. The model evaluates the three-body anisotropic
contact frequencies between metal ions and a set of predefined
covalently bonded RNA atom pairs that are known to make the
strongest contributions to metal ion binding. The model then
transforms the contact frequencies into statistical potentials
through the inverse Boltzmann law. Given a new structure, Meta-
lionRNA scores every grid point in the space according to statis-
tical potentials derived from the observed contact frequencies in
the training set. These scores are used to predict the final binding
sites.

However, there are two main drawbacks to these approaches:
the feature design requires excessive manual interventions and the
scoring functions fail to take many-body effects into consideration.
First, both approaches require a set of manually engineered fea-
tures/atom pairs to encode the interactions. The choice of these
features can be crucial and would certainly affect the performance
of the model. For example, the existence of the redundant features
could easily introduce bias to the prediction. Second, the fact that
both approaches employ a scoring function as an additive sum of
the contributions from each individual feature/atom pair implies
that the scoring function does not account for many-body correl-
ations between the different contributions.

Here, we present MgNet, a variant of the regression convolu-
tional neural networks (Adhikari et al., 2017; Li et al., 2018) with
residual shortcuts (He et al., 2016), which uses experimental struc-
tural data to predict metal ion binding sites. In contrast to the
aforementioned previous knowledge-based approaches, CNN
models excel at pattern recognition by using convolutional oper-
ations to combine correlated data and identify underlying trends. It
does not require manually engineered features or predefined func-
tional forms for the scoring function, and the underlying important
features and the correlations between them can be learned from the
data automatically during the training process.

Materials and methods

Curating the data sets

In order to generate a suitable collection of images, we use a set of
177 crystallographically determined structures containing RNA
and Mg2þ ions in the Protein Data Bank (Berman et al., 2000),
including protein-RNA and DNA-RNA complexes. These
177 structures are selected according to the following criteria. First,
RNA structures containing Mg2þ ions were gathered from the
Protein Data Bank (Berman et al., 2000). A structure might be
determined from different labs for the same RNA, a mutant, or a
ligand-bound complex. As a result, for a given RNA, the Protein
Data Bank may contain more than one structure file. To remove
structure redundancy, we cluster the Mg2þ-containing RNA struc-
tures based on the nonredundant RNA structure datasets ((Leontis
and Zirbel, 2012) version 3.54), and select one structure from each
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sequence/structure equivalence cluster. Due to computational limi-
tations, for large RNAs, we select only one 16S rRNA (~1,500
nucleotides). Because the resolution of crystallographic structures
is a key factor for the accurate determination of the identity and
position ofMg2þ, we keep only structures with a resolution of 3Å or
better.While allowing curation of a training set with sufficient data,
this resolution cut-off serves to exclude structures that may mis-
identify Mg2þ binding sites. For structures with multiple models,
we use the first model, and for residues with more than one
alternative conformation, we use the first variant. In order to apply
a five-fold cross-validation evaluation, the 177 RNA-containing

structures (“general set”) are randomly divided into five subsets
(Supplementary Table S1).

Outlining the methods

While normal CNNs read 2D images as input, our MgNet reads
“3D images” that contain the local environment of the binding and
non-binding sites as input. These “3D images” provide electrostatic
and 3D-shape (RNA volume) information that determines the
interaction between RNA and metal ions (Fig. 1a). Molecular
modelling software, such as UCSF Chimera (Pettersen et al.,

Fig. 1. The MgNet workflow (a,b) and applications (c,d). (a) The MgNet workflow begins with input of the 3D structure of a RNA. 3D image is taken from a 24� 24� 24 Å cubic box
centred at each given nucleotide and is used to capture the electrostatic and 3D-shape information for the binding and non-binding sites. The MgNet accepts the input images and
can be used to perform: (b) Mg2þ binding site prediction. The hot spots (left, with decreasing probability from red to green) were collected, sorted, and clustered into final predicted
binding sites (right, green spheres); (c) Saliency analysis. MgNet can be used to reveal themost important coordinating RNA atoms by calculating the radial saliency distributions of
different atom types around the bound ion; (d) BindingMotif analysis. Statistics of the configurations of the coordinating atoms around the binding sites predicted by MgNet lead to
newly discovered binding motifs.

