

q-Pseudoconvexity and Regularity at the Boundary for Solutions of the $\bar{\partial}$ -problem

GIUSEPPE ZAMPIERI

Dip. Matematica-Universitè v. Belzoni 7, Padova, Italy; e-mail: zampieri@math.unipd.it

(Received: 3 February 1998; in final form: 2 December 1998)

Abstract. For a domain Ω of \mathbb{C}^N we introduce a fairly general and intrinsic condition of weak q-pseudoconvexity, and prove, in Theorem 4, solvability of the $\bar{\partial}$ -complex for forms with $C^{\infty}(\overline{\Omega})$ -coefficients in degree $\geq q+1$.

All domains whose boundary have a constant number of negative Levi eigenvalues are easily recognized to fulfill our condition of q-pseudoconvexity; thus we regain the result of Michel (with a simplified proof).

Our method deeply relies on the L^2 -estimates by Hörmander (with some variants). The main point of our proof is that our estimates (both in weightened- L^2 and in Sobolev norms) are sufficiently accurate to permit us to exploit the technique by Dufresnoy for regularity up to the boundary.

Mathematics Subject Classifications (2000): 32W05, 32F10, 32D05.

``

Key words: Cauchy–Riemann system, L^2 –estimates.

Let Ω be a domain of \mathbb{C}^N , z_o a point of $M := \partial \Omega$, U a neighborhood of z_o . We consider an orthonormal basis of (1, 0)-forms $\omega_1, \ldots, \omega_N$ on U, and the dual basis $\partial_{\omega_1}, \ldots, \partial_{\omega_N}$ of (1, 0)-derivatives. We assume that M is C^2 , take a defining function ρ for Ω (thus $\Omega = \{\rho < 0\}$) and denote by $(\rho_{ii}(z))$ the matrix of the Hermitian form $\bar{\partial}\partial\rho(z)$ in the basis $\{\omega_i\}$. We assume that, for a suitable choice of $\{\omega_i\}$ with C²-coefficients and with $\omega_N = \partial \rho$, and for an integer q with $1 \leq q < N$, we have

$$\left(\rho_{ij}(z)\right)_{ij \leqslant q} \leqslant 0, \quad \left(\rho_{ij}(z)\right)_{q+1 \leqslant ij \leqslant N-1} \geqslant 0, \quad \left(\rho_{ij}(z)\right)_{i \leqslant q, q+1 \leqslant j \leqslant N-1} = 0$$

$$\forall z \in M \cap U.$$
 (1)

Remark 1. Put $\mathcal{M}(z) = span\{\partial_{\omega_1}, \ldots, \partial_{\omega_a}\}$, then \mathcal{M} is a C^2 majorant of the negative eigenspace \mathcal{M}_{M}^{-} of $\bar{\partial}\partial\rho|_{\partial\rho^{\perp}}$. Here, as in the following, $\partial\rho^{\perp}$ is the complex hyperplane of \mathbb{C}^N orthogonal to $\partial \rho$. We shall also use in the following the notation \mathcal{M}^0_M and \mathcal{M}_M^+ for the null and positive eigenspace respectively.

Note also that (1) is independent of the choice of the 'defining' function ρ .

Denote by $s_M^{\pm}(z)$ the numbers of respectively positive and negative eigenvalues of the form $\bar{\partial}\partial\rho(z)_{\partial\rho^{\perp}(z)}$ and consider the condition

$$s_M^-(z) \equiv q \,\forall z \in M \cap U. \tag{2}$$

LEMMA 2. Let Ω be C^4 . Then (2) is equivalent, in a suitable C^2 basis $\{\omega_i\}$, to (1) with the additional requirement: $(\rho_{ij}(z))_{ij \leq q} < 0$ (instead of ≤ 0).

Proof. Let $\mu_1(z) \leq \mu_2(z) \leq \ldots \leq \mu_{N-1}(z)$ be the eigenvalues of $(\rho_{ij}(z))|_{\partial \rho(z)^{\perp}}$. It is clear that

$$\mu_a(z) < 0, \quad \mu_{a+1}(z) \ge 0 \ \forall z \in U.$$

Thus the eigenspace of the first q (resp. second N - 1 - q) eigenvectors depend C^2 on z and coincide with \mathcal{M}_M^- (resp. $\mathcal{M}_M^0 \cup \mathcal{M}_M^+$).

