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Whilst a number of neuroendocrine afferent signals are implicated in body-weight homeostasis,
the major efferent pathway is the sympathetic nervous system (SNS), which affects both energy
expenditure and substrate utilization. Thyroid hormones and their interactions with the SNS may
also have a role to play. Some of the variability in resting energy expenditure can be explained by
differences in SNS activity, and β-blockade can reduce energy expenditure and diet-induced
thermogenesis in Caucasians. Excess energy intake leads to SNS activation and increased diet-
induced thermogenesis. A relationship has also been demonstrated between spontaneous physical
activity and SNS activity. In many animal models the SNS activates brown adipose tissue
thermogenesis, hence increasing diet-induced thermogenesis and dissipating excess energy as
heat. This effect is mediated via β3-adrenoceptors and activation of an uncoupling protein unique
to brown adipose tissue. Homologous proteins have been identified in human tissues and may play
a role in human energy expenditure. How the SNS is implicated in this process is unclear at
present. β3-Adrenoceptor polymorphism has been associated both with lower resting energy
expenditure in some populations and with reduced autonomic nervous system activity. SNS
effects on substrate cycling may also play a role. In the development of obesity the effects of the
SNS in promoting lipolysis and fat oxidation are likely to be at least as important as its effects on
thermogenesis. β-Blockade has relatively small effects on energy expenditure, but more
pronounced effects on reducing lipid oxidation, so tending to favour fat storage and weight gain.
Low lipid oxidation is a risk factor for weight gain, and there is some evidence that low basal
sympathetic nerve activity in muscle is associated with this process. Overall, the relationship
between SNS activity and obesity is complex, with evidence of low SNS activity occurring in
some, but not all, studies.

Sympathetic nervous system: Obesity: Energy expenditure

DIT, diet-induced thermogenesis; EE, energy expenditure; MSNA, sympathetic nerve activity in muscle; REE, resting energy expenditure; SNS, sympathetic nervous system; UCP, uncoupling protein.The major neuroendocrine efferent pathway implicated in
body-weight homeostasis is the sympathetic nervous
system (SNS). It has long been known that circulating
catecholamines can stimulate energy expenditure (EE) in
human subjects (Cori & Buchwald, 1930). Evidence that the
SNS is involved in body-weight regulation was provided by
studies demonstrating reduced noradrenaline turnover
during fasting in rats (Landsberg & Young, 1978). The SNS
impacts on body weight via effects on both EE and on
substrate utilization, and may also be involved in the
regulation of leptin production (Trayhurn et al. 1995).
β3-Agonists reduce leptin gene expression in rats and may
suppress food intake by this mechanism (Li et al. 1997).
Reciprocally, leptin can activate the SNS (Haynes et al.
1997; Friedman & Halaas, 1998). The metabolic effects of
the SNS are mediated by the sympathetic innervation of
skeletal muscle and adipose tissue. The present review will

centre mainly on the putative role of the SNS in the
development and maintenance of obesity, although it seems
likely that body-weight regulatory mechanisms evolved
mainly to protect against the effects of starvation and do not
function as well in preventing obesity.

Assessment of sympathetic nervous system activity

The SNS may contribute to the regulation of all aspects of
EE, i.e. resting EE (REE), diet-induced thermogenesis
(DIT) and spontaneous physical activity (Fig. 1). In
reviewing the role of the SNS in controlling thermogenesis
it is important to note how SNS activity has been assessed
(Young & Macdonald, 1992; Macdonald, 1995).
Techniques providing estimates of basal SNS activity
include 24 h urinary excretion of noradrenaline, plasma
noradrenaline concentrations, plasma noradrenaline
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kinetics, and more recently the use of muscle sympathetic
nerve firing rates. The latter technique is particularly useful
in assessing acute responses of the SNS to diet and exercise.
However, it should be noted that within many tissues the
direct effects of the SNS are mostly on the vasculature,
leading to secondary effects on metabolism, and that
the sympathetic nerve activity of muscle (MSNA) is
predominantly related to blood flow and blood pressure
control.

