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Numerical simulation of parametrized differential equations is of crucial importance
in the study of real-world phenomena in applied science and engineering. Compu-
tational methods for real-time and many-query simulation of such problems often
require prohibitively high computational costs to achieve sufficiently accurate nu-
merical solutions. During the last few decades, model order reduction has proved
successful in providing low-complexity high-fidelity surrogate models that allow
rapid and accurate simulations under parameter variation, thus enabling the numer-
ical simulation of increasingly complex problems. However, many challenges remain
to secure the robustness and efficiency needed for the numerical simulation of nonlin-
ear time-dependent problems. The purpose of this article is to survey the state of the
art of reduced basis methods for time-dependent problems and draw together recent
advances in three main directions. First, we discuss structure-preserving reduced
order models designed to retain key physical properties of the continuous problem.
Second, we survey localized and adaptive methods based on nonlinear approxima-
tions of the solution space. Finally, we consider data-driven techniques based on
non-intrusive reduced order models in which an approximation of the map between
parameter space and coefficients of the reduced basis is learned. Within each class
of methods, we describe different approaches and provide a comparative discussion
that lends insights to advantages, disadvantages and potential open questions.
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1. Introduction
In numerous applications we are faced with the need to sample a large number
of instances of a parametrized problem, often described by a parameter-dependent
differential equation; this occurs in the context of optimization, control or uncer-
tainty quantification, for example. In such models, found across all areas of science
and engineering, the parameters can be used to characterize variations in geometric
configurations, physical properties, and initial or boundary conditions.
The direct numerical simulation of the parametrized differential equations can

be achieved by standard discretization methods such as the finite element method,
the spectral method or finite volume methods. However, such models typically
require the use of thousands of degrees of freedom to obtain sufficiently accurate
solutions, thus leading to unmanageable demands on computational resources.
This is not only exacerbated in the multi-query context discussed above but also
in cases where real-time simulations are needed. In such cases there is a need to
develop surrogate models that allow efficient evaluation of an output of interest
when the input parameters are being varied, albeit without sacrificing the accuracy
and fidelity of the model. In other words we are not looking for models of reduced
accuracy in the physical description but for models that allow for rapid evaluation
of the implicit connection between the parameter(s) and the output of interest.
Model order reduction (MOR) provides an effective way to reduce the compu-

tational cost of large-scale simulations by replacing the original high-dimensional
problem with models that are faster to simulate yet accurately represent the ori-
ginal solution behaviour. The fundamental trade-off is one of obtaining accelerated
models at the cost of a reduced generality of the surrogate model.
In this article we focus on a particular class of reduced order models, known as

reduced basis methods (RBMs), which seek to construct low-dimensional approx-
imations of parametrized solutions to partial differential equations by identifying
a suitable problem-dependent basis from a collection of full order solutions at
sampled values of time and parameters. A problem of lower dimension, called
the reduced model, results from the projection of the original equation into the
subspace spanned by this basis.
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Early works based on this idea date back to the 1970s, in the context of many-
query design evaluation (Fox andMiura 1971) and parameter continuationmethods
for nonlinear problems (Almroth, Stern and Brogan 1978, Noor and Peters 1980,
Noor 1981, 1982). Extensions to parametrized finite-dimensional systems and
certain classes of differential equations were proposed by Fink and Rheinboldt
(1983, 1984), Noor, Balch and Shibut (1984), Porsching and Lee (1987), Peterson
(1989) and Gunzburger (1989).
Subsequently the reduced basis method was put on a more sound mathematical

footing and considerable improvements in the computational performances were
achieved. In particular, substantial effort was devoted to the development of a pos-
teriori error estimation and rigorous error bounds that allow the certification of
the output of the reduced model for any parameter value (Prud’homme et al. 2002,
Veroy, Prud’homme, Rovas and Patera 2003, Grepl and Patera 2005). See also
Hesthaven, Rozza and Stamm (2015) and Quarteroni, Manzoni and Negri (2016)
for an overview of the development of such techniques for a variety of different
applications in science and engineering.
The main advantage of an a posteriori error estimator is the ability to determine

the reliability of the output and to allow efficient sampling strategies across the
parameter space in a greedy approach to the construction of the reduced basis.
This has been investigated in several works (LeGresley andAlonso 2000, Ravindran
2000, Christensen, Brøns and Sørensen 1999, Willcox and Peraire 2002, Kunisch
and Volkwein 2002, Bui-Thanh, Damodaran and Willcox 2003, Cuong, Veroy
and Patera 2005, Rozza 2005, Gunzburger, Peterson and Shadid 2007, Patera and
Rozza 2007, Rozza, Huynh and Patera 2008) and has led to efficient criteria for the
selection of the basis functions.
A computational breakthrough was the development of a full decoupling of

the reduced basis computational procedure into a parameter-independent offline
phase and a parameter-dependent online phase. In this splitting, the complexity
of the offline phase depends on the complexity of the numerical discretization of
the parametrized differential equation, which is potentially very high, while the
complexity of the online stage depends solely on the complexity of the reduced
order model. While this offline–online decomposition is natural in the case of affine
parameter dependence, the development of decoupling strategies in the non-affine
case has been addressed via so-called hyper-reduction strategies; see Section 3.3
for a non-exhaustive literature overview.
During the last two decades, the development of reduced ordermodels for elliptic,

stationary and linear problems has reached a considerable level of maturity, as
reflected by an extensive literature; see the reviews by Prud’homme et al. (2002),
Rozza et al. (2008), Quarteroni, Rozza and Manzoni (2011), Rozza (2014) and
Rozza, Huynh, Nguyen and Patera (2009), recent books by Hesthaven et al. (2015)
and Quarteroni et al. (2016), and references therein.
Although these developments have paved the way for the use of reduced basis

methods suitable for real-time and many-query simulations of complex problems,
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the treatment of time-dependent non-coercive nonlinear equations still poses es-
sential challenges. These are related to the lack of guarantees on the stability of the
reduced order solutions, on the certification and reliability of the output, and on the
efficiency of the reduced models. Indeed, for time-dependent problems, even in
the parabolic case, the exponential growth of a priori and a posteriori error bounds
limits their use to modest temporal intervals.
Moreover, independently of the accuracy of the reduced model, a classical

projection-based RBM is not guaranteed to yield stable approximate solutions,
even if the original high-dimensional scheme is stable. This lack of stability often
results in spurious oscillations of the solution, blow-up of the system energy and
violation of the conservation laws and invariants of the problem. The reason is that
there is generally no relationship between the physics of the full order problem and
that of the reduced model. This is problematic, especially for hyperbolic systems
and conservative processes.
Finally, the success of an RBM relies on the assumption that the set of solu-