For ordered multi-indices $J = (j_1 < ... < j_k)$ of a given length |J| = k, we shall consider vectors $w = (w_J)$. For any permutation σ we shall also put $w_{\sigma(J)} := \text{segn}(\sigma)w_J$.

PROPOSITION 3. Assume (1). Then for a suitable ρ and with $\phi(z) = -log(-\rho)(z) + \lambda'|z|^2$ (λ' real positive), we get an exhaustion function of Ω at z_o such that for suitable λ' and for any $k \ge q + 1$:

$$\sum_{|K|=k-1}' \sum_{ij=1,\dots,N}' \phi_{ij}(z) w_{iK} \bar{w}_{jK} - \sum_{|J|=k}' \sum_{i \leqslant q} \phi_{ii}(z) |w_J|^2 \ge \lambda |w|^2 \ \forall z \in \Omega \cap U,$$

$$\forall w \in \mathbb{C}^N$$
(3)

(with a new $\lambda > 0$ and where \sum' indicates the sum restricted to ordered indices).

Proof. We begin by solving this initial problem. In condition (3) the Levi form is evaluated at points of Ω , whereas in the assumption (1) it is evaluated at $\partial\Omega$. To fill this gap we represent $\partial\Omega$ as a graph $x_N = h$ and consider the projection $\Omega \rightarrow \partial\Omega$, $z \mapsto z^*$ along the x_N -axis. For $\rho = x_N - h$ we clearly have:

$$\partial \rho^{\perp}(z) = \partial \rho^{\perp}(z^*), \quad \bar{\partial} \partial \rho(z) = \bar{\partial} \partial \rho(z^*).$$

For this reason, (1) is in fact fulfilled also in Ω (even though in this form it is no more intrinsic and depends on our particular choice of the defining function ρ). Thus we shall forget z in the following and always suppose it ranges through Ω .

We shall also use the notation $\omega' = (\omega_1, \ldots, \omega_{N-1})$, $\omega_N = \partial \rho$. Let $\lambda_1 \leq \lambda_2 \leq \ldots$ and $\mu_1 \leq \mu_2 \leq \ldots$ be the eigenvalues of $\bar{\partial}\partial\phi$ and $\bar{\partial}\partial\rho|_{\partial\rho^{\perp}}$ respectively. Since $\bar{\partial}\partial\phi = |\rho|^{-1}\bar{\partial}\partial\rho + |\rho|^{-2}\bar{\omega}_N \wedge \omega_N + \lambda'\bar{\omega} \wedge \omega$, then $|\rho|^{-1}\mu_i + \lambda'$ are the eigenvalues of $\bar{\partial}\partial\phi|_{\partial\rho^{\perp}}$. Also it is clear that:

$$\sum_{|K|=k-1}^{\prime} \sum_{ij=1,\dots,N}^{\prime} \phi_{ij}(z) w_{iK} \bar{w}_{jK} \ge \left(\sum_{i=1,\dots,k} \lambda_i\right) |w|^2,$$

$$\sum_{|J|=k}^{\prime} \sum_{i \leqslant q} \phi_{ii}(z) |w_J|^2 = \left(-\rho\right)^{-1} \left(\sum_{i \leqslant q} \mu_i\right) + \lambda' q\right) |w|^2.$$
(4)

156

We claim that for a suitable c > 0,

$$\sum_{i=1,\dots,k} \lambda_i - \rho^{-1} \sum_{i=1,\dots,q} \mu_i - \lambda' q \ge ((k-q)\lambda' - kc) =: \lambda.$$
⁽⁵⁾

(where in turn λ is positive for suitable λ'). In fact:

$$\bar{\partial}\partial\phi = (-\rho)^{-1}\bar{\partial}\partial\rho + \rho^{-2}\bar{\omega}_N \wedge \omega_N + \lambda'\bar{\omega} \wedge \omega$$

= $(-\rho)^{-1}\bar{\partial}'\partial'\rho + \left[\rho^{-2}\bar{\omega}_N \wedge \omega_N + 2(-\rho)^{-1}\Re e\bar{\partial}'\partial_{\omega_N}\rho + c|\omega'|^2\right]$ (6)
 $-c\bar{\omega}' \wedge \omega' + \lambda'\bar{\omega} \wedge \omega.$