QRB Discovery 3

https://doi.org/10.1017/qrd.2022.17 Published online by Cambridge University Press

https://doi.org/10.1017/qrd.2022.17


2004), High-Throughput Molecular Dynamics (HTMD) (Doerr
et al., 2016), Visual Molecular Dynamics (VMD) (Humphrey
et al., 1996), Biopython (Cock et al., 2009), and AutoDockTools4
(Morris et al., 2009), is used to compute the partial charges of the
RNA atoms and perform the voxelization for the graphical convo-
lutional neural network. With the generated images, the MgNet
predicts Mg2þ ion probability distribution around the RNA
(Fig. 1b). To identify Mg2þ binding sites from the predicted ion
probability distribution, we use the DBSCAN (Ester et al., 1996)
method to cluster the ion binding sites of probability maxima.
Within each high-probability region, k-means clustering is used
to find the representative points of the region. These representative
points are chosen as the predicted ion sites and ranked based on the
sum of the probabilities of the points within the corresponding
cluster. In this work, we mainly use true positive rate (TPR) and
positive predictive value (PPV) to measure the predictive power of
the model. TPR (PPV) is the ratio between the number of the
correctly predicted ion binding sites out of the experimentally
observed (theoretically predicted) bound ions. Generally speaking,
although one may alter TPR and PPV by adjusting the definition of
the “correctly” predicted sites, these two metrics are often antag-
onistic to each other except for a perfect model. In practice,
increasing the number of the predicted sites usually improves the
TPR but in the meantime, causes the degradation of the PPV, and
vice versa. Thus TPR and PPV together can provide an overall
measure of the performance of the model.

We also aim to uncover physical insights from the neural
network “black box”. Specifically, we perform saliency calculation

(Fig. 1c) and motif analysis (Fig. 1d). From the gradients of the
predicted scores with respect to the input image pixels (saliency
values), the saliency analysis (Smilkov et al., 2017) identifies the
most sensitive pixels in the input image whose small variations
cause substantial changes in the output result. The saliency tech-
nique allows us to uncover the critical RNA atoms that most
sensitively determineMg2þ binding. Furthermore, from a thorough
investigation of the configurations of RNA atoms around a bound
Mg2þ ion, we uncoverMg2þ bindingmotifs. Here anMg2þ binding
motif is defined as a recurring pattern of coordinating RNA atoms
(i.e. geometric arrangement and atom type of the coordinating
atoms) surrounding a bound ion.

Results

Evaluating MgNet performance through cross-validation

We carry out five-fold cross-validation on the general set with
177 RNA-Mg2þ complex structures. For each cycle, we use one of
the subsets for testing and the other four for training the MgNet
model. The cross-validation approach ensures the complete sam-
pling of the entire data sets while keeping test and training sets not
overlapping in the same cycle. As shown in Fig. 2a, the small
fluctuations among TPR (PPV) values across five folds indicate
the robustness of the MgNet model. As a summary, for the
177 RNA-Mg2þ complex structures, there are 1,407 experimentally
determined Mg2þ binding sites, MgNet predicts 1,863 Mg2þ bind-
ing sites, among which 661 Mg2þ binding sites (coordinates) are

Fig. 2. Investigation of MgNet performance and comparison between MgNet and other methods. (a) The TPR and PPV values of the MgNet model for cross-validation on both the
general and high-quality set. Values are obtained from validation results, PPV values on the high-quality set are not shown. (b,c) Example of MgNet-predicted (magenta spheres)
versus experimentally determined (green spheres, labelled with residue identifiers) Mg2þ ion sites in (b) 58 nt fragment of Escherichia coli 23S rRNA (PDB ID: 1HC8) and (c) the
anticodon loop in tRNAAsp. The predicted site in (c) is shifted upward toward the G30�U40 wobble pair. Four residues shown in red are labelled with the residue names and residue
sequence numbers. (d,e) Comparison of the success rates between the MgNet and molecular dynamics (MD) and Brownian dynamics (BD) simulation-based methods for various
RMSD cut-offs. The test sets contain seven and three RNA structures for MD-based and BD-based method, respectively. Two different system conditions were used in MD-based
method, with Mg2þ as the counterion (CI) ( Mg2þCI ) only and with the physiological salt (PS) concentration Mg2þPS (Mg2þ counterions and 0.15 M NaCl). (f) Comparison between
MetalionRNA (Philips et al., 2011) andMgNet on the general set. The horizontal axis represents the rank of the predictions, where n on the axismeans the top-n predictions is used for
each RNA, and the vertical axis represents the corresponding TPR and PPV values for the top-n predictions. The cut-off RMSD for a correct hit is 3 Å. Additional information can be
found in Supplementary Tables S4–S8.
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within 3 Å from the experimental results. Statistically speaking, the
test result implies that the MgNet model is able to identify nearly
half (661/1,407) of the true Mg2þ binding sites with high accuracy.
Details can also be found in Supplementary Dataset S1.