tions, obtained as time and parameters vary, is intrinsically of low dimension.
However, several important phenomena, such as convection-dominated problems,
wave-type equations and conservation laws, do not generally exhibit such global
low-dimensional structure. This implies that traditional reduced models derived
via linear approximations are generally not effective. Nonlinear and local model
order reduction techniques are then required to achieve sufficiently accurate solu-
tions at manageable computational costs. Additionally, the upsurge of data-driven
techniques has suggested the possibility of highly efficient reduced basis methods
for general nonlinear problems.
In recent years considerable effort has been made to address these challenges by

developing accurate, efficient and stable reduced basis methods for time-dependent
nonlinear problems. Although some of the developed strategies are still in their
early stages of development, promising first steps have been taken and various
directions have been pursued. The purpose of this article is to draw together and
highlight these recent advances.
Before discussing these developments in more detail, let us also briefly discuss

a couple of alternative ideas that have recently been successful and offer some
additional insight.
One approach to recovering efficient reduced order models for the time-depend-

ent problem is to apply a Laplace transform in time and rely on the development
of reduced basis methods for harmonic problems (Chen, Hesthaven, Maday and
Rodríguez 2009, 2010, Hesthaven et al. 2015). This has been pursued with success
byHuynh, Knezevic and Patera (2011) andBigoni andHesthaven (2020). However,
the computational robustness and accuracy of the inverseLaplace transform remains
a substantial challenge for this approach, in particular for long time intervals.
The temporal instability of the reduced models is often associated with the

truncation of the reduced model, resulting in an accumulation of errors and an
insufficient small-scale dissipation. One way to look at this problem is as a closure
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problem, akin to that found in turbulence modelling. This point of view has led
to recent work focusing on the formulation of closure models for time-dependent
reduced order models, based on the Mori–Zwanzig formulation (Gouasmi, Parish,
and Duraisamy 2017, Wang, Ripamonti and Hesthaven 2020), delay-differential
equations (Gupta and Lermusiaux 2021), and a substantial effort for closure models
inspired by developments in fluid dynamics, reviewed by Ahmed et al. (2021). This
line of work is still at an early stage of development but these initial results, even if
largely of a heuristic and problem-dependent nature, offer some interesting ideas
for future work to improve the stability of reduced models and, as demonstrated in
Wang et al. (2020), enable the development of reduced ordermodels with predictive
accuracy beyond the training interval.
The remainder of this work is organized as follows. Sections 2 and 3 present

a brief overview of the state of the art of reduced basis methods for parametrized
stationary elliptic problems. Section 2 introduces parametrized elliptic station-
ary partial differential equations. Their model order reduction via reduced basis
methods is the topic of Section 3, where we discuss reduced basis generation via
proper orthogonal decomposition and greedy algorithms, affine decomposition and
hyper-reduction strategies.
This sets the stage for Section 4 as the central part of the article, focusing

on reduced basis methods for time-dependent problems. Basis generation via
POD-greedy methods is presented in Section 4.1, while Section 4.2 is devoted
to structure-preserving techniques to ensure efficient approximations that retain
the physical properties of the original model. To deal with the local reducibility
properties of many important phenomena, recent works on localized and nonlinear
reduced order approximations are discussed in Section 4.3. Section 4.4 focuses
on data-driven methods which seek to develop reduced basis methods that are
both stable and, more importantly, highly efficient, even for general nonlinear
problems. This is achieved by introducing non-intrusive reduced order models and
a data-driven map between parameter space and coefficients of the reduced basis
to reconstructed. A few concluding remarks and thoughts on open questions are
offered in Section 5.

2. Parametrized partial differential equations
We begin by considering parametrized stationary partial differential equations. Let
Ω ∈ Rd be a (suitably regular) physical domain, where d = 1, 2 or 3 denotes the
spatial dimension. Let us also introduce a closed parameter domain P ∈ RP for
a parameter point, or vector, or P-tuple, µ = (µ1, µ2, . . . , µP). This parameter set
could in principle include time, but we will in general consider time explicitly as a
special parameter.
We consider real-valued field variables u : Ω→ Rdv , where dv = 1 in the scalar

case and dv = d for vector-valued fields, and assume that the field variables belong
to a Hilbert space V equipped with the inner product (w, v)V, for all w, v, ∈ V, and
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the induced norm ‖w‖V =
√

(w,w)V, for all w ∈ V. The parametric field variable is
then defined as u ≡ (u1, . . . , udv ): P→ V, and u(µ) denotes the field for parameter
value µ ∈ P.

2.1. Parametrized stationary problems in weak form

Let us introduce a parametrized stationary model problem in a variational form.
The abstract formulation reads as follows: given µ ∈ P, find u(µ) ∈ V such that

a(u(µ), v; µ) = f (v; µ) for all v ∈ V, (2.1)

where a : V×V×P→ R is a parametric form, assumed to be bilinear with respect
to the first two variables, and f : V × P → R is taken to be linear with respect to
the first variable. Given a parametric linear form ` : V × P → R, one might be
interested in a function of the solution of (2.1), namely,

s(µ) = `(u(µ); µ).

Here s : P→ R denotes an output of interest, and ` plays the role of a linear ‘output’
functional which links the input to the output through the field variable u(µ).

The well-posedness of the weak formulation (2.1), for all parameter values
µ ∈ P, can be established by the Lax–Milgram theorem, under the following
further assumptions:
• a( · , · ; µ) is coercive and continuous for all µ ∈ P with respect to the norm
‖ · ‖V, i.e. for every µ ∈ P there exists a positive constant α(µ) ≥ α > 0 and a
finite constant γ(µ) ≤ γ < ∞ such that

a(v, v; µ) ≥ α(µ) ‖v‖2V and a(w, v; µ) ≤ γ(µ) ‖w‖V ‖v‖V (2.2)

for all w, v ∈ V;
• f ( · ; µ) is continuous for all µ ∈ P with respect to the norm ‖ · ‖V, i.e. for
every µ ∈ P there exists a constant δ(µ) ≤ δ < ∞ such that

f (v; µ) ≤ δ(µ) ‖v‖V for all v ∈ V.
The coercivity and continuity constants of a( · , · ; µ) over V are, respectively,
defined as

α(µ) = inf
v∈V

a(v, v; µ)
‖v‖2V

and γ(µ) = sup
w∈V

sup
v∈V

a(w, v; µ)
‖w‖V‖v‖V

(2.3)

for every µ ∈ P.
Model order reduction may target a continuous partial differential equation in

infinite-dimensional function spaces as in (2.1) or, more frequently, consider the
numerical discretizations of a PDE.

