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Abstract. For a domain O of CN we introduce a fairly general and intrinsic condition of weak
q-pseudoconvexity, and prove, in Theorem 4, solvability of the �@-complex for forms with
C1� �O�-coef¢cients in degree X q� 1.
All domains whose boundary have a constant number of negative Levi eigenvalues are easily

recognized to ful¢ll our condition of q-pseudoconvexity; thus we regain the result ofMichel (with
a simpli¢ed proof).
Our method deeply relies on the L2-estimates by HÎrmander (with some variants). The main

point of our proof is that our estimates (both in weightened-L2 and in Sobolev norms) are suf-
¢ciently accurate to permit us to exploit the technique by Dufresnoy for regularity up to the
boundary.
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Let O be a domain of CN , zo a point of M :� @O, U a neighborhood of zo. We
consider an orthonormal basis of �1; 0�^forms o1; . . . ;oN on U , and the dual basis
@o1 ; . . . ; @oN of �1; 0�^derivatives. We assume that M is C2, take a de¢ning function
r for O (thus O � fr < 0g) and denote by

ÿ
rij�z�

�
the matrix of the Hermitian form

�@@r�z� in the basis foig. We assume that, for a suitable choice of foig with
C2^coef¢cients and with oN � @r, and for an integer q with 1W q < N, we have

rij�z�
� �

ijW q
W 0; rij�z�

� �
q�1W ijWNÿ1

X 0; rij�z�
� �

iW q;q�1W jWNÿ1
� 0

8z 2M \U : �1�

Remark 1. PutM�z� � spanf@o1 ; . . . ; @oqg, thenM is a C2 majorant of the negative
eigenspace MÿM of �@@rj@r? . Here, as in the following, @r? is the complex hyperplane
of CN orthogonal to @r. We shall also use in the following the notation M0

M
and M�M for the null and positive eigenspace respectively.

Note also that (1) is independent of the choice of the `de¢ning' function r.
Denote by s�M�z� the numbers of respectively positive and negative eigenvalues of

the form �@@r�z�@r?�z� and consider the condition

sÿM�z� � q 8z 2M \U : �2�
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LEMMA 2. LetO be C4. Then (2) is equivalent, in a suitable C2 basis foig, to (1) with
the additional requirement:

ÿ
rij�z�

�
ijW q < 0 (instead of W 0).

Proof. Let m1�z�W m2�z�W . . . W mNÿ1�z� be the eigenvalues of
ÿ
rij�z�

�j@r�z�? . It is
clear that

mq�z� < 0; mq�1�z�X 0 8z 2 U :

Thus the eigenspace of the ¢rst q (resp: secondN ÿ 1ÿ q) eigenvectors depend C2 on
z and coincide with MÿM (resp: M0

M [M�M). &

For ordered multi-indices J � �j1 < . . . < jk� of a given length jJj � k, we shall
consider vectors w � �wJ�. For any permutation s we shall also put ws�J� :�
segn �s�wJ .

PROPOSITION 3. Assume (1). Then for a suitable r and with f�z� � ÿlog�ÿr��z��
l0jzj2 (l0 real positive), we get an exhaustion function of O at zo such that for suitable
l0 and for any kX q� 1:X

jK j�kÿ1

0 X
ij�1;...;N

0 fij�z�wiK �wjK ÿ
X
jJj�k

0 X
iW q

fii�z�jwJ j2 X ljwj2 8z 2 O \U;

8w 2 CN �3�

(with a new l > 0 and where
P0 indicates the sum restricted to ordered indices).

Proof. We begin by solving this initial problem. In condition (3) the Levi form is
evaluated at points of O, whereas in the assumption (1) it is evaluated at @O. To
¢ll this gap we represent @O as a graph xN � h and consider the projection
O! @O; z 7!z� along the xN -axis. For r � xN ÿ h we clearly have:

@r?�z� � @r?�z��; �@@r�z� � �@@r�z��:

For this reason, (1) is in fact ful¢lled also in O (even though in this form it is no more
intrinsic and depends on our particular choice of the de¢ning function r). Thus we
shall forget z in the following and always suppose it ranges through O.