In addition to the above cross-validation, we also employ the
five-fold cross-validation to validate the MgNet model on
another dataset with 1,974 high-quality Mg2þ binding sites clus-
tered from the MgRNA benchmark set (Zheng et al., 2015) (see
Supplementary Information). The purpose of MgNet computa-
tion/validation with the high-quality set is to validate the robust-
ness of the MgNet model against the different datasets. However,
sites in the high-quality set were chosen from experimentally
determined RNA structure, where many (experimentally
derived) sites not included in the set could be close to the included
ones. This would make the “false positive (FP)” of the prediction
ambiguously defined (see Supplementary Figure S2). For this
reason, we only use the TPR (equivalent to success rate) to
evaluate the performance. The results are shown in Fig. 2a and
Supplementary Table S3. The similar TPR results for both the
general set and the high-quality set suggest a consistent perform-
ance of MgNet.

MgNet and MetalionRNA

By comparing MgNet to the knowledge-based method Meta-
lionRNA (Philips et al., 2011), we assess the performance of the
CNN approach. Following the previous studies (Banatao et al.,
2003; Philips et al., 2011), we first investigate theMgNet predictions
on the 58 nt fragment of Escherichia coli 23S rRNA which contains
seven Mg2þ ions in the crystal structure (PDB code 1HC8, Fig. 2b).
As also shown in Supplementary Table S4, MgNet and Meta-
lionRNA can both identify all the seven Mg2þ ions within the
top-12 and top-29 ranked predictions with an accuracy of 0.5–
2.3 Å and 0.6–3.8 Å, respectively.

For a more comprehensive comparison, we use TPR and PPV to
evaluate the performance of MetalionRNA (Philips et al., 2011) on
our cross-validation dataset. Fig. 2f shows the distributions of the
TPR and PPV values from theMgNetmodel and theMetalionRNA
web server on the 176 RNA-containing structures over the number
of top predictions. It can be seen that the curves diverge quickly
with the increase in the rank of the predictions, suggesting that
MgNet has a notably better success rate in predicting the experi-
mental ion binding sites.

MgNet and a molecular dynamics (MD) simulation model

Although several physics-based methods have been developed to
investigate the metal ion-RNA interactions, most methods focus
on the dynamics or statistical properties instead of the ion binding
sites. As suggested by Fischer et al. (2018), an MD method with
explicit water can be applied to characterize Mg2þ distributions
around folded RNA structures and to predict Mg2þ positions. In
the study (Fischer et al., 2018), seven RNA structures containing
Mg2þ ions are selected as the target system in MD simulation. In
order to test whetherMD simulation can recover the experimental
binding sites, ions are initially randomly placed in the simulation
box. The predicted ion positions are determined by the occupancy
of Mg2þ during the simulation using the software MobyWat
(Jeszenői et al., 2015, 2016).

To compare the MgNet predictions with the MD simulation
results for the seven RNA structures, we use a five-fold cross-

validation procedure. We use the same five subsets of RNA
structures generated from the general set. For each subset, we
remove possible duplicate RNA structures of the seven test
structures. This step results in the removal of RNA structures
with PDB codes 1D4R, 1Y95, and 4FRG, leaving 174 remaining
RNA structures. We then perform the five-fold cross-validation
for the five (modified) subsets. Finally, we use each trainedmodel
to predict the Mg2þ binding sites for the seven test RNA struc-
tures. The success rates of MgNet and MD simulation methods
are shown in Fig. 2d. By investigating the details of the predic-
tions (Supplementary Tables S5–S7), we found the MgNet model
gives overall better predictions than the MD simulations for
identifying the locations of the bound ions with small RMSD
cut-off. The difference between the MgNet and the MD simula-
tion results is due to the following reasons. First, the RNA
structures used in MgNet training are mainly crystal structures,
thus the interaction patterns learned by MgNet may not be ideal
for NMR solution structures, which causes slightly worse results
for 2MTK (PDB ID), an NMR solution structure. Second, MD
simulations for ions directly bound to RNA may suffer from the
incomplete sampling problem due to the high barrier for Mg2þ

dehydration.