2.2. High-fidelity model

Let us formulate the numerical approximation of the parametric weak formula-
tion (2.1). We focus on conforming approximations, namely where the finite-

https://doi.org/10.1017/S0962492922000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000058


Reduced basis methods for time-dependent problems 271

dimensional approximation space Vh is a subset of V. For each µ ∈ P, the discrete
problem consists in finding uh(µ) ∈ Vh such that

a(uh(µ), vh; µ) = f (vh; µ) for all vh ∈ Vh, (2.4)

and evaluating sh(µ) = `(uh(µ); µ). This problem is described as the truth problem
or high-fidelity problem. Solving the truth problem (2.4) can be potentially very
expensive since a large number of degrees of freedom N = dim(Vh) might be
needed to achieve a sufficiently accurate approximation of the continuous solution
of (2.1), to ensure that the error ‖u(µ)−uh(µ)‖V is acceptably small. Depending on
the properties of the PDE and on the solver of choice, the operation count of themap
µ 7→ sh(µ) is of the order of O(Nα), for α ≥ 1, resulting in a large computational
cost in the case of the need for evaluations at many parameter values. It is exactly
this problem that reduced basis methods seek to address, albeit without sacrificing
the accuracy of the truth solution.

3. Reduced basis methods for elliptic problems
The numerical models emerging from discretization techniques for PDEs, such as
finite element, discontinuous Galerkin and spectral methods, are usually very high-
dimensional. The complexity and computational costs associated with solving the
full parametric problem for each new parameter value rule out a direct approach.
The reduced basis method aims at constructing surrogate models that can be

evaluated at a considerably reduced computational cost, yet without sacrificing the
predictive accuracy of the complex model. The method is based on a two-stage
procedure, comprising an offline and an online phase. The potentially very costly
offline phase consists in the construction of a low number, n, of basis functions able
to approximate any solution of the parametrized problem to within a prescribed
accuracy. This process requires an empirical exploration of the set of all solutions
under variation of the parameter and can therefore be very costly as it involves the
solution of at least n truth problems, each with N degrees of freedom. The online
stage consists of a Galerkin projection of the full model onto the space spanned by
the selected basis functions. During this phase the parameter space can be explored
at a substantially reduced cost, ideally at a cost independent of N .

3.1. The reduced basis approximation

The goal of reduced basis methods is to approximate the solution of the paramet-
rized problem for any arbitrary value of the parameter in P using a low number
of basis functions. Let us introduce the notion of solution manifold1 as the set of
all solutions of the parametrized problem under variation of the parameters. The

1 It is common practice to use the term ‘manifold’, although strictly speaking M may not be a
manifold in the differential geometry sense.
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solution manifold of the full model (2.1) is defined as

M = {u(µ) | µ ∈ P} ⊂ V,

where each u(µ) ∈ V satisfies the problem (2.1): find u(µ) ∈ V such that

a(u(µ), v; µ) = f (v; µ) for all v ∈ V.

For the lack of an analytic expression of the exact solution of the parametrized
problem in many cases of interest, we consider an approximate solution uh(µ) ∈ Vh

of the discretized problem (2.4), referred to as the truth or high-fidelity solution.
We assume that a computational model is available to solve the truth problem, and
approximate the exact solution at any required accuracy. This accuracy requirement
also implies that the computational cost of evaluating the truth model may be very
high. Throughout the discussion we assume that ‖u(µ) − uh(µ)‖V can be made
arbitrarily small for any given parameter value, µ ∈ P. This simply states that
we assume that a computational model is available to solve the truth problem at
sufficient accuracy.
Analogously to the continuous problem, we also introduce the discrete version

of the solution manifold,

Mh = {uh(µ) | µ ∈ P} ⊂ Vh, (3.1)

where each uh(µ) ∈ Vh is the solution of (2.4).
A key aspect in model order reduction and in the construction of any reduced

model is the reducibility property of the solution manifold. To understand this
concept, it is instructive to introduce the notion of the Kolmogorov n-width. The
Kolmogorov n-width ofMh is defined as

dn(Mh) = inf
Vr ⊂V

dim(Vr )=n

sup
uh ∈Mh

inf
vr ∈Vr

‖uh − vr ‖V. (3.2)

Hence the n-width measures how well Mh can be approximated by some n-
dimensional linear subspace Vr . Rapid decay of the n-width with increasing n
suggests a compact and efficient approximation across the entire parameter space.
In this case the solution manifold can be well approximated by the span of a low
number of appropriately chosen basis functions, which form the so-called reduced
basis.
In some cases the Kolmogorov n-width may even decay exponentially, that is,

dn(Mh,Vr ) ≤ Ce−cn, e.g. for elliptic problems of high regularity (Benner, Guger-
cin and Willcox 2015). However, for other cases, such as a moving front solution
to a linear transport equation, dn(Mh,Vr ) ≤ Cn−1/2 (Ehrlacher, Lombardi, Mula
and Vialard 2020), suggesting that a straightforward construction of the basis is
less efficient as a large number of basis functions will be needed to ensure high
accuracy.
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Let us initially assume that an n-dimensional reduced basis, denoted by {ξ`}n`=1 ⊂
Vh, is available. The associated reduced basis space is given by

Vr = span{ξ1, . . . , ξn} ⊂ Vh,

and any function ur (µ) in Vr can be represented as

ur (µ) =
n∑̀
=1

ur,`(µ) ξ`, µ ∈ P,

where ur (µ) B (ur,1(µ), . . . , ur,n(µ)) ∈ Rn denotes the vector of the expansion
coefficients in the reduced basis. Given the n-dimensional space Vr , the reduced
basis approximation is sought as follows: for any given µ ∈ P, find ur (µ) ∈ Vr

such that
a(ur (µ), vr ; µ) = f (vr ; µ) for all vr ∈ Vr . (3.3)

In the following, let us discuss the problem of generating accurate reduced basis
spaces during the offline stage, and how to recover the reduced basis solution
efficiently during the online stage.

3.2. Reduced basis generation

While there are several strategies for generating reduced basis spaces, we focus
on proper orthogonal decomposition (POD) and the greedy construction in the
following. Let Ph ⊂ P denote a discrete and finite-dimensional point-set of M
points in P; for example, it can consist of a regular lattice or a randomly generated
point-set intersecting with P. We can then introduce the following set:

Mh(Ph) = {uh(µ) | µ ∈ Ph}.

It holds thatMh(Ph) ⊂Mh as Ph ⊂ P and, if Ph is fine enough,Mh(Ph) is also a
good representation ofMh.