We shall also use the notation o0 � �o1; . . . ;oNÿ1�; oN � @r. Let l1 W l2 W . . .

and m1 W m2 W . . . be the eigenvalues of �@@f and �@@rj@r? respectively. Since
�@@f � jrjÿ1 �@@r� jrjÿ2 �oN ^ oN � l0 �o ^ o, then jrjÿ1mi � l0 are the eigenvalues of
�@@fj@r? . Also it is clear that:

X
jK j�kÿ1

0 X
ij�1;...;N

0 fij�z�wiK �wjK X
X

i�1;...;k
li

 !
jwj2;

X
jJj�k

0 X
iW q

fii�z�jwJ j2 � ÿr�ÿ1
X
iW q

mi

0@ 1A� l0q

0@ 1Ajwj2: �4�
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We claim that for a suitable c > 0,X
i�1;...;k

li ÿ rÿ1
X

i�1;...;q
mi ÿ l0qX ��kÿ q�l0 ÿ kc� �: l: �5�

(where in turn l is positive for suitable l0). In fact:

�@@f � �ÿr�ÿ1 �@@r� rÿ2 �oN ^ oN � l0 �o ^ o

� �ÿr�ÿ1 �@0@0r� rÿ2 �oN ^ oN � 2�ÿr�ÿ1<e �@0@oNr� cjo0j2� �
ÿ c �o0 ^ o0 � l0 �o ^ o:

�6�

Now for suitable large c we can make the term between brackets `���' in the second
line of (6) to be positive. It follows:

�@@fX �ÿr�ÿ1 �@0@0rÿ c �o0 ^ o0 � l0 �o ^ o: �7�

Let fNkg describe the family of complex k-dimensional planes in CN . We have:X
i�1;...;k

li � inf
Nk

trace� �@@fjNk
�

X inf
Nk

trace �ÿr�ÿ1 �@0@0rÿ c �o ^ o� l0 �o ^ o
ÿ �jNk

ÿ �
X �kl0 ÿ kc� � �ÿr�ÿ1

X
i�1;...;k

mi:

�8�

(where the central inequality is due to (7)). From (8) and (1) our claim (5) imme-
diately follows. (5) and (4) imply in turn (3). The proof is complete. &

We shall consider forms f �P0J fJ �oJ (resp. u �P0K uK �oK ) of type �0; k� (resp.
�0; kÿ 1�). (Since all forms shall be understood to be antiholomorphic we shall only
mention in the following their degree k instead of their type �0; k�.)

THEOREM 4. Assume that in a C2 basis of oi's, (1) is ful¢lled. Then there is a fun-
damental system of neighborhoods fUg of zo such that if k�� degree�f ��X q� 1
and �@f � 0 in O \U, then the equation

�@u � f is solvable in C1�O \U 0� for any U 0CCU : �9�

The proof will be given in many steps. For a real positive function f and for an
integer kX 0, we de¢ne L2

f�O�k to be the space of k-antiholomorphic forms

f �P0jJj�k fJ �oJ with jjfJ jjf�:�
R
O eÿfjfJ j2dV

ÿ �1
2� < �1 (dV � the Lebesgue mea-

sure on CN , foig � a basis over CN ). Here, as always,
P0 indicates the sum over

ordered indices. We let �@ act as a complex:

L2
f�O�kÿ1!

�@
L2
f�O�k !

�@
L2
f�O�k�1: �10�
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We denote by �@� (resp. doi ) the adjoint of �@ (resp. ÿ@ �oi ) in the L2
f�O�-norm. We have

X
jK j�kÿ1

0 X
ij�1;...;N

0
Z
O
eÿf doi fiKdoj fjK ÿ @ �oj fiK@ �oi fjK

ÿ �
dV�

�
X
jJj�k

0 X
i�1;...;N

Z
O
eÿfj@ �oi fJ j2dV � jj �@�f � R�f �jj2f � jj �@f � R� f �jj2f

8f 2 C1c �O�k;

�11�

where R�f � is an error where no fJ is differentiated and which involves the derivatives
of the coef¢cients of the oi's. Let (I) be the left side of (11). We then get

�I�W 2�jj �@�f jj2f � jj �@f jj2f� � s21jjf jj2f 8f 2 C1c �O�k; �12�

where s1 denotes terms which can be estimated by the sup-norm of the ¢rst
derivatives of the oi's over the support of f . (In the following we shall also use
the notation s2 for constants which can be estimated by the second derivatives.)
If we introduce now a new cX 0, and replace (10) by:

L2
fÿ2c�O�kÿ1 !