Now for suitable large c we can make the term between brackets '[·]' in the second line of (6) to be positive. It follows:

$$\bar{\partial}\partial\phi \ge (-\rho)^{-1}\bar{\partial}'\partial'\rho - c\bar{\omega}' \wedge \omega' + \lambda'\bar{\omega} \wedge \omega. \tag{7}$$

Let $\{N_k\}$ describe the family of complex k-dimensional planes in \mathbb{C}^N . We have:

$$\sum_{i=1,\dots,k} \lambda_{i} = \inf_{N_{k}} \operatorname{trace}(\bar{\partial}\partial\phi|_{N_{k}})$$

$$\geq \inf_{N_{k}} \operatorname{trace}(((-\rho)^{-1}\bar{\partial}'\partial'\rho - c\bar{\omega}\wedge\omega + \lambda'\bar{\omega}\wedge\omega)|_{N_{k}})$$

$$\geq (k\lambda' - kc) + (-\rho)^{-1}\sum_{i=1,\dots,k} \mu_{i}.$$
(8)

(where the central inequality is due to (7)). From (8) and (1) our claim (5) immediately follows. (5) and (4) imply in turn (3). The proof is complete. \Box

We shall consider forms $f = \sum_{J}' f_{J} \bar{\omega}_{J}$ (resp. $u = \sum_{K}' u_{K} \bar{\omega}_{K}$) of type (0, k) (resp. (0, k - 1)). (Since all forms shall be understood to be antiholomorphic we shall only mention in the following their degree k instead of their type (0, k).)

THEOREM 4. Assume that in a C^2 basis of ω_i 's, (1) is fulfilled. Then there is a fundamental system of neighborhoods $\{U\}$ of z_o such that if $k(=degree(f)) \ge q + 1$ and $\overline{\partial}f = 0$ in $\overline{\Omega \cap U}$, then the equation

$$\bar{\partial}u = f$$
 is solvable in $C^{\infty}(\overline{\Omega \cap U'})$ for any $U'CCU$. (9)

The proof will be given in many steps. For a real positive function ϕ and for an integer $k \ge 0$, we define $L^2_{\phi}(\Omega)^k$ to be the space of k-antiholomorphic forms $f = \sum_{|J|=k}' f_J \bar{\omega}_J$ with $||f_J||_{\phi} (:= (\int_{\Omega} e^{-\phi} |f_J|^2 dV)^{\frac{1}{2}}) < +\infty$ (dV = the Lebesgue measure on \mathbb{C}^N , $\{\omega_i\} = a$ basis over \mathbb{C}^N). Here, as always, \sum' indicates the sum over ordered indices. We let $\bar{\partial}$ act as a complex:

$$L^2_{\phi}(\Omega)^{k-1} \xrightarrow{\tilde{\partial}} L^2_{\phi}(\Omega)^k \xrightarrow{\tilde{\partial}} L^2_{\phi}(\Omega)^{k+1}.$$
 (10)

G. ZAMPIERI

We denote by $\bar{\partial}^*$ (resp. δ_{ω_i}) the adjoint of $\bar{\partial}$ (resp. $-\partial_{\bar{\omega}_i}$) in the $L^2_{\phi}(\Omega)$ -norm. We have

$$\sum_{|K|=k-1}^{\prime} \sum_{ij=1,\dots,N}^{\prime} \int_{\Omega} e^{-\phi} \left(\delta_{\omega_i} f_{iK} \overline{\delta_{\omega_j} f_{jK}} - \partial_{\bar{\omega}_j} f_{iK} \overline{\partial_{\bar{\omega}_i} f_{jK}} \right) \mathrm{dV} + \\ + \sum_{|J|=k}^{\prime} \sum_{i=1,\dots,N} \int_{\Omega} e^{-\phi} |\partial_{\bar{\omega}_i} f_J|^2 \mathrm{dV} = ||\bar{\partial}^* f + R(f)||_{\phi}^2 + ||\bar{\partial}f + R(f)||_{\phi}^2$$

$$\forall f \in \mathbf{C}_c^{\infty}(\Omega)^k,$$

$$(11)$$

where R(f) is an error where no f_J is differentiated and which involves the derivatives of the coefficients of the ω_i 's. Let (I) be the left side of (11). We then get