Proper orthogonal decomposition (POD)
Proper orthogonal decomposition is an explore-and-compress strategy to reduce
the dimensionality of a given dataset by retaining the components capturing the
most important information. In the context of reduced basis methods, the idea is
to compute truth solutions at sample points in the parameter space, transform them
into a set of uncorrelated variables, called POD modes, and retain only a few of
them. It is worth recalling that POD corresponds to principal component analysis
(Jolliffe 1986) in multivariate statistics, to the Karhunen–Loève decomposition
(Karhunen 1947, Loève 1955) in the theory of stochastic processes, and to the
Hotelling transformation (Hotelling 1933).
Assume we have an ordering µ1, . . . , µM of the values in Ph, hence inducing

an ordering uh(µ1), . . . , uh(µM ) of the elements of Mh(Ph). To construct the
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POD-space, let us introduce the space VM = span{uh(µ) | µ ∈ Ph} that spans the
elements of Mh(Ph), and let us define the operator C : VM → VM,

C(vh) =
1
M

M∑
m=1

(vh, uh(µm))V uh(µm), vh ∈ VM.

The operator C is compact, self-adjoint and linear, and there exists aV-orthonormal
set {ξ`}M

′

`=1 of M ′ ≤ M eigenvectors with real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λM′ >
0, so that

(C(ξ`), uh(µm))V = λ`(ξ`, uh(µm))V, 1 ≤ m ≤ M . (3.4)

The orthogonal POD basis functions are given by the eigenfunctions ξ1, . . . , ξM .
The span of the truncated basis ξ1, . . . , ξn gives the n-dimensional space VPOD that
minimizes the quantity √

1
M

∑
µ∈Ph

inf
vr ∈Vr

‖uh(µ) − vr ‖2V (3.5)

over all n-dimensional linear subspaces Vr of VM. Further, the projection
Pn : V→ VPOD defined as (Pn f , ξ`)V = ( f , ξ`)V, for 1 ≤ ` ≤ n, is given by

Pn f =
n∑̀
=1

( f , ξ`)V ξ` .

In particular, if the projection is applied to all elements inMh(Ph), it satisfies√√√
1
M

M∑
m=1
‖uh(µm) − Pnuh(µm)‖2V =

√√√
M∑

m=n+1
λm.

Remark 3.1. The computational cost of solving the eigenvalue problem for the
correlation operator is potentially very high. A more efficient computational pro-
cedure consists in reformulating it as an M-dimensional eigenvalue problem for
the Gram matrix. Let C ∈ RM×M be the correlation matrix defined as

Cm,q =
1
M

(uh(µm), uh(µq))V, 1 ≤ m, q ≤ M .

Then the problem of finding the n largest eigenvalue–eigenvector pairs (λ`, v`) with
‖v` ‖`2(RM ) = 1 such that C v` = λ`v` , with 1 ≤ ` ≤ n, is equivalent to (3.4). With
the eigenvalues sorted in descending order λ1 ≥ λ2 ≥ . . . ≥ λn, the orthogonal
POD basis functions {ξ1, . . . , ξn} span the POD-space VPOD and are given by the
linear combinations

ξ` =
1
√

M

M∑
m=1

(v`)m uh(µm), 1 ≤ ` ≤ n, (3.6)

where (v`)m denotes the mth coefficient of the eigenvector v` ∈ RM .
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Proper orthogonal decomposition allows the construction of a reduced basis that
is optimal in an `2-sense over the parameter space. However, its main limitation lies
in the large computational cost: computing the reduced basis requires the solution
of a large dense eigenvalue problem that scales as O(nN2). Moreover, a potentially
large number M � n of high-fidelity solutions may be required to ensure a reduced
basis of sufficient accuracy.
A proper choice of M is not known or predictable for a general problem. This

could result in a substantial computational overhead associated with the fact that
a large number of full order solves is required but the majority of the resulting
solutions do not contribute to the reduced basis.

Greedy algorithm
An efficient alternative to proper orthogonal decomposition is to attempt to build
the reduced basis using an iterative approach. Such a greedy generation of the
reduced basis space consists in adding a new basis function at each iteration in such
a way that the approximation properties of the updated reduced basis are improved.
This strategy allows us to minimize the number of snapshots to be evaluated in the
construction of the reduced space. Indeed, the greedy algorithm requires one truth
solution to be computed per iteration and a total of n truth solutions to generate the
n-dimensional reduced basis space.
To describe this in a bit more detail, at the `th step of the algorithm, assuming

that an `-dimensional reduced basis space Vr is given, the next basis function is
the element of the solution set that is worst approximated by the current reduced
space Vr over P. That is, we select

µ`+1 = argmax
µ∈P

ε`(µ), (3.7)

where ε`(µ) B ‖uh(µ) − ur (µ)‖V and ur (µ) is the solution of (3.3) for the current
reduced basis space Vr . Note that a different norm for ε` can be chosen, or even a
different error quantity, such as the measure of the output functional.
The truth solution uh(µ`+1) is then selected to enrich the reduced basis space

as Vr = span{uh(µ1), . . . , uh(µ`+1)}. This is repeated until the maximal error
is below a fixed tolerance, resulting in a hierarchical sequence of approximation
spaces. Since the greedy algorithm selects the parameter for which the error is
maximum, the resulting reduced basis seeks to be optimal in the maximum norm
over P rather than in L2 as in proper orthogonal decomposition.
Similarly to POD, computing the maximum in (3.7) over the entire parameter

space P is unfeasible and we introduce a finite point-set Ph. Moreover, to be
efficient, a greedy algorithm must be supported by an error η(µ) that provides an
estimate of the error induced by replacing Vh with the reduced basis space Vr , i.e.
‖uh(µ)−ur (µ)‖µ ≤ η(µ), for all µ ∈ P. If the error estimator η(µ) can be evaluated
efficiently, the computation of µ`+1 can be significantly accelerated since no truth
solution is required and the evaluation of the error estimator is embarrassingly
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parallel. This implies that the training set Ph can be considerably denser than
the one used in the construction of the POD basis. Other ways to accelerate this
process are discussed in Hesthaven, Stamm and Zhang (2014). Furthermore, a
considerable reduction in the computational cost of the reduced basis construction
is given by the fact that only n truth solutions are computed in the greedy approach,
in contrast to the M solutions needed for the POD basis generation, where M � n
in almost all cases.
Convergence results for the greedy approximation have been established byBinev

et al. (2011) and Buffa et al. (2012), and generalized to Banach spaces by DeVore,
Petrova and Wojtaszczyk (2013). They show that if the underlying problem allows
an efficient and compact reduced basis, the greedy reduced basis approximation
converges exponentially fast to the truth.

Theorem 3.2. If M has an exponentially small Kolmogorov n-width dn(M) ≤
ce−an, with a > log a0, then the reduced basis method built using the greedy
algorithm converges exponentially fast with respect to n, that is, there exists β > 0
such that

‖uh(µ) − ur (µ)‖V ≤ Ce−βn for all µ ∈ P.