MgNet and a Brownian dynamics (BD) simulation-basedmethod

In Brownian dynamics (BD) simulations (Hermann andWesthof,
1998), diffuse cations move under the influence of random
Brownian motion in the electrostatic field and the metal ion
binding sites are identified by analysing the trajectories of posi-
tively charged test particles. Previous BD simulations have shown
the ability to identify Mg2þ binding sites in the crystal structures
of loop E of bacterial 5S rRNA (PDB code: 354D), tRNAPhe (PDB
code: 4TRA) and tRNAAsp (PDB code: 3TRA). To compare
MgNet with the BD simulations, we use the aforementioned
five-fold cross-validation procedure with the test RNA structures
removed from the general set. The resultant dataset contains
175 RNA structures.

As shown in Fig. 2e and Supplementary Table S8 for the
comparison between the BD simulations and our MgNet models,
overall both BD simulations and MgNet show good performance
for the tested RNA structures. However, there exist two notable
differences between the predictions from the two approaches.
Several trained models of MgNet fail to predict the binding sites
within 10 Å from the experimental sites for Mg2þ ion A-76
(354D) and ion A-80 (4TRA). One predicted site within 10 Å is
captured for ion A-76, and the RMSD of theMgNet-predicted ion
A-80 is larger than that of BD simulation. For ion A-76 of 3TRA,
the crystal structure of tRNAAsp contains a singleMg2þ located in
the anticodon loop at the C31�G39 base pair (Hermann and
Westhof, 1998). Both BD simulations and MgNet-predicted ion
sites are within ~5 Å from the site in the crystal structure, and
both are shifted upward in the anticodon stem towards the
G30�U40 wobble pair (Fig. 2c). This shifted ion binding pattern
is similar to the experimentally found metal ion binding site at
G�U pairs in the crystal structure of P4–P6 of group I intron
(Hermann and Westhof, 1998). The result might indicate a
delocalized binding of metal ions in the anticodon loop of
tRNAAsp as suggested by Hermann and Westhof (1998). As for
ion A-80 of 4TRA, the predicted site deviates from the experi-
mental site possibly because this particular ion is in close contact
with a non-standard residue Wybutosine (yw). We note that
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Mg2þ binding to one or more non-standard residues is not
common in our training set, thus the predictions of MgNet for
such cases may be less reliable.

MgNet-saliency analysis for metal ion binding sites

In machine learning, a large saliency value means that a slight
change in the corresponding input feature causes a large change
in the prediction score. Therefore, saliency analysis can identify the
key physical features that most sensitively determine ion binding.
In MgNet, from each input 3D image, the convolutional network
predicts a 3D matrix where a matrix element p(i, j, k) is the
probability of finding a bound ion at the grid site (i, j, k). From
the gradients of the predicted ion distribution with respect to the
input pixels of the images of the target binding site, the saliency
analysis identifies the RNA atoms and the physical attributes that
determine ion binding.

Eight representative binding sites of distinct motifs from the
previous survey (Zheng et al., 2015) are picked from the general set.
Six cases (Fig. 3a–f) involve inner-sphere interactions with RNA
atoms, while the rest (Fig. 3g–h) interact with RNA atoms through
outer-sphere hydrogen bonds (mediated by water molecules). Sev-
eral motifs share geometrical similarities. Through the juxtapos-
ition of two different strands or two distant segments of the same
strand, the “Magnesium clamp” (Ennifar et al., 1999; Petrov et al.,
2011) and “Y-clamp” (Zheng et al., 2015) use the bridging capabil-
ity of phosphates to stabilize these close interactions, very much
similar to the disulphide bonds in proteins. The “U-phosphate”
(Zheng et al., 2015) and “G-phosphate” (Klein et al., 2004) both
require the coordination of phosphate oxygen and nucleobase
oxygen. The more complicated motifs, “Purine N7-seat” (Zheng
et al., 2015), “G-G metal binding site” (Correll et al., 1997), and
“Triple G motif” (Tinoco and Kieft, 1997), contain complex water-
mediated coordination.