In interpreting differences in SNS activity between
normal-weight and over- and underweight subjects it is not
always clear whether the differences seen are causal, or are
secondary to the changed nutritional state. It is also
important to distinguish between established steady-state
alterations and acute changes during weight loss, or weight
gain. Several groups have therefore studied obese patients
after weight loss (post-obese) to see whether differences
remain. In addition, although reduced SNS activity has been
proposed to contribute to the development of obesity, body
fat itself may be a major determinant of SNS activity. BMI
is positively correlated with 24 h urinary noradrenaline
excretion (Troisi et al. 1991), and some obese subjects are
characterized by higher rates of sympathetic nerve discharge
(Scherrer et al. 1994; Spraul et al. 1994). Indeed, heightened
sympathetic activity has been proposed to be secondary to
obesity and accompanying insulin resistance (Landsberg,
1986), and to be part of the metabolic syndrome leading to
increased cardiovascular risk (Reaven et al. 1996).
However, other work using autonomic function tests of
heart rate and blood pressure has described depressions in
both SNS and parasympathetic activity to be weakly
associated with increasing percentages of body fat (Peterson
et al. 1988). It was proposed that these alterations might be
important in the aetiology of obesity. Thus, mode of
assessment of the SNS is important. Finally, there is
considerable evidence that the SNS is activated in a discrete

fashion, with selective activation of specific tissues or
systems (Muntzel et al. 1994), so that data obtained on
sympathetic activity to one tissue (e.g. skeletal muscle)
cannot be extrapolated to whole-body effects.

Measures of SNS activity on their own provide only some
of the material needed to assess the role of the SNS in EE
and substrate utilization. The other information required is
tissue responsiveness to a given level of SNS activity.
Responses to exogenous infusions of noradrenaline and
adrenaline have been used to assess this aspect of the SNS.
In reviewing the results and conclusions from these studies,
great subject heterogeneity is readily apparent (Connacher
et al. 1988). This heterogeneity can be attributed to
differences in subject age, antecedent diet, blood pressure,
gender, physical activity and body fat distribution, but may
also be partly explained by the demonstration of poly-
morphisms in adrenergic receptors (see p. 401). In future
studies using catecholamine infusions it will be important to
categorize subjects according to their adrenoceptor status.

Energy expenditure and the sympathetic nervous system

Fig. 2 shows possible roles for the SNS in EE. A number of
studies using varying methodologies have shown that some
of the variability in REE can be explained by differences in
measures of SNS activity. 24 h Urinary noradrenaline
excretion was found to correlate with total 24 h EE,
independent of body size and body composition (Saad et al.
1991). The same group was able to demonstrate similar
correlations between SNS activity and total 24 h EE using
MSNA (Spraul et al. 1993) and 3H-labelled noradrenaline
turnover (Christin et al. 1993). Plasma noradrenaline
concentration has also been shown to be a significant, but
weak (1·1 %), determinant of 24 h EE and sleeping EE
(Toubro et al. 1996); thus, low sympathetic activity may
contribute to low EE and predispose to weight gain.

Fig. 1. Components of energy expenditure.
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It has proved difficult to demonstrate the involvement of
the SNS in the regulation of REE. Whilst adrenoceptor
blockade would be predicted to reduce EE if basal
sympathetic tone was important in modulating REE, the
effects seen have been small and not widely reproduced.
Several investigators have examined the effects of
β-adrenoceptor blockade on REE, with oral β-blockade
causing a fall in REE (Welle et al. 1991), but intravenous
β-blockade failing to mimic this effect (Vernet et al. 1987).
Other evidence put forward in support of a role for
sympathetic tone in REE is the observation that chronic oral
β-blockade leads to weight gain (Rossner et al. 1990).
However, the weight gain in this setting is small and is
more likely to be due to the effects of β-blockade on fat
mobilization and utilization than on effects on
thermogenesis.

Several groups have examined whether REE is reduced in
post-obese subjects. The hypothesis being that a low REE
would predispose to weight regain, and indeed might be
causal in their obesity. A recent meta-analysis of these
studies (Astrup et al. 1999) found that in about 15 % of
subjects, REE corrected for fat-free mass and fat mass was
indeed lower than that found in controls. Perhaps in these
subjects alterations of the SNS or other processes involved
in the regulation of EE may account for a low REE and a
high risk of weight regain. However, the total number of
formerly-obese subjects studied was small despite the use of
meta-analysis (n 124), the differences in REE from controls
were small (3 %) and some controls also had a low REE.
Indeed, in a commentary on this meta-analysis (Hill &
Wyatt, 1999) it was concluded that the data were more in

support of the view that a low REE was not a likely cause of
relapse in most formerly-obese subjects.

Many studies have looked at the relationship between
DIT, the increment in metabolic rate over REE following a
meal, and indices of SNS activity. A large part of DIT can
be accounted for by the energy costs of nutrient storage
(obligatory thermogenesis), but a proportion of total DIT
may be regulated by the SNS (facultative thermogenesis;
Acheson et al. 1984). Schwartz et al. (1987, 1990a)
demonstrated that the rise in plasma noradrenaline after a
meal was correlated with the rise in EE. This group was also
able to demonstrate that reducing central SNS outflow by
systemic administration of the α2-adrenoceptor agonist
clonidine decreased the thermogenic response to a test meal
(Schwartz et al. 1988). DIT can also be reduced by
peripheral blockade of the SNS using β-blockade (Astrup
et al. 1989), with the major site of this effect being skeletal
muscle.