The value of a0 depends on the error ε`(µ) used in (3.7), and we find that

a0 = 2 if ε`(µ) = ‖uh(µ) − P`uh(µ)‖V,

a0 = 1 +
√
γ

α
if ε`(µ) = ‖uh(µ) − ur (µ)‖V,

where α and γ are the parameter-independent coercivity and continuity constants
of the bilinear form a introduced in (2.2).

3.3. Affine decomposition and hyper-reduction

The computational efficiency of traditional reduced basis methods is tied to the
feasibility of a complete decoupling of the offline and online phases. Indeed,
projection-based reduced basis methods allow significant computational savings
as long as the computational complexity of any online query is independent of the
size of the full order problem. Ideally, the cost of computing ur (µ) by solving the
reduced problem (3.3) should be independent of the complexity of the truth problem
and should depend only on the size n � N of the reduced basis approximation.
However, since the parameter may enter the bilinear form a( · , · ; µ), the linear

terms `( · ; µ) and f ( · ; µ), we generally need to first assemble the truth operators
and then construct their approximation in the reduced basis space. This is a
computation that depends on N and would severely limit the potential for rapid
online evaluation. This limitation can be overcome under suitable assumptions on
the problem operators, such as affine decomposability or parameter separability.
The bilinear form a( · , · ; µ) allows an affine decomposition if there exist coefficient
functions θqa : P→ R for q = 1, . . . ,Qa, with Qa ∈ N, and parameter-independent
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continuous bilinear forms aq : V × V→ R such that

a(w, v; µ) =
Qa∑
q=1

θ
q
a (µ) aq(w, v) for all µ ∈ P, w, v ∈ V. (3.8)

In this case the term associated to the parameter-independent form aq(·, ·) can be
precomputed, for every q, during the offline stage once the reduced basis space is
known. Then, during the online stage, for any new instance of the parameter µ,
only the factors {θqa (µ)}Qa

q=1 need to be computed. This operation is independent
of N and scales proportionally to Qan2. The treatment of the linear forms f and `
can be done similarly.
In the case of nonlinear operators, the affine parametric dependence is only a

necessary condition to deliver computational efficiency. In the presence of low-
order polynomial nonlinearities, tensorial techniques (Ştefănescu, Sandu andNavon
2014) can be used to restore the affine separability in the parameter bymanipulating
the order of computation of the various factors.
Dealing with general nonlinear terms remains one of the major computational

bottlenecks in dimension reduction algorithms. The need for a further level of
dimension reduction to deal with nonlinear operators has led to so-called hyper-
reduction methods (Ryckelynck 2009). Most of these techniques consist in ap-
proximating the high-dimensional nonlinear terms using sparse sampling via inter-
polation among samples of the nonlinear operators. This is the rationale behind
missing point estimation (Astrid, Weiland, Willcox and Backx 2008), the empirical
interpolation method (EIM) (Barrault, Maday, Nguyen and Patera 2004, Grepl,
Maday, Nguyen and Patera 2007), the discrete empirical interpolation method
(DEIM) (Chaturantabut and Sorensen 2010), Gauss–Newton with approximated
tensors (GNAT) (Carlberg, Farhat, Cortial and Amsallem 2013) and the trajectory
piecewise linear (TPWL) method (Rewienski 2003). More recently, lifting trans-
formations (Kramer and Willcox 2019) have been proposed, as well as data-driven
approaches such as dynamic mode decomposition (DMD) (Schmid 2010, Kutz,
Brunton, Brunton and Proctor 2016a) and operator inference (Peherstorfer and
Willcox 2016a).

This problem is one we will return to in detail in Section 4.4, where ideas from
machine learning will be introduced to address this bottleneck.

4. Reduced basis methods for time-dependent problems
In this section we consider reduced basis methods for parametrized evolution
equations. We will focus on a model problem in an operator-based formulation
rather than in a variational form, as this is more natural when considering numerical
approximations such as finite difference and finite volume methods, usually not
based on a variational formulation, and often advantageous for time-dependent
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problems. However, for continuity with the discussion so far we shall also outline
the equivalent variational form.

Let T = (t0,T] ⊂ R be a temporal interval. Consider the following model
problem: given a parameter value µ ∈ P ⊂ RP, find u(µ) ∈ C1(T ;V) such that

∂tu(µ) + L(u(µ); µ) = f (µ) in Ω × T , (4.1)

subject to initial condition u(t0; µ) = u0(µ) ∈ V.
The corresponding variational statement is to find u(µ) ∈ C0(T ; L2(Ω)) ∩

L2(T ;V) such that

(∂tu(µ), v)L2(Ω) + a(u(µ), v; µ) = g(t)h(v) for all v ∈ V, (4.2)

subject to the initial condition u(t0; µ) = u0(µ) ∈ L2(Ω). Here g(t) ∈ L2(T ) is
called the control function, and we assume that the right-hand side h is independent
of the parameter, although this assumption can be relaxed. As for the elliptic
case, we assume that the bilinear form a( · , · ; µ) is coercive and continuous (2.2),
satisfies the affine assumption (3.8) and is time-invariant. We let ( · , · )L2(Ω) denote
the L2(Ω) scalar product.
As to the stationary case, we resort to an approximation of the problem (4.1)

or (4.2). Let us consider a method of lines approach where the problem is first
discretized in space and then in the temporal variable. Space–time discretization
is also possible. The discrete solution manifold is given by the set of solutions at
each instance of the parameter and of time, that is,

Mh = {uh(t; µ) | t ∈ T , µ ∈ P} ⊂ Vh, (4.3)

where each uh(µ) ∈ C1(T ;Vh) is the solution of the problem

∂tuh(µ) + Lh(uh(µ); µ) = fh(µ) in Ω × T , (4.4)

and the initial condition uh(t0, µ) is given by a suitable projection of u0(µ) ontoVh.
Here Lh and fh are the discrete operators resulting from the spatial discretization
of problem (4.1).
For the variational formulation the only difference is that uh(µ) ∈ C0(T ; L2(Ω))∩

L2(T ;Vh) is the solution of the problem

(∂tuh(µ), vh)L2(Ω) + a(uh(µ), vh; µ) = g(t)h(vh) for all vh ∈ Vh, (4.5)

subject to (uh(t0, µ), vh)L2(Ω) = (u0(µ), vh)L2(Ω), for all vh ∈ Vh. Reduced basis
methods seek to approximate the solution of the parametrized time-dependent
problem (4.4), or (4.5), for any arbitrary value of the parameter in P and at any time
t ∈ T using a low number of basis functions.