$$(I) \leq 2(||\bar{\partial}^* f||_{\phi}^2 + ||\bar{\partial} f||_{\phi}^2) + \sigma_1^2 ||f||_{\phi}^2 \ \forall f \in \mathcal{C}_c^{\infty}(\Omega)^k,$$
(12)

where σ_1 denotes terms which can be estimated by the sup-norm of the first derivatives of the ω_i 's over the support of f. (In the following we shall also use the notation σ_2 for constants which can be estimated by the second derivatives.) If we introduce now a new $\psi \ge 0$, and replace (10) by:

$$L^{2}_{\phi-2\psi}(\Omega)^{k-1} \xrightarrow{\bar{\partial}} L^{2}_{\phi-\psi}(\Omega)^{k} \xrightarrow{\bar{\partial}} L^{2}_{\phi}(\Omega)^{k+1}, \qquad (13)$$

we get:

$$\begin{aligned} (I) &= ||e^{\psi}\bar{\partial}^*f + R(f) + \partial\psi \cdot f||^2_{\phi} + ||\bar{\partial}f + R(f)||^2_{\phi} \\ &\leq 2(||\bar{\partial}^*f||^2_{\phi-2\psi} + ||\bar{\partial}f||^2_{\phi}) + \sigma_1^2||f||^2_{\phi} + 2|||\partial\psi|f||^2_{\phi} \quad \forall f \in \mathcal{C}^{\infty}_c(\Omega), \end{aligned}$$

where $\partial \psi \cdot f := \sum_{K}' \sum_{i} \partial_{\omega \bullet} \psi f_{iK}$. The main ingredient of the proof of Th. 4 is contained in the following

PROPOSITION 5. For any orthonormal C²-basis $\{\omega_i\}$, and with (ϕ_{ij}) denoting the matrix of $\bar{\partial}\partial\phi$ in such basis, we have

$$\sum_{|K|=k-1}' \sum_{ij=1,\dots,N} \int_{\Omega} e^{-\phi} \phi_{ij} f_{iK} \bar{f}_{jK} dV - \sum_{|J|=k}' \int_{\Omega} e^{-\phi} \phi_{ii} |f_J|^2 dV$$

$$\leq 2(||\bar{\partial}^* f||^2_{\phi-2\psi} + ||\bar{\partial}f||^2_{\phi} + |||\partial\psi|f||^2_{\phi}) + (\sigma_1^2 + \sigma_2) ||f||^2_{\phi} \, \forall f \in \mathcal{C}^{\infty}_c(\Omega)^k.$$
(15)

Proof. We recall that

$$\begin{split} \delta_{\omega_i} &= -\partial_{\bar{\omega}_i}^*, \\ \delta_{\omega_i} \partial_{\bar{\omega}_j} - \partial_{\bar{\omega}_j} \delta_{\omega_i} &= \partial_{\bar{\omega}_j} \partial_{\omega_i} \phi + \sum_h c_{ji}^h \partial_{\omega_h} - \sum_h \bar{c}_{ij}^h \partial_{\bar{\omega}_h} \\ &= \phi_{ji} + \sum_h c_{ji}^h \delta_{\omega_h} - \sum_h \bar{c}_{ij}^h \partial_{\bar{\omega}_h}, \end{split}$$
(16)

where the terms c_{ji}^h involve the antiholomorphic derivatives of the coefficients of the ω_i 's. We apply (16) to the terms in the first sums of (I) with $i \neq j$ or $i = j \ge q + 1$. The remaining terms added to the second sum give

$$\sum_{|K|=k-1}' \sum_{i \leqslant q} ||\delta_{\omega_i} f_{iK}||_{\phi}^2 + \sum_{|J|=k'} \sum_{i \geqslant q+1 \text{ or } i \notin J} ||\partial_{\bar{\omega}_i} f_J||_{\phi}^2.$$
(17)

We also apply (16) to the terms in the second sums in (17) with $i \leq q$, $i \notin J$. Thus (17) becomes:

$$\sum_{|J|=k}' \sum_{i \leqslant q} ||\delta_{\omega_i} f_J||_{\phi}^2 + \sum_{|J|=k}' \sum_{i \geqslant q+1} ||\partial_{\bar{\omega}_i} f_J||_{\phi}^2 - \sum_{|J|=k}' \sum_{i \leqslant qi \notin J} \int_{\Omega} e^{-\phi} \phi_{ii} |f_J|^2 dV.$$