There has been some interest in the role of the para-
sympathetic nervous system in the regulation of EE,
particularly with regard to DIT. Muscarinic blockade of the
parasympathetic nervous system with atropine reduces the
thermic response to a mixed meal (Nacht et al. 1987).
However, the influence of atropine in slowing gastric
emptying may account for this effect. When intravenous
glucose was given, atropine infusion did not alter glucose-
induced thermogenesis (Schneeberger et al. 1991). Indeed,
apart from the data derived from cardiac autonomic function
and percentage body fat (Peterson et al. 1988), there is little
evidence that the parasympathetic nervous system is
involved in the regulation of EE in human subjects.

Fig. 2. Possible roles for the sympathetic nervous system (SNS) in energy expenditure. UCP-1, uncoupling protein-1.
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In common with other studies investigating impaired
thermogenesis in obese subjects there is conflicting data as
to whether or not DIT is reduced in the obese. Many obese
subjects have low DIT associated with reductions in indices
of SNS activation (Astrup et al. 1990; Spraul et al. 1994),
which is not apparent some other obese subjects, in
particular Pima Indians (Kush et al. 1986). Furthermore, it is
unclear whether impaired DIT is related to the obese state,
with obesity-associated insulin resistance leading to a
reduction in both DIT and SNS activation. Some studies
show that reduced SNS activity persists after weight loss
(Astrup et al. 1990; Jequier, 1990), but other studies show
that DIT normalizes (Bukkens et al. 1991; Webber et al.
1994a).

Longer-term excess energy consumption may lead to
SNS activation, as assessed by raised noradrenaline turnover
found when normal-weight volunteers are overfed (O’Dea
et al. 1982). In contrast, underfeeding leads to reductions in
noradrenaline turnover (O’Dea et al. 1982; Schwartz et al.
1990b). However, the relationship between SNS activity
and thermogenesis may not be causal, as β-blockade did not
reduce the elevated REE found in subjects overfed for 20 d
(Welle & Campbell, 1983; Welle et al. 1989). One possible
explanation for these conflicting findings is the suggestion
that variation in diet composition accounts for some of the
heterogeneity in the responses of the SNS. Increased
proportions of carbohydrate in the diet, especially sucrose,
have been shown to stimulate thermogenesis and SNS
activity (as assessed by plasma catecholamine concen-
trations; Raben et al. 1997).

Whilst a number of alterations in the SNS have been
described in obesity and in response to overnutrition, there
has also been interest in the relationship between starvation
and malnutrition and SNS activity. Underfeeding reduces
noradrenaline turnover (O’Dea et al. 1982), suggesting that
SNS activity is reduced, but tissue responsiveness to
catecholamines may be increased, as demonstrated by
enhanced thermogenic (Webber et al. 1995) and lipolytic
(Jensen et al. 1987) responses to infused adrenaline. This
alteration in adrenoceptor sensitivity favours mobilization
of lipid and its utilization as an energy substrate during
fasting. Chronic undernutrition, on the other hand, may be
accompanied by reduced thermogenic responses to cate-
cholamines (Kurpad et al. 1989). It has been suggested that
early nutrition may affect the development of the SNS, and
hence have enduring effects on its responses (Young &
Morrison, 1998). The SNS innervation of white adipose
tissue may also influence adipocyte differentiation and
proliferation, giving rise to longer-term effects on lipolytic
capacity (Bartness & Bamshad, 1998).

The decline in physical activity of the population has
been linked clearly to the increasing prevalence of obesity in
the UK (Prentice & Jebb, 1995). Interestingly, a relationship
between spontaneous physical activity and noradrenaline
turnover, independent of body size and composition, has
been described (Christin et al. 1993). This relationship was
present in both Caucasians and Pima Indians. The
unanswered question is whether greater spontaneous
physical activity results in increased SNS activity, or
whether the primary change is in enhanced SNS activity
leading to greater fidgeting and higher muscle tone in some

subjects. One recent study has suggested that susceptibility
to weight gain may be partly accounted for by changes in
what was termed non-exercise activity thermogenesis
(representing fidgeting and posture; Levine et al. 1999).
When normal-weight subjects were overfed by 4·2 MJ
(1000 kcal)/d in excess of weight maintenance requirements,
variation in the increase in non-exercise activity thermo-
genesis accounted for 10-fold differences in fat storage
(Levine et al. 1999).