Let us assume that an n-dimensional reduced basis, denoted by {ξ`}n`=1 ⊂ Vh, is
available. The associated reduced basis space is given by Vr = span{ξ1, . . . , ξn} ⊂
Vh, and any function ur (t; µ) in Vr can be represented in terms of the reduced
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basis as

ur (t; µ) =
n∑̀
=1

ur,`(t; µ) ξ`, t ∈ T , µ ∈ P, (4.6)

where ur (t; µ) B (ur,1(t; µ), . . . , ur,n(t; µ)) ∈ Rn denotes the vector of the ex-
pansion coefficients in the reduced basis. Given the n-dimensional space Vr ,
the reduced basis approximation is sought as follows: for any given µ ∈ P, find
ur (µ) ∈ C1(T ;Vr ) such that

∂tur (µ) + Lh(ur (µ); µ) = fh(µ) in Ω × T , (4.7)

where the initial condition ur (t0, µ) is given by the projection of uh(t0, µ) onto Vr .
For the variational form, we seek ur (µ) ∈ C0(T ; L2(Ω)) ∩ L2(T ;Vr ) such that

(∂tur (µ), vr )L2(Ω) + a(ur (µ), vr ; µ) = g(t) f (vr ) for all vr ∈ Vr, t ∈ T ,

subject to (ur (t0, µ), vr )L2(Ω) = (uh(t0), vr )L2(Ω), for all vr ∈ Vr .
The offline–online procedure is now very similar to the steady case presented

above. In the next subsection we discuss how to find the reduced basis space
and how compact we can expect it to be, given available information about the
Kolmogorov n-width.

4.1. POD-greedy approach

The simplest way to construct a reduced basis for a parametrized time-dependent
problem is to treat time as an additional ‘parameter’. Consider a partition of
the time interval T into NT subintervals of equal length ∆t = T/NT and define
tk = k∆t, 0 ≤ k ≤ NT . Therefore, for each µ, the full order solution in the
discretized time interval is given by the set {uh(tk, µ)}NT

k=0 ⊂ Vh. We assume that
∆t is sufficiently small and N is sufficiently large such that uk

h
(µ) is an arbitrarily

accurate approximation of u(tk ; µ).
As in the steady case, we consider the discrete solution manifold

MNT

h
= {uk

h(µ) | 0 ≤ k ≤ NT , µ ∈ P} ⊂ Vh, (4.8)

and seek a small representative basis thereof. We let Ph denote a finite sample
of M points in P, serving as training set for the construction of the reduced basis
space. We introduce the set

MNT

h
(Ph) = {uk

h(µ) | 0 ≤ k ≤ NT , µ ∈ Ph}.

and generate an n-dimensional reduced basis space Vr by a sampling procedure
which combines spatial snapshots in time and parameter space, as described below.
Proper orthogonal decomposition and greedy strategies (see Section 3.2) applied

to the time-parameter snapshots from MNT

h
(Ph) may encounter difficulties. First,

the time-parameter manifold might be very high-dimensional and characterized by
extensive ranges of parameter variation. Moreover, to obtain the snapshots for fixed
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µm, a complete time-trajectory needs to be computed, suitable time instants need
to be selected, and unused information from intermediate time steps discarded.

To overcome these limitations, the greedy and POD approaches can be suit-
ably combined in the so-called POD-greedy procedure (Grepl and Patera 2005,
Haasdonk and Ohlberger 2008). The POD-greedy method combines the greedy
algorithm in parameter space with proper orthogonal decomposition to select the
time instants containing the maximal information of the trajectory associated to a
given parameter.
As described in Hesthaven et al. (2015, Section 6.1.2), the POD-greedy sampling

procedure requires the set of training parameters Ph, an error tolerance and two
suitable positive integers N1 and N2. The greedy algorithm provides the outer
algorithmwherewe search the currentlyworst-resolved parameter µm inPh using an
error bound or indicator. Then the complete time-trajectory, u1

h
(µm), . . . , uNT

h
(µm),

associated with µm is computed and the first N1 principal components are retained
via POD. In a subsequent step, the existing n-dimensional reduced basis space
is enriched with the components derived in the previous step and a new (n +
N2)-dimensional reduced basis is constructed via POD. In an alternative version
proposed in Haasdonk and Ohlberger (2008), the second POD compression is
avoided by considering the error trajectories rather than the trajectories. In this
case POD with respect to time is performed to compress the error trajectory to
its most important new information, and the POD mode is added to the current
basis. Note that the POD-greedy algorithm generates hierarchical reduced spaces.
Moreover, the successive greedy cycles allow us to retain new information and
reject redundant information.
Concerning the computational cost of the POD-greedy procedure, we remark

that the operation count is additive and not multiplicative in the number of training
points in Ph and N . The fact that the high-fidelity trajectories are evaluated only
for selected parameters in Ph allows us to consider relatively large training sets of
parameters.
The convergence results of the greedy algorithm shown in Binev et al. (2011)

and Buffa et al. (2012) (see Theorem 3.2) were extended by Haasdonk (2013)
to the POD-greedy strategy of Haasdonk and Ohlberger (2008): exponential or
algebraic convergence rates of the Kolmogorov n-width of the solution manifold
are maintained by the POD-greedy algorithm with a change of the multiplicative
factor and of the exponent.

4.2. Structure-preserving methods

The application of reduced basis methods to time-dependent problems might lead
to unstable and qualitatively wrong solution behaviours: indeed, the reduced model
generally does not inherit the physical properties of the original differential equa-
tion. The physical properties of a problem are mathematically encoded in so-called
geometric structures, structural properties ‘which can be defined independently of
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particular coordinate representations of the differential equations’ (Christiansen,
Munthe-Kaas and Owren 2011). Examples of such structures are conservation
laws, symmetries, symplecticity, reversibility and invariants of motion. The ob-
servation that inaccurate and unstable solutions resulting from standard numerical
methods often originate from inconsistent discretizations of the fields and oper-
ators involved has led to the concepts of structure-preserving discretization (see
e.g. Shashkov 1996, Hiptmair 2002, Arnold, Falk and Winther 2006) and geomet-
ric integration (Sanz-Serna and Calvo 1994, Leimkuhler and Reich 2004, Iserles,
Munthe-Kaas, Nørsett and Zanna 2000, Hairer, Lubich and Wanner 2006, Chris-
tiansen et al. 2011). Formulating numerical approximations compatible with the
geometric structure underlying the original model allows physically consistent
simulations and leads to numerical schemes with superior accuracy and stability
properties.
Structure-preserving model order reduction originates from discussion of the

physical interpretability of reduced models. Indeed, failing to preserve intrinsic
properties of the original model not only raises questions about the validity of
the reduced models but is also associated with instabilities and exponential error
growth, independent of the accuracy of the reduced space. Structure-preserving
MORaims at constructing reducedmodels that exactly retain (part of) the geometric
structures of the full model.
In the following subsections we discuss structure-preserving reduced basis meth-

ods for finite-dimensional parametrized differential equations. These can be dy-
namical systems or they can result from the semidiscrete approximation of time-
dependent PDEs. In the latter case, the geometric structures considered are strictly
tied to the numerical techniques employed in the semidiscretization of the PDE
of interest. First we discuss structure-preserving reduced basis methods of con-
servative dynamical systems in the framework of Lagrangian, Hamiltonian and
Poisson dynamics. Then we deal with non-conservative systems with special types
of dissipation and with port-Hamiltonian problems.