The saliency value of a particular atom reflects the sensitivity of
the predicted ion density with respect to this particular atom,
namely, a small change in the pixel values (physical attributes) of
the blue atoms shown in the figure would markedly alter the
predicted ion (probability) density. Therefore, saliency analysis
for the above examples can uncover important atoms that are
critical for the stabilization of magnesium ions at the binding site.
As shown in Fig. 3, atom saliency values for the two input channels
(volume occupancy and partial charge) indicate specific coordin-
ating atoms as the important factors in determining Mg2þ binding
sites. Note that in Fig. 3a, two of the important phosphate oxygen
atoms (OP1 of A34 and OP2 of G46) in the opposite direction have
a large saliency value (a darker colour), suggesting a critical role of
these atoms in ion binding. Indeed, there exists another Mg2þ ion
that binds in the nearby location (shown as a cyan sphere). The
coordinating atoms (connected through dashed lines) have rela-
tively large saliency values, indicating their importance inMg2þ ion
binding. Indeed, as shown in Supplementary Table S9, for the
motifs shown in Fig. 3, all of the binding sites can be successfully
predicted by the MgNet model for the original RNA structures.
However, after removing the coordinating atoms, MgNet fails to
find the correct binding sites for six cases. The result again supports
the important role of the identified RNA atoms.

To further investigate the spatial distribution of the RNA atoms
around the bound ions, we classify four types of RNA atoms (Zheng
et al., 2015): (i) Oph, phosphate oxygen (OP1/OP2); (ii) Or, oxygen
in ribose (O2’/O4’) or oxygen bridging phosphate and ribose (O3’/
O5’); (iii) Ob, nucleobase oxygen and (iv) Nb, nucleobase nitrogen,

where the last two types (Ob and Nb) are further divided into
subtypes according to the nucleotide type (purine or pyrimidine),
resulting in overall six types. Then, we use the radial distribution
function to quantify the spatial frequency and saliency distribution
of the different atom types around a bound ion (see Fig. 4).

The contact frequency distribution, as shown in Fig. 4a, shows
two characteristic peaks at ~2.3 and ~ 4.3 Å, corresponding to
inner-sphere and outer-sphere coordinations, respectively. The
peak at ~2.3 Å for Oph indicates that Oph is the most abundant
inner-sphere coordinating atom, and the peak at ~ 4.3 Å comes
from the water-mediated coordination. For purine-Nb, we find
multiple nitrogen atoms in guanine/adenine residue that are spa-
tially correlated, which explains the peaks around ~ 4.3 and ~ 6.3 Å.
We note the distribution curves become flat as distance increases,
reflecting the relative abundance of these atom types in our cross-
validation set.

The radial distributions of saliency values for volume occu-
pancy and partial charge channels, as shown in Fig. 4b,c, are
peaked at smaller radial distances than the contact frequency
distribution in Fig. 4a. The shift in the peak positions is because
Mg2þ is more sensitive to the closer coordinating atoms. Further-
more, the saliency peaks of the different atom types in the partial
charge channel are higher than those in the volume occupancy
channel, except for Or. The result suggests that Mg2þ binding sites
are more sensitive to the partial charges of the coordinating atoms
than the occupancy of RNA atoms. The abnormal behaviour of Or

may be caused by its spatial correlations with Oph. In the volume
occupancy channel, Oph and Or often appear together as coord-
inating atoms, thus showing similar peaks in the saliency distri-
bution. In contrast, in the partial charge channel, the partial
charge of an Or is less than that of an Oph and thus shows a lower
peak (weaker sensitivity).