On reviewing many of the studies of obesity and
metabolism it has been proposed that the US Pima Indian
population in particular may have a defect in the SNS
regulation of metabolism. Whereas many Caucasians
studied show a clear relationship between MSNA and REE,
no such correlation was found in Pima Indians (Spraul et al.
1993). Likewise, β-blockade with propranolol failed to
reduce REE in Pima Indians (Saad et al. 1991). Finally,
fasting MSNA correlates positively with body fat in
Caucasians, but not in Pima Indians (Spraul et al. 1994).
Thus, although studies with Pima Indians may reveal that a
defective SNS has a role to play in their high prevalence of
obesity, it is less clear whether these data throw light on the
involvement of the SNS in obesity in other populations
(Macdonald, 1995). Indeed, more recently doubt has been
cast on the hypothesis that the Pima Indians have a ‘thrifty
genotype’ (presumed in part to act via alterations of the
SNS) which renders them susceptible to obesity when
exposed to an affluent lifestyle. A group of Mexican Pima
Indians were identified who live a traditional lifestyle and
remain lean compared with their US counterparts. These
Mexican Pima Indians showed no difference in resting
metabolic rate, corrected for fat-free mass, from that
measured in non-Pima Mexicans (Fox et al. 1998). This
finding suggests that changes in energy metabolism (and
therefore also in SNS activity) observed in the US Pima
Indians are secondary to the obese state and not causal.

Uncoupling proteins, substrate cycling and
sympathetic activity

In many animal models it has been clearly shown that the
SNS activates brown adipose tissue thermogenesis, and by
this means DIT is increased and excess energy dissipated as
heat (Himms-Hagen, 1990). This effect is mediated via
β3-adrenoceptors and activation of an uncoupling protein
(UCP) unique to brown adipose tissue (UCP-1). During
fasting SNS activity falls, as does UCP-1 expression. In
mice the main role of UCP-1 would appear to be in
thermoregulation, with UCP-1 ‘knockout’ mice being
unable to keep warm in the cold, but not becoming obese
(Enerback et al. 1997).

UCP homologous with those found in mice have since
been identified in human tissues, with UCP-2 widely
expressed (Fleury et al. 1997) and UCP-3 mainly restricted
to skeletal muscle (Boss et al. 1997). In rats UCP-3 levels
are increased by treatment with β3-agonists (Gong et al.
1997), suggesting that at least some of the thermogenic
effects of SNS activation are mediated by UCP. UCP-3
expression may play a role in human EE, with one study in
Pima Indians showing a correlation between sleeping
metabolic rate and expression of the long form of UCP-3
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RNA in skeletal muscle (Schrauwen et al. 1999). However,
the involvement of the SNS in this process is unclear at
present. This work needs to be replicated in other
populations, with measures of SNS activity being made.

Interestingly, when mice were bred which could not
synthesize adrenaline or noradrenaline (by inactivating the
gene coding for dopamine β-hydroxylase) they also did not
become obese, despite being unable to induce brown
adipose tissue thermogenesis (Thomas & Palmiter, 1997).
This finding suggests that although the SNS is a major regu-
lator of EE, there are other pathways which may normally
be redundant that can play an important role. However, this
‘knockout’ mouse model does not simply remove SNS
efferent actions from the equation, but will also have wide-
spread consequences on central signalling processes.
Interpretation of the data is therefore not straightforward.

In addition to the regulation of UCP, the SNS may
also have effects on substrate cycling which can influence
EE (Newsholme, 1980). In patients with severe burns
REE is greatly elevated, as are plasma catecholamine
concentrations and rates of triacylglycerol–fatty acid
cycling (Wolfe et al. 1987). Intravenous β-blockade with
propranolol can reduce these elevated rates of substrate
cycling (Wolfe et al. 1987), although no concurrent
measures of EE are available from this study.

Substrate utilization and the sympathetic nervous system

In the development of obesity SNS effects on promoting
lipolysis and fat oxidation are likely to be at least as
important as effects on thermogenesis (Tremblay, 1992).
Lower rates of fat oxidation, as indicated by higher RQ,
have been shown to predict weight gain (Zurlo et al. 1990).
Whilst β-blockade has relatively small effects on EE, it has
much more pronounced effects on reducing lipid oxidation,
which would tend to favour fat storage and weight gain
(Acheson et al. 1988; Buemann et al. 1992). There is some
evidence that low basal MSNA is associated with low rates
of lipid oxidation (Snitker et al. 1998). The response of
obese subjects to exogenous infusions of catecholamines
has also been proposed to favour fat storage over fat
oxidation. Fatty acid oxidation is either impaired in the
obese in response to adrenaline infusion (Connacher et al.
1991), or falls in comparison with normal-weight controls
(Webber et al. 1994b).