Thus we get

$$\left(\sum_{|K|=k-1}'\sum_{ij=1,...,N}\int_{\Omega} e^{-\phi}\phi_{ij}f_{iK}\bar{f}_{jK}dV - \sum_{|J|=k}'\sum_{i\leqslant q}\int_{\Omega} e^{-\phi}\phi_{ii}|f_{J}|^{2}dV\right) + \\
+ \left(\sum_{|J|=k}'\sum_{i\leqslant q}||\delta_{\omega_{J}}f_{J}||_{\phi}^{2} + \sum_{|J|=k}'\sum_{i\geqslant q+1}||\partial_{\bar{\omega}_{k}}f_{J}||_{\phi}^{2}\right) \\
\leqslant 2\left(||\bar{\partial}^{*}f||_{\phi-2\psi}^{2} + ||\bar{\partial}f||_{\phi}^{2} + |||\partial\psi|f||_{\phi}^{2}\right) + \sigma_{1}^{2}||f||_{\phi}^{2} + \\
+ \left(\sum_{K}'\sum_{hij}|\int_{\Omega} e^{-\phi}c_{ji}^{h}\delta_{\omega_{h}}(f_{iK})\bar{f}_{jK}dV| + \sum_{K}'\sum_{hij}|\int_{\Omega} e^{-\phi}\bar{c}_{ij}^{h}\partial_{\bar{\omega}_{h}}(f_{iK})\bar{f}_{jK}dV|\right).$$
(18)

Let us denote by A, B, C, D, the four lines in (18). To get a good estimation for D we remark that:

$$\int_{\Omega} e^{-\phi} c_{ji}^{h} \delta_{\omega_{h}} f_{iK} \bar{f}_{jK} d\mathbf{V} = -\int_{\Omega} e^{-\phi} c_{ji}^{h} f_{iK} \overline{\partial_{\bar{\omega}_{h}} f_{jK}} d\mathbf{V} - \int_{\Omega} e^{-\phi} \partial_{\omega_{h}} (c_{ji}^{h}) f_{iK} \bar{f}_{jK} d\mathbf{V}.$$
(19)

It follows:

$$D \leqslant \sigma_1 ||f||_{\phi} \left(\frac{B}{2}\right)^{\frac{1}{2}} + \sigma_2 ||f||_{\phi}^2 \leqslant \frac{B}{2} + (\sigma_1^2 + \sigma_2) ||f||_{\phi}^2.$$
⁽²⁰⁾

Then the conclusion follows.

Let us denote by $D_{\bar{\partial}^*}$ and $D_{\bar{\partial}}$ the domains of $\bar{\partial}^*$ and $\bar{\partial}$ respectively defined by (13).

PROPOSITION 6. Let Ω be bounded and endowed with an exhaustion function which satisfies (3) ($\forall z \in \Omega$) in a suitable basis of ω_i over $\overline{\Omega}$. Then if $k \ge q + 1$ and for a new ϕ

G. ZAMPIERI

and a suitable ψ , we have:

$$||f||^{2}_{\phi-\psi} \leq ||\bar{\partial}^{*}f||^{2}_{\phi-2\psi} + ||\bar{\partial}f||^{2}_{\phi} \quad \forall f \in D_{\bar{\partial}} \cap D_{\bar{\partial}^{*}}.$$

$$\tag{21}$$

Moreover for any compact subset $K \subset \subset \Omega$, we may choose $\psi|_K \equiv 0$ and $\phi|_K \equiv (2 + \sigma_1^2 + \sigma_2)|z|^2$.

Proof. We choose ψ according to [5, Lemma 4.1.3]; (in particular, $\forall K$, we can choose $\psi|_K \equiv 0$). This ensures density of C_c^{∞} into L^2 -forms.