To further identify the critical atoms, we investigate the radial
frequency distribution and the relative saliency distribution of each
individual atom. The trend of the radial frequency distributions of
the representative atoms within 3 Å (Fig. 4d) are very similar to the
atom-type distributions (Fig. 4a), where the normalized radial
frequency distributions (Fig. 4d) are roughly twice as large due to
the fact that Oph contains two phosphate oxygen atoms (OP1 and
OP2). The similar distributions suggest that these representative
atoms are indeed the dominant inner-sphere coordinating atoms
for each RNA atom type. Thus, the saliency distributions (Fig. 4e,f),
which are dominated by RNA atoms with close contact with Mg2þ,
also show similar trends as in Fig. 4b,c.

Identifying novel Mg2þ binding motifs

MgNet leads to two novel Mg2þ binding motifs that have not been
reported (Zheng et al., 2015). Typical Mg2þ can coordinate with six
atoms forming octahedral geometry, these coordinating atoms are
usually electronegative oxygen/nitrogen atoms from either water
molecules or RNA molecules. In this study, since MgNet does not
treat outer-sphere coordination (i.e. interactions mediated by water
molecules), we focus on motifs involving inner-sphere coordin-
ation with RNA atoms.

For the 373 representative sequences/structures (Supplementary
Information), MgNet predicts 1,137 binding sites with inner-sphere
coordination, among which 313 are previously reported binding
motifs and 654 are inner-sphere coordination binding sites with a
single coordinating RNA atom. For single atom-coordinated sites,
the boundMg2þ ions could be partially dehydrated and it is possible
that some of these sites involve outer-sphere Mg2þ binding motifs
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with water-mediated outer-sphere interactions. However, our cur-
rent MgNet model is unable to identify the position of the coordin-
ating water molecules thus Mg2þ coordinated by a single RNA atom
is not considered as a robust motif in this study. From the remaining
170 sites with inner-sphere coordination, we identify two new bind-
ingmotifs, namely, the “16-member ring” and “Phosphate pyramid”
(Fig. 5a,b).

Furthermore, we compute the relative abundance of the previ-
ously reported binding motifs and the newly found ones for both
the MgRNA benchmark set (Zheng et al., 2015) and the general set
(Fig. 5c). The MgRNA benchmark set contains comprehensive
high-qualityMg2þ binding sites and was previously used to identify
Mg2þ binding motifs (Zheng et al., 2015). For previously reported
inner-sphere motifs, only top-5 abundant motifs are plotted. The

Fig. 3. Example of saliency calculation for eight binding motifs. These motifs differ by the type of ion coordination (i.e. inner-sphere or outer-sphere coordination), the number and
type of the coordinating atoms, and the geometry of the coordination. Saliency values are calculated for eight binding sites: (a) 3Q3Z-V85; (b) 2Z75-B301; (c) 2YIE-Z1116; (d) 1VQ8–
08004; (e) 3DD2-B1000; (f) 2QBA-B3321; (g) 4TP8-A1601; (h) 3HAX-E200, and two input channels: volume occupancy (top) and partial charge (bottom). Experimentally determined
positions of Mg2þ cation are indicated by green spheres, oxygen atoms in water molecules are shown in small red spheres. Direct coordination (inner-sphere coordination) are
shown as magenta dashes, and indirect coordination (outer-sphere coordination, i.e. mediated by water molecules) are shown as black dashes. Residues and coordinating atoms
other than oxygen of watermolecules are labelledwith red text. One extraMg2þ in (a) is shown as a cyan sphere. The saliency values of RNA atoms are shown in the blue scale, where
the atoms with larger saliency values are shown in a darker blue colour.
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bar graph shows that the “Magnesium clamp” and the “10-member
ring” motifs are the top-2 abundant motifs in both the general set
and the MgRNA benchmark set, and the “G-phosphate”, “U-
phosphate”, and “Y-clamp” motifs occur at similar levels of abun-
dance. The newly discovered motifs are shown in the inset of the
figure. The similar abundance of the “Phosphate pyramid”motif for
both the general set and the MgRNA benchmark set indicates that
this new motif is already in the MgRNA benchmark set and was
probably overlooked in the previous study (Zheng et al., 2015).
Interestingly, the abundance of the “16-member ring” motif in
MgRNA benchmark set is significantly lower than that in the
general set. By investigating the sites that are identified as a “16-
member ring”motif in the general set, we find that 65% of the sites
belong to structures not included in the MgRNA benchmark set.
We have also examined the corresponding experimental structures
for the 21 and 20 predicted Mg2þ sites in the “Phosphate pyramid”
and the “16-member ring” motifs, respectively, and found that the
MgNet predictions are consistent with experimental results. Spe-
cifically, 17 and 13 predicted sites of the “Phosphate pyramid” and
the “16-member ring” motifs have the corresponding experimen-
tally observed ion binding sites, which constitute around 80.95 and
65.00% of the total predicted sites, respectively. The remaining
predicted sites are either those without corresponding experimental
ions or with ions other than Mg2þ. The possible reason for these
sites withmissing experimental counterparts could be the quality of
the dataset (i.e. ions that could exist in the structures but be
overlooked by experiments). For this reason, although these motifs
are discovered by our machine-learning model, further computa-
tional and experimental studies would be desirable to validate these
newly identified motifs in RNA-Mg2þ interactions.