Interestingly, UCP-3 expression appears to increase with
fasting (Gong et al. 1997). This finding is perhaps counter-
intuitive, as the fall in EE during fasting might be expected
to be accompanied by reduced UCP expression as an
energy-sparing mechanism (UCP-1 behaving in this
fashion). Elevation of non-esterified fatty acid concen-
trations mimics this effect on UCP-3 expression in rat
skeletal muscle (Weigle et al. 1998). Changes in UCP-3
with fasting may therefore be important in fat mobilization
and utilization as an energy substrate rather than in fuel
economy.

Adrenoceptors and obesity

The clear evidence that the SNS has a major role in EE has
led to the search for candidate genes for obesity amongst

those coding for adrenoceptors. Most work so far has
centred on the β2- and β3-adrenoceptors. There is evidence
that both β1- and β2-adrenoceptors are involved in skeletal
muscle thermogenesis in human subjects (for review, see
Blaak et al. 1993). However, the β3-adrenoceptor has been
the subject of most attention, having a clear role in brown
adipose tissue lipolysis and thermogenesis in animals. Both
β1- and β2-adrenoceptors mediate lipolysis in white adipose
tissue, whilst α2-adrenoceptor activation inhibits lipolysis.
Overall effects on lipolysis may depend on the relative
proportions of β- and α2-adrenoceptors on adipocytes.

In 1995 three research groups identified a miss-sense
mutation in codon 64 of the gene for the β3-adrenoceptor,
with a replacement of tryptophan by arginine (Trp64Arg;
Clement et al. 1995; Walston et al. 1995; Widen et al.
1995). In some populations an increased BMI has been
found in carriers of this mutation, and variation in REE has
also been associated with this polymorphism, but in many
other studies these findings have not been replicated (for
review, see Arner & Hoffstedt, 1999). Heterogeneity of the
obese state and the presence or absence of other associated
complications such as hypertension and diabetes may
account for these conflicting findings. In addition, inter-
actions with other putative candidate genes for obesity may
be important. A recent study showed that in obese subjects
with both the Trp64Arg mutation in the β3-adrenoceptor
gene and a mutation in the UCP-1 gene, weight gain after a
very-low-energy diet was more rapid than in those subjects
with only one or neither of these mutations (Fogelholm et al.
1998). The β3-adrenoceptor Trp64Arg polymorphism has
also been associated with reduced autonomic nervous
system activity (Shihara et al. 1999).

β2-adrenoceptor polymorphism has also been proposed
to have a role to play in body-weight regulation, the
β2-adrenoceptor being the main adrenoceptor in human
white adipose tissue which mediates lipolysis. A strong
correlation between obesity and the Gln27Glu poly-
morphism has been demonstrated (Large et al. 1997), and
more recently this polymorphism was specifically
associated with obesity in patients who were physically
inactive (Meirhaeghe et al. 1999). Another mutation,
Arg16Gly, was associated with greater weight loss in
response to a low-energy diet and exercise regimen in
Japanese women (Sakane et al. 1999). Altered functioning
of adrenoceptors caused by genetic polymorphisms may
predispose to weight gain.

Thyroid hormones and energy expenditure

Thyroid hormones, in particular tri-iodothyronine, also
appear to be involved in body-weight homeostasis.
Pathological reductions and increases in thyroid hormones
have marked effects on REE (Kyle, 1950). Even within the
normal physiological range there is evidence that
tri-iodothyronine concentrations can account for some of the
variability in REE (Astrup et al. 1992; Toubro et al. 1996).
In addition, a low REE in post-obese women may be
accounted for by low tri-iodothyronine concentrations
(Astrup et al. 1996). There is substantial evidence of inter-
actions between thyroid hormone status and adrenergic
receptors in animals (Bilezikian & Loeb, 1983), although
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this work has not always been replicated in vivo in human
subjects (Johnson et al. 1995).

Conclusions

Overall, the relationship between SNS activity and obesity
is complex. There are alterations in SNS activity associated
with changes in body weight, and these alterations may be
modified by factors including adrenoceptor polymorphisms
and diet. In some groups and individuals altered SNS
activity is likely to play a major part in the development and
maintenance of the obese state. Further research will need to
focus on how a greater understanding of the interplay
between the SNS and body weight can lead to improved
strategies for prevention of weight gain and the treatment of
obesity.
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