Remark 4.1 (notation). Throughout this subsection we will use the following
notation: VN denotes a general vector space of dimension N; N is the size of
the truth problem; n is the size of the reduced order model; 2N and 2n are used
to indicate that the full order and reduced order model, respectively, are even-
dimensional; u(t; µ) denotes the truth solution and it coincides with the vector
(uh,1(t; µ), . . . , uh,N (t; µ)) of degrees of freedom of uh whenever the ordinary dif-
ferential equation comes from the semidiscretization of a PDE as in (4.4).

4.2.1. Conservative dynamics
Conservative processes are characterized by no dissipative effects, such as thermal
conduction, electric resistivity or viscous dissipation. They are modelled via hyper-
bolic partial differential equations, conservation laws and Hamiltonian dynamical
systems. Examples of finite-dimensional systems in this category are rigid body
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motion and the n-body problem, the harmonic oscillator, the dynamical billiard, the
Euler top equations, the Heisenberg equation, the May–Leonard model and certain
Lotka–Volterra models. In the infinite-dimensional case, examples of conservat-
ive systems are Maxwell’s equations, Schrödinger’s equation, Korteweg–de Vries
and the wave equation, compressible and incompressible Euler equations, Vlasov–
Poisson and Vlasov–Maxwell equations.
Conservative systems are at the core of classical mechanics and they can be con-

sidered from two points of view: the Lagrangian formalism and the Hamiltonian
formalism (Marsden and Ratiu 1999). Let the configuration manifold of a mech-
anical system be the manifold collecting all possible configurations of the system.
Lagrangian mechanics is based on variational principles via a smooth function,
the Lagrangian, defined on the velocity phase space, the tangent bundle of the
configuration manifold. We will delve into details of the Lagrangian formalism at
the end of the subsection. Hamiltonian mechanics instead relies on conjugate mo-
menta and on the cotangent bundle, called momentum phase space. The cotangent
bundle is endowed with a natural symplectic manifold structure, which underpins
the physical properties of the system.

Definition 4.2 (symplectic vector space). Let V2N be a 2N-dimensional real
vector space. A skew-symmetric bilinear form ω : V2N × V2N → R is sym-
plectic if it is non-degenerate, that is, if ω(u, v) = 0, for any v ∈ V2N , then u = 0.
The map ω is called a linear symplectic structure on V2N , and (V2N, ω) is called
a symplectic vector space.

On a finite 2N-dimensional smooth manifold V2N , let ω be a 2-form, that is, for
any u ∈ V2N , the map ωu : TuV2N × TuV2N → R is skew-symmetric and bilinear
on the tangent spaceTuV2N toV2N at u, and it varies smoothly in u. The 2-formω
is a symplectic structure if it is closed and ωu is symplectic for all u ∈ V2N , in the
sense of Definition 4.2. A manifold V2N endowed with a symplectic structure ω is
called a symplectic manifold and denoted by (V2N, ω). Every symplectic manifold
(V2N, ω) is, in a suitable local coordinate system, a symplectic vector space. This
means that in a neighbourhood of each u ∈ V2N , there is a local coordinate chart
in which ω is constant (Darboux 1882).
The algebraic structure of a symplectic manifold (V2N, ω) can be characterized

by the definition of a bracket. Let dF be the 1-form given by the exterior derivative
d of a smooth function F . Then, for all F,G ∈ C∞(V2N ),

{F,G}2N (u) B 〈T ∗V2N
dF,J2N (u) dG〉TV2N

= ω(XF (u), XG(u)), (4.9)

where 〈T ∗V2N
·, ·〉TV2N

denotes the duality pairing between the cotangent bundle
T∗V2N and the tangent bundle TV2N . The function J2N (u) : T∗V2N → TV2N is
a contravariant 2-tensor on the manifold V2N , commonly referred to as a Poisson
tensor, and XF B J2NdF is called theHamiltonian vector field associated withF .
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Hamiltonian systems on symplectic spaces
Any vector field on a manifoldV2N determines a phase flow. Hamilton’s equations
for the smooth function H ∈ C∞(V2N ) correspond to the following system of
differential equations defined by the Hamiltonian vector field XH ∈ TV2N : find
u ∈ C1(T ;V2N ) such that{

Ûu(t) = XH(u(t)) for t ∈ T ,
u(t0) = u0 ∈ V2N .

(4.10)

In a local coordinate system on V2N , the Hamiltonian vector field XH has the
form XH(u) = D2N (u)∇uH(u), where, for any u ∈ V2N , ∇u denotes the gradient
with respect to u, and D2N (u) ∈ R2N×2N is a skew-symmetric matrix, represent-
ation of the Poisson tensor J2N in the chosen local coordinate system. A set of
local coordinates (q1(u), . . . , qN (u), p1(u), . . . , pN (u)), with u ∈ V2N , is called
canonical if

{qi, qk}2N = {pi, pk}2N = 0, {qi, pk}2N = δi,k for all i, k = 1, . . . , N .

In the local canonical coordinates, the Poisson tensor J2N takes the so-called
canonical symplectic form, defined as

J2N B

(
0N IN
−IN 0N

)
∈ R2N×2N, (4.11)

where IN, 0N ∈ R
N×N are the identity and zero matrix, respectively. This implies

that the Hamiltonian vector field associated with H ∈ C∞(V2N ), in the canonical
coordinate system, is given by XH(u) = J2N∇uH(u). Thus Hamilton’s equations
(4.10) in canonical coordinates read

Ûq(t) = ∇pH(q, p) for t ∈ T ,
Ûp(t) = −∇qH(q, p) for t ∈ T ,
q(t0) = q0, p(t0) = p0.

(4.12)

The phase flow of a vector field XH on V2N is the one-parameter group of diffeo-
morphisms Φt

XH
: V2N → V2N that satisfy Φ0

XH
(u) = u and

ÛΦt
XH

(u) = XH(Φt
XH

(u)) for all t ∈ T , u ∈ V2N . (4.13)

The flow of a Hamiltonian vector field satisfies (Φt
XH

)∗ω = ω, for each t ∈ T ,
that is, it preserves the symplectic form ω. The converse also holds: see Marsden
and Ratiu (1999, Proposition 10.2.3).

