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Abstract

In this note we compute the Laplace transform of hitting times, to fixed levels, of integrated
geometric Brownian motion. The transform is expressed in terms of the gamma and
confluent hypergeometric functions. Using a simple Itô transformation and standard
results on hitting times of diffusion processes, the transform is characterized as the
solution to a linear second-order ordinary differential equation which, modulo a change
of variables, is equivalent to Kummer’s equation.
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1. Introduction

The modest goal of this note is to compute the Laplace transform of the hitting time

τa := inf{t ≥ 0 : At = a}, (1.1)

where At is integrated geometric Brownian motion (IGBM). More precisely, At = ∫ t

0 Vs ds,
where Vt is a solution to dVt = µVt dt + σVt dWt . Here µ ∈ R, σ > 0, and W is standard
Brownian motion.

Though much is known about IGBM (see [4] or [9] and [10] for excellent summaries, as well
as [2], [3], or [5] for applications in finance), it does not appear that a closed-form expression
for the function

u(a, v, α, σ, µ) := Ev[e−ατa ] (1.2)

is explicitly available in the current literature, nor have we been able to locate such an expression
in the compendium of [1]. It should be noted here that Kyprianou and Pistorius [6] derived
the transform for hitting times of the related process V −1

t (At + k) for constant k > 0, using
fluctuation results for Bessel processes.

The remainder of this note is dedicated to proving Theorem 1.1 below, which provides a
closed-form expression for the function defined in (1.2). In contrast to much of the literature on
IGBM our proof does not use Bessel processes. As discussed briefly in Section 3, this allows
for a more concise and streamlined argument.

Before stating our main result we clarify notation. In (1.2) the domain of u is taken to be
R

4+ × R, where R+ = (0, ∞), and Ev denotes the expectation conditioned upon V0 = v.
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We denote the confluent hypergeometric function by M(λ, θ, z), recalling that it is defined as
(the series converging for all z ∈ C and noninteger θ )

M(λ, θ, z) =
∞∑

n=0

(λ)n

(θ)n

zn

n! ,

where, for real x and integer n ≥ 0, we define (x)n = �(x + n)/�(x) with � denoting the
gamma function. The reader unfamiliar with the function M is encouraged to consult either
[12], where it is denoted by 1F1, or [7], where it is denoted by �.

Our main result is the following.

Theorem 1.1. The function u defined in (1.2) is given by

u(a, v, α, σ, µ) =
(

2v

aσ 2

)γ
�(γ + 2µ/σ 2)

�(2γ + 2µ/σ 2)
M

(
γ, 2γ + 2µ

σ 2 , − 2v

aσ 2

)
,

where γ is the unique positive root of

ξ2 +
(

2µ

σ 2 − 1

)
ξ − 2α

σ 2 , ξ ∈ R.

Our proof of this theorem is quite straightforward and we discovered it through a need to
understand the absorption (at the origin) time of the process

Vt

[
1 − c

∫ t

0
V −1

s ds

]
,

which arises quite naturally in structural models of credit risk. The fact that V −1
t remains a

geometric Brownian motion motivates the transformation which begins our proof.

2. Proof of Theorem 1.1

To begin, we define Xt = V −1
t [1−a−1At ]. Using Itô’s lemma, we find that Xt is a solution

to
dXt = [(σ 2 − µ)Xt − a−1] dt + σXt dW̄t ,

with initial condition X0 = V −1
0 and where W̄ = −W . Moreover, Xt strikes 0 at precisely the

same moment as At strikes a. Hence, if we define

τ := inf{t > 0 : Xt = 0}
then τ = τa , where τa is given by (1.1) and is the hitting time of ultimate interest. We are
thus led to consider hitting times of diffusion processes, in particular solutions to the stochastic
differential equation

dXt = (µ̄Xt − c̄) dt + σXt dWt, (2.1)

where µ̄ ∈ R and c̄ > 0. The present problem corresponds to c̄ = a−1 and µ̄ = σ 2 − µ.
Diffusion with drift and volatility specified in (2.1) is regular on R+ (but not necessarily

on R—solutions which begin in R+ can enter R− = (−∞, 0) and never return). Moreover, it
is straightforward to show that, for solutions in R+, ∞ is a natural boundary while the origin
is exit-not-entrance, in the sense of Section II.1.6 of [1]. It is prudent to note that Lewis [8]
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studied the pricing of option assets whose underlying dynamics are given by (2.1) and derived a
closed-form (but ultimately unwieldy) expression for the cumulative distribution function of τ .

For fixed α ∈ R+, define the function u : R+ �→ [0, 1] by

u(x) = Ex[e−ατ ].
Regularity on R+ ensures that u will solve the second-order equation

σ 2x2

2
u′′(x) + (µ̄x − c̄)u′(x) − αu(x) = 0, x ∈ (0, ∞). (2.2)

Since the origin is exit-not-entrance, we have u(0) = 1, and since ∞ is natural, we have
u(∞−) = 0, where u(∞−) = limx→∞ u(x); see [1] for more details. Note that the origin is
an irregular singular point for (2.2).

In order to solve (2.2), we bring it to Kummer’s equation—note that Lewis [8] used a similar
approach to solve a partial differential equation whose spatial component is similar to the left-
hand side of (2.2). To this end, we use the change of variable z = −2c̄/σ 2x to put (2.2) in
standard form and turn the origin into a regular singular point. Indeed, setting g(z) = u(x)

leads to the equation

z2g′′ +
[

2

(
1 − µ̄

σ 2

)
z − z2

]
g′ − 2α

σ 2 g = 0, z ∈ (−∞, 0). (2.3)

If g(z) is a solution to (2.3) subject to g(0) = 0 and g(−∞+) = 1, then u(x) = g(−2c̄/σ 2x)

yields the desired solution to (2.2). Note also that moving to the negative half-line, instead of
the positive, simplifies the ensuing algebra.