�@
L2
fÿc�O�k !

�@
L2
f�O�k�1; �13�

we get:

�I� � jjec �@�f � R�f � � @c � f jj2f � jj �@f � R�f �jj2f
W 2�jj �@�f jj2fÿ2c � jj �@f jj2f� � s21jjf jj2f � 2jjj@cjf jj2f 8f 2 C1c �O�;

�14�

where @c � f :�P0K Pi @o�cfiK . The main ingredient of the proof of Th: 4 is con-
tained in the following

PROPOSITION 5. For any orthonormal C2-basis foig, and with �fij� denoting the
matrix of �@@f in such basis, we haveX

jK j�kÿ1

0 X
ij�1;...;N

Z
O

eÿffij fiK �fjKdVÿ
X
jJj�k

0
Z
O

eÿffiijfJ j2dV

W 2�jj �@�f jj2fÿ2c � jj �@f jj2f � jjj@cjf jj2f� � �s21 � s2�jjf jj2f 8f 2 C1c �O�k:
�15�

Proof. We recall that

doi � ÿ@��oi
;

doi@ �oj ÿ @ �ojdoi � @ �oj@oif�
X
h

chji@oh ÿ
X
h

�chij@ �oh

� fji �
X
h

chjidoh ÿ
X
h

�chij@ �oh ;

�16�
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where the terms chji involve the antiholomorphic derivatives of the coef¢cients of the
oi's. We apply (16) to the terms in the ¢rst sums of (I) with i 6� j or
i � jX q� 1: The remaining terms added to the second sum giveX

jK j�kÿ1

0 X
iW q

jjdoi fiK jj2f �
X
jJj�k

0 X
iX q�1or i=2J

jj@ �oi fJ jj2f: �17�

We also apply (16) to the terms in the second sums in (17) with iW q; i =2 J. Thus (17)
becomes:

X
jJj�k

0 X
iW q

jjdoi fJ jj2f �
X
jJj�k

0 X
iX q�1

jj@ �oi fJ jj2f ÿ
X
jJj�k

0 X
iW qi =2 J

Z
O

eÿffiijfJ j2dV:

Thus we get

X
jK j�kÿ1

0 X
ij�1;...;N

Z
O

eÿffijfiK �fjKdVÿ
X
jJj�k

0 X
iW q

Z
O

eÿffiijfJ j2dV

0@ 1A�
�

X
jJj�k

0 X
iW q

jjdoi fJ jj2f �
X
jJj�k

0 X
iX q�1

jj@ �oi fJ jj2f

0@ 1A
W 2 jj �@�f jj2fÿ2c � jj �@f jj2f � jjj@cjf jj2f

� �
� s21jjf jj2f�

�
X
K

0X
hij

j
Z
O

eÿfchjidoh�fiK ��fjKdVj �
X
K

0X
hij

j
Z
O

eÿf �chij@ �oh �fiK ��fjKdVj
 !

:

�18�

Let us denote byA; B; C; D; the four lines in (18). To get a good estimation forD we
remark that:Z

O
eÿfchjidoh fiK �fjKdV � ÿ

Z
O

eÿfchjifiK@ �oh fjKdVÿ
Z
O

eÿf@oh�chji�fiK �fjKdV: �19�

It follows:

DW s1jjf jjf
B
2

� �1
2

�s2jjf jj2f W
B
2
� �s21 � s2�jjf jj2f: �20�

Then the conclusion follows. &

Let us denote by D �@� and D �@ the domains of �@� and �@ respectively de¢ned by (13).

PROPOSITION 6. Let O be bounded and endowed with an exhaustion function which
satis¢es (3) (8z 2 O) in a suitable basis ofoi over �O. Then if kX q� 1 and for a new f
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and a suitable c, we have:

jjf jj2fÿc W jj �@�f jj2fÿ2c � jj �@f jj2f 8f 2 D �@ \D �@� : �21�

Moreover for any compact subset K �� O, we may choose cjK � 0 and
fjK � �2� s21 � s2�jzj2.

Proof. We choose c according to [5, Lemma 4.1.3]; (in particular, 8K , we can
choose cjK � 0). This ensures density of C1c into L2-forms.