We then take an exhaustion function ϕ for Ω which satisfies (3) $\forall z \in \Omega$. We go back to (15) of Proposition 5; this holds now for L^2 instead of C_c^{∞} forms. Moreover, in the present situation the left side is larger than $\lambda ||f||_{\phi}^2$ for some constant $\lambda > 0$ independent of K. Let $c \ge \phi|_K$; we replace the above ϕ by $\chi(\phi) + (2 + \sigma_1^2 + \sigma_2)|z|^2$, where χ is a positive convex function of a real argument t which satisfies:

$$\chi(t) \equiv 0, \qquad \text{for } t \leq c,
\dot{\chi}(t) \geq \sup_{\{z:\phi(z) \leq t\}} \frac{2(|\partial \psi|^2 + e^{\psi})}{\lambda}, \quad \text{for } t \geq c.$$
(22)

Under this choice of ϕ and ψ , (21) clearly follows.

With the conclusions of Proposition 6 at our disposal, the rest of the proof of Theorem 4 can be carried out along classical lines. First we need to translate the basic estimate (21) into two results on existence and regularity of solutions of the system $(\bar{\partial}, \bar{\partial}^*)$. For their proof we give [5, Lemma 4.41 and Th. 4.2.5] as general reference and [13, Prop. 2.1 and Prop. 2.2] for a specific proof. We shall denote by m = m(z) the (strictly plurisubharmonic) function $m = (2 + \sigma_1^2 + \sigma_2)|z|^2$. We shall denote by $\bar{\partial}$ (resp. $\bar{\partial}^*$) the $\bar{\partial}$ -complex (resp. its adjoint) over $L^2_m(\Omega)$ -forms.

PROPOSITION 7. Let Ω be bounded, assume (3) $\forall z \in \Omega$ in a C^2 basis of ω_i , and let $k \ge q+1$. Then for any $f \in L^2_m(\Omega)^k$ with $\overline{\partial} f = 0$ there exists $u \in L^2_m(\Omega)^{k-1}$ such that

$$(\bar{\partial}u = f, \ \bar{\partial}^*u = 0), \quad ||u||_m^2 \le ||f||_m^2.$$
 (23)

Let $||\cdot||_{(s)}$ denote the norm of the Sobolev space $W^{s}(\Omega)$ of index s. Let $\Omega_{\varepsilon} = \{z \in \Omega | dist(z, \partial \Omega) > \varepsilon\}.$

PROPOSITION 8. Let Ω be bounded, suppose (3) be satisfied $\forall z \in \Omega$ in a suitable basis of ω_i , and let $k \ge q+1$. Then for any $f \in C^{\infty}(\Omega)^k$ with $\overline{\partial} f = 0$ there is $u \in C^{\infty}(\Omega_{\varepsilon})$ such that for any s > 0 and for suitable $S_s > 0$ (independent of f):

$$(\bar{\partial}u = f, \ \bar{\partial}^*u = 0), \quad ||u||_{(s+1)} \leq \frac{S_s}{\varepsilon^{s+1}} ||f||_{(s)},$$
(24)

where the norm of f and u are over Ω and Ω_{ε} respectively.

End of Proof of Theorem 4 (cf. Dufresnoy [2]). We choose a decreasing sequence of domains ..., $\Omega_{\nu} \supset \Omega_{\nu+1} \ldots \supset \Omega$ which inherit from Ω the property (1) (and hence, if

they are small enough, (3)), and require that for η with $0 < \eta < \frac{1}{2}$ we have $\eta^{2^{\nu+1}} < dist(\partial \Omega_{\nu}, \partial \Omega) < (\eta^{2^{\nu}}/2)$. For instance, if Ω is defined in a neighbourhood of z_o by $x_N - h < 0$, we can define Ω_{ν} by $x_n - h < (\eta^{2^{\nu}}/2)$. Let U (resp. U_{ν}) be the sphere with center z_o and radius σ (resp. $\sigma + (\eta^{2^{\nu}}/2)$) we consider the functions

$$\phi_{\nu} = -\log\left(-x_N + h + \frac{\eta^{2^{\nu}}}{2}\right) + \lambda|z|^2 - \log\left(-|z - z_o|^2 + \left(\sigma + \frac{\eta^{2^{\nu}}}{2}\right)^2\right)$$