In order to solve (2.3), we move to the complex plane and seek a function g which solves
(2.3) for all z ∈ C. When translated to the complex plane, our boundary conditions become
g(z) → 0 as z → 0 and g(z) → 1 as |z| → ∞ along the negative real axis. As the origin is
a regular singular point for (2.3), we are motivated to write g in the form g(z) = zγ f (z) for
some constant γ . A routine calculation then shows that f solves the equation

z2f ′′ + z[β − z]f ′ +
[
γ 2 +

(
1 − 2µ̄

σ 2

)
γ − 2α

σ 2 − γ z

]
f = 0,

where β = 2(γ + 1) − 2µ̄/σ 2. If γ is taken to be a root of the quadratic

h(ξ) = ξ2 +
(

1 − 2µ̄

σ 2

)
ξ − 2α

σ 2 , ξ ∈ R, (2.4)

then this clearly reduces to Kummer’s equation:

zf ′′(z) + (β − z)f ′(z) − γf (z) = 0, z ∈ C. (2.5)

It is worth pausing here to briefly consider (2.4). Since h(0) < 0 (and the coefficient on ξ2

is positive), (2.4) will always have two distinct real roots of opposite sign. If γ is taken to
be the positive root then, since h(2µ̄/σ 2 − 1) < 0, we find that 2µ̄/σ 2 − 1 < γ ; hence,
γ − β + 1 < 0. In what follows we take γ to be the positive root, noting that we would arrive
at the same ultimate result were we to take γ to be the negative root.
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A general solution to (2.5) can be expressed (see Section 9.10 of [7] or Chapter 1 of [12]) in
terms of the confluent hypergeometric function M , and we may write

f (z) = AM(γ, β, z) + Bz1−βM(γ − β + 1, 2 − β, z)

for constants A and B. Thus, g has the general form

g(z) = Azγ M(γ, β, z) + Bzγ−β+1M(γ − β + 1, 2 − β, z). (2.6)

Since M(λ, θ, 0) = 1 and γ − β + 1 < 0 < γ , the first term in (2.6) remains bounded as
z → 0 while the second term does not. Thus, in order to enforce the condition g(0) = 0, we
must set B = 0.

In order to determine A, we use an asymptotic relation found in Section 4.1.1 of [12], namely,

M(γ, β, z) ∼ (−z)−γ �(β)

�(β − γ )
as |z| → ∞,

which is valid for arg(z) ∈ (π/2, π ]. Thus, g(z) ∼ A(−1)−γ �(β)/�(β − γ ) as |z| → ∞
along the negative real axis, and in order to enforce our second boundary condition, we must
choose A = (−1)γ �(β − γ )/�(β).

The desired solution to (2.3) is thus given by

g(z) = (−z)γ
�(β − γ )

�(β)
M(γ, β, z),

and since u(x) = g(−2c̄/σ 2x) yields the desired solution to (2.2), we find that

u(x) =
(

2c̄

σ 2x

)γ
�(β − γ )

�(β)
M

(
γ, β, − 2c̄

σ 2x

)
.

Theorem 1.1 follows upon substituting the relations

x = 1

v
, c̄ = 1

a
, µ̄ = σ 2 − µ.

3. A brief note on the use of Bessel processes

As indicated in the introduction, Bessel processes are a common tool in the analysis of IGBM.
The key to this approach is the Lamperti relation (see Exercise 1.28 of [11, Chapter XI]), which
provides an auxiliary Bessel process of index ν = µ − σ 2/2 that can be used to learn about
the IGBM of interest. A common difficulty with the Bessel-based approach is that arguments
constructed for ν ≥ 0 frequently do not carry over to the case ν < 0 in a straightforward way
(if at all). See [2] for a lengthy and insightful discussion, noting in the interest of prudence that
suitable modifications of pertinent arguments from that paper (Sections 12 and 13 in particular)
could presumably be used to derive the transform of interest here. The underlying reason for this
dichotomy is that, in terms of its behaviour near the origin, the Bessel process of nonnegative
index is a fundamentally different process to that of negative index.

In light of this phenomenon it is natural to ask (i) what, if anything, happens to the auxiliary
process used in this paper as ν varies and (ii) why this does not influence the argument of
Section 2. Recall that the auxiliary processes used here are solutions to (2.1) on R

+ with
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µ̄ = σ 2 − µ ∈ R and c̄ = a−1 > 0. Note that ν ≥ 0 if and only if µ̄ ≥ σ 2/2 and that the
restriction c̄ > 0 is crucial for the subsequent discussion.

The argument given in this paper is based on a differential equation (DE) related to the
auxiliary process. The DE itself is determined by the generator of the process, while the
boundary conditions for the DE are determined by the behaviour of the diffusion near these
boundaries, in particular the nature of the boundaries as determined by the classification scheme
in Section II.1.6 of [1]. These classifications are invariant with respect to the specific values of
the underlying parameters. Under no circumstances can ∞ be reached in finite time (though
it can be approached asymptotically as t → ∞ when µ̄ > σ 2/2, or, equivalently, ν < 0) and
under all circumstances, the origin can be reached in finite time (this occurs almost surely when
µ̄ ≤ σ 2/2, or, equivalently, ν ≥ 0, and with positive probability otherwise). It is these facts
which together dictate the boundary conditions for the DE of interest, and their stability with
respect to the underlying parameters ensures that a single argument holds for all values of the
parameters.
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