Discussion

MgNet is a machine-learning method that uses a deep learning
graphical convolutional neural network to predict Mg2þ binding
sites for a given RNA structure. Currently, the model is trained to

Fig. 4. Radial frequency distributions and relative saliency distributions of different (a–c) atom types and (d–f) representative atoms around the correctly predicted Mg2þ ion sites.
The figure shows the contact radial frequency distributions (a,d), the relative saliency distributions for the volume occupancies (b,e) and the partial charges (c,f), respectively. The
frequencies and saliency values are normalized to the [0, 1] range. In (d–f), only the representative atom of each atom type is shown (with the same colour as the corresponding
atom type in (a–c)). �Or is the average of two sugar oxygen atoms (O3’ and O5’) due to the similar radial frequencies and relative saliency distributions, and �Oph is the average of the
two phosphate oxygen atoms OP1 and OP2. The representative atoms are chosen by selecting the most abundant atom for each atom type. Details can also be found in
Supplementary Information.

Fig. 5. Representative sites for newly discovered motifs and relative abundance of
various motifs. (a,b) Representative sites are defined by PDB codes, chain id, and the
predicted Mg2þ residue number as follows: (a) “16-member ring” (1QU2-T-9) and (b)
“Phosphate pyramid” (4FAR-A- 30). Magnesium ions and inner-sphere interactions are
shown in green spheres and black dashed lines, respectively. The coordinating RNA
atoms and nearby nucleotides are labelled with red text. The “16-member ring” motif
involves two inner-sphere coordinating oxygen atoms from two phosphate groups,
respectively, separated by one residue (not consecutive phosphate groups). The two
coordinating oxygen atoms, the RNA backbone atoms in between, and the Mg2þ form a
ringwith 16 atoms. The “Phosphate pyramid”motif contains either a “10-member ring”
or a “16-member ring” with another inner-sphere ion coordinating the phosphate
oxygen atoms, forming a triangular pyramid. (c) Relative abundance of the top-5
previously reported and newly discovered inner-sphere Mg2þ binding motifs in general
set (red) and MgRNA benchmark set (Zheng et al., 2015) (blue). The two newly
discovered motifs are shown in the inset. The percentage of each motif is calculated
by dividing the number of the sites belonging to the corresponding motif by the total
number of sites with inner-sphere coordinating RNA atoms.
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predict Mg2þ binding sites. With the increasing number of known
RNA structures, we can realistically expect that the accuracy of
MgNet predictions will continuously improve. Furthermore, with
the increasing availability of nucleic acid structures with different
types of bound ions, we can expect the extension of the applic-
ability of the method for other metal ions and other nucleic acids
(DNAs).

Comparisons with other existing approaches such as Meta-
lionRNA (Philips et al., 2011), MD simulations (Fischer et al.,
2018), and Brownian dynamics simulations (Hermann and
Westhof, 1998) indicate that MgNet can lead to notable improve-
ments in the prediction accuracy for Mg2þ binding sites. Further-
more, saliency map analysis identifies and visualizes the RNA
atoms that are most critical for Mg2þ binding, and the information
can facilitate our understanding of metal ion-RNA interactions. In
contrast to physics-based models, which are usually excessively
demanding in computational and human resources, with 3D
RNA structures as the input and the predicted metal ion binding
sites as the output,MgNet here can be conveniently implemented as
a computationally efficient module that can be readily integrated
into any automated processes.
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