We then take an exhaustion function f forOwhich satis¢es (3) 8z 2 O. We go back
to (15) of Proposition 5; this holds now for L2 instead of C1c forms. Moreover, in the
present situation the left side is larger than ljjf jj2f for some constant l > 0 indepen-
dent of K . Let cXfjK ; we replace the above f by w�f� � �2� s21 � s2�jzj2; where
w is a positive convex function of a real argument t which satis¢es:

w�t� � 0; for tW c;

_w�t�X sup
fz:f�z�W tg

2�j@cj2�ec�
l ; for tX c:

�22�

Under this choice of f and c, (21) clearly follows. &

With the conclusions of Proposition 6 at our disposal, the rest of the proof of
Theorem 4 can be carried out along classical lines. First we need to translate
the basic estimate (21) into two results on existence and regularity of solutions
of the system � �@; �@��. For their proof we give [5, Lemma 4.41 and Th. 4.2.5] as general
reference and [13, Prop. 2.1 and Prop. 2.2] for a speci¢c proof. We shall denote by
m � m�z� the (strictly plurisubharmonic) function m � �2� s21 � s2�jzj2. We shall
denote by �@ (resp: �@�) the �@-complex (resp: its adjoint) over L2

m�O�-forms.

PROPOSITION 7. Let O be bounded, assume (3) 8z 2 O in a C2 basis of oi, and let
kX q� 1. Then for any f 2 L2

m�O�k with �@f � 0 there exists u 2 L2
m�O�kÿ1 such that

� �@u � f ; �@�u � 0�; jjujj2m W jjf jj2m: �23�

Let jj � jj�s� denote the norm of the Sobolev space Ws�O� of index s. Let
Oe � fz 2 Ojdist�z; @O� > eg.

PROPOSITION 8. Let O be bounded, suppose (3) be satis¢ed 8z 2 O in a suitable
basis of oi, and let kX q� 1. Then for any f 2 C1�O�k with �@f � 0 there is
u 2 C1�Oe� such that for any s > 0 and for suitable Ss > 0 (independent of f ):

� �@u � f ; �@�u � 0�; jjujj�s�1�W
Ss

es�1
jjf jj�s�; �24�

where the norm of f and u are over O and Oe respectively.
End of Proof of Theorem 4 (cf. Dufresnoy [2]). We choose a decreasing sequence of

domains . . . ;On � On�1 . . . � O which inherit from O the property (1) (and hence, if
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they are small enough, (3)), and require that for Z with 0 < Z < 1
2 we have

Z2
n�1
< dist�@On; @O� < �Z2n=2�. For instance, if O is de¢ned in a neighbourhood

of zo by xN ÿ h < 0, we can de¢ne On by xn ÿ h < �Z2n=2�: Let U (resp. Un� be
the sphere with center zo and radius s (resp. s� �Z2n=2�: we consider the functions

fn � ÿ log ÿxN � h� Z2
n

2

� �
� ljzj2 ÿ log ÿjzÿ zoj2 � s� Z2

n

2

� �2
 !

:

Clearly the functions fn verify (3) for a smooth basis of oi's on On \Un: Let f be a
smooth form in O \Uno for no large. To solve the equation �@u � f in �O \U , we ¢rst
extend f to ~f in On; nX no such that ~f is still C1 and

jj �@~f jOn
\Uvjj�s�WCS sZ2

nS �25�
for any S and for suitable CS s. (This is clearly possible because �@~f j � 0 on O.) On
account of Proposition 8, we take solutions hn over On \Un of

�@hn � �@~f
jjhnjOn�1\Un�1 jj�s�1�WSs�Z2n�1�ÿ�s�1�jj �@~f jj�s�;

(
�26�

a solution a1 of �@a1 � ~f ÿ h1, and ¢nally solutions an�1 of

�@an�1 � hn ÿ hn�1
jjan�1jj�s�2�WSs�1�Z2n�2 �ÿ�s�2�jjhn ÿ hn�1jj�s�1�WCS;s�12�n;

(
(for S and n large). This is clearly possible by recalling (25), (26). It follows that the
series

P
n an converges in C1� �O \ �U� and solves �@�Pn an� � ~fÿ

n
lim hn � ~f . This

completes the proof of Theorem 4. &
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