Clearly the functions ϕ_v verify (3) for a smooth basis of ω_i 's on $\overline{\Omega_v \cap U_v}$. Let f be a smooth form in $\overline{\Omega \cap U_{v_o}}$ for v_o large. To solve the equation $\overline{\partial u} = f$ in $\overline{\Omega} \cap U$, we first extend f to \tilde{f} in Ω_v , $v \ge v_o$ such that \tilde{f} is still C^{∞} and

$$\|\bar{\partial}\tilde{f}|_{\Omega_{\nu}} \cap U_{\nu}\|_{(s)} \leqslant C_{S\,s} \eta^{2^{\nu}S} \tag{25}$$

for any S and for suitable C_{Ss} . (This is clearly possible because $\overline{\partial f} \equiv 0$ on Ω .) On account of Proposition 8, we take solutions h_v over $\Omega_v \cap U_v$ of

$$\bar{\partial}h_{\nu} = \bar{\partial}\tilde{f} ||h_{\nu}|_{\Omega_{\nu+1}\cap U_{\nu+1}}||_{(s+1)} \leqslant S_{s}(\eta^{2^{\nu+1}})^{-(s+1)}||\bar{\partial}\tilde{f}||_{(s)},$$

$$(26)$$

a solution α_1 of $\bar{\partial}\alpha_1 = \tilde{f} - h_1$, and finally solutions $\alpha_{\nu+1}$ of

$$\begin{cases} \bar{\partial} \alpha_{\nu+1} = h_{\nu} - h_{\nu+1} \\ ||\alpha_{\nu+1}||_{(s+2)} \leqslant S_{s+1}(\eta^{2^{\nu+2}})^{-(s+2)} ||h_{\nu} - h_{\nu+1}||_{(s+1)} \leqslant C_{S,s}(\frac{1}{2})^{\nu}, \end{cases}$$

(for *S* and *v* large). This is clearly possible by recalling (25), (26). It follows that the series $\sum_{\nu} \alpha_{\nu}$ converges in $C^{\infty}(\bar{\Omega} \cap \bar{U})$ and solves $\bar{\partial}(\sum_{\nu} \alpha_{\nu}) = \tilde{f} - \lim_{\nu} h_{\nu} = \tilde{f}$. This completes the proof of Theorem 4.

References

- 1. Andreotti, A. and Grauert, H.: Théorèmes de finitude pour la cohomologie des éspaces complexes, *Bull. Soc. Math. France* **90** (1962), 193–259.
- Dufresnoy, A.: Sur l'operateur ∂ et les fonctions différentiables au sens de Whitney, Ann. Inst. Fourier 29 (1) (1979), 229–238.
- 3. Grauert, H.: Kantenkohomologie, Compositio Math. 44 (1981), 79-101.
- Henkin, G. M. and Leiterer, J.: Andreotti–Grauert Theory by Integral Formulas, Progr. in Math. 74, Birkhäuser, Basel, 1988.
- Hörmander, L.: An Introduction to Complex Analysis in Several Complex Variables, Van Nostrand, Princeton, NJ 1966.
- Hörmander, L.: L²-estimates and existence theorems for the ∂ operator, Acta Math. 113 (1965), 89–152.
- Kohn, J. J.: Regularity at the boundary of the *ā*-Neumann problem, *Proc. Nat. Acad. Sci.* U.S.A 49 (1963), 206–213.
- 8 Michel, V.: Sur la régularité C^{∞} du $\bar{\partial}$ au bord d'un domaine de \mathbb{C}^n dont la forme de Levi á exactement valeurs propres strictement negatives, *Math. Ann.* **195** (1993), 131–165.
- 9. Treves, F.: Homotopy Formulas in the Tangential Cauchy-Riemann Complex, Mem. Amer. Math. Soc. Providence, Rhode Island, 1990.

G. ZAMPIERI

- 10. Tumanov, A.: Extending CR functions on a manifold of finite type over a wedge, *Mat. Sb.***136** (1988), 129–140.
- 11. Zampieri, G.: Simple sheaves along dihedral Lagrangians, J. Anal. Math. Jerusalem 66 (1995), 331-344.
- Zampieri, G.: L²-estimates with Levi-singular weight, and existence for *∂*, J. Anal. Math. Jerusalem 74 (1998), 99–112.
- 13. Zampieri, G.: Soluability of $\bar{\partial}$ with C^{∞} regularity up to the boundary on wedges of \mathbb{C}^N , *Israel J. Math.* (2000).