Definition 4.3 (symplectic map). Let (V2N, ω2N ) and (V2n, ω2n) be symplectic
manifolds of finite dimension 2N and 2n respectively, with n ≤ N . Let {·, ·}2N
and {·, ·}2n denote the corresponding brackets. A smooth map Ψ : (V2N, ω2N ) →
(V2n, ω2n) is called symplectic if it satisfies

Ψ
∗ω2n = ω2N,
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or equivalently Ψ∗{F,G}2n = {Ψ∗F,Ψ∗G}2N , for any F,G ∈ C∞(V2n).

In addition to possessing a symplectic phase flow, Hamiltonian dynamics is char-
acterized by the existence of differential invariants, and symmetry-related conser-
vation laws. This family of conserved quantities are related, by Noether’s theorem
(Noether 1918), to symmetries of the Hamiltonian. A function I ∈ C∞(V2N ) is
an invariant of motion of the dynamical system (4.10), if {I,H}2N (u) = 0 for all
u ∈ V2N . Consequently I is constant along the orbits of XH. The Hamiltonian, if
time-independent, is an invariant of motion. A particular subset of the invariants of
motion of a dynamical system is given by the Casimir invariants, smooth functions
C on V2N that ω2N -commute with every other functions, i.e. {C,F }2N = 0 for all
F ∈ C∞(V2N ). Since Casimir invariants are associated with degeneracies of the
symplectic form ω, symplectic manifolds only possess trivial Casimir invariants.
In Section 4.2.4 we will see non-trivial Casimir invariants associated with Poisson
manifold structures.

When dealing with symplectic vector spaces, the canonical coordinates allow
us to identify a Kähler structure, namely a compatible combination of a scalar
product and symplectic form, as follows. On a symplectic vector space (V2N, ω),
the operator J>2N is an almost complex structure, i.e. a linear map on V2N such
that J>2N ◦ J>2N = −I2N . Furthermore, J>2N is compatible with the symplectic
structure ω, namely, for any u, v ∈ V2N , u , 0, we find that

ω
(
J>2N u, J>2N v

)
= ω(u, v) and ω

(
u, J>2N u

)
> 0.

A symplectic form ω on a vector space V2N together with a compatible positive
almost complex structure J>2N determines an inner product on V2N , given by

(u, v) B ω
(
u, J>2N v

)
for all u, v ∈ V2N . (4.14)

A symplectic basis on (V2N, ω) is an orthonormal basis for the compatible inner
product (4.14), and we refer to it as orthosymplectic.

Definition 4.4 (orthosymplectic basis). The set of vectors {ei}2Ni=1 is said to be
orthosymplectic in the 2N-dimensional vector space V2N if

e>i J2N ek = (J2N )i,k and (ei, ek) = δi,k for all i, k = 1, . . . , 2N,

where (·, ·) is the Euclidean inner product and J2N is the canonical symplectic
tensor (4.11) on V2N .

Orthosymplectic bases play a crucial role in model order reduction in the con-
struction of low-dimensional spaces where surrogate dynamical systems are de-
rived.

Lagrangian formalism
In the Lagrangian variational formalism, a system is defined by a Lagrangian
function L : TVN → R, where VN is the configuration manifold of dimension N ,
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andTVN is the corresponding velocity phase space (the tangent bundle ofVN ). Let
q : T → VN denote the time-dependent configuration variables, called generalized
coordinates. The Lagrangian is typically given by the difference between the kinetic
and potential energy of the system, namely,

L(q, Ûq) =
1
2
Ûq>M Ûq − V(q), (4.15)

where M is an N × N symmetric positive definite mass matrix and V is a nonlinear
potential-energy function V : VN → R. The corresponding equations of motion
are given by the Euler–Lagrange equations

d
dt
∇ ÛqL(q, Ûq) − ∇qL(q, Ûq) = 0 for t ∈ T . (4.16)

As discussed at the beginning of the subsection, autonomous Lagrangian systems
(4.16) possess important physical properties. The energy is conserved along solu-
tion trajectories and, by Noether’s theorem (Noether 1918), there is an invariant
of motion associated with each symmetry that leaves the Lagrangian invariant.
Moreover, the flow of the system, i.e. its time-evolution map, is a symplectic trans-
formation (see Definition 4.3). To pass to the canonical Hamiltonian formalism
(4.12), a change of variables based on the conjugate momenta pi B ∂L/∂ Ûqi for
i = 1, . . . , N is needed. With the change of variables (q, Ûq) 7→ (q, p) and the
Hamiltonian H(q, p) = p> Ûq − L(q, Ûq), the Euler–Lagrange equations are equival-
ent to Hamilton’s equations (4.12).
In this review we focus on autonomous systems, namely with Hamiltonian and

Lagrangian functions that do not explicitly depend on time. However, conservative
systems with explicit time dependence in the Hamiltonian or Lagrangian can be
studied by utilizing the extended Lagrangian mechanics framework or the sym-
plectic extended phase space; see e.g. Lanczos (1949). This takes into account
time variations in addition to variations in the configuration variables and consists
in reformulating the problem as an autonomous system by defining an extended
state with time as a variable. Structure-preserving model order reduction for non-
autonomous Hamiltonian system can be derived from the autonomous case. We
refer to Buchfink, Bhatt and Haasdonk (2019, Section 2.5) for a summary of the
resulting algorithm.

4.2.2. Lagrangian model order reduction
Structure-preservingmodel order reduction of conservative dynamical systemswas
first approached from the Lagrangian perspective in Lall, Krysl andMarsden (2003)
and extended to nonlinear parametric Lagrangian systems in Carlberg, Tuminaro
andBoggs (2015). Let us consider parameters that describe, for example, variations
in material or physical properties of the system. For any parameter µ ∈ P, consider
the parametric Euler–Lagrange equations

d
dt
∇ ÛqL(q, Ûq; µ) − ∇qL(q, Ûq; µ) = 0 for t ∈ T . (4.17)
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To apply model order reduction in the Lagrangian framework, the full model can
be thought of as characterized by a configuration space and an associated Lag-
rangian function, from which the complete dynamics can then be specified by the
variational principle. Lagrangian model order reduction consists in first approxim-
ating the quantities defining the problem’s Lagrangian structure and subsequently
deriving the equations of motion by applying the Euler–Lagrange equation to the
reduced quantities. The rationale is that model reduction based on Galerkin pro-
jection of the Euler–Lagrange equations – and not on the first-order state-space
form – preserves Lagrangian structure. As seen in Section 4.2.1, this mechanical
structure is associated with key physical properties, such as energy conservation,
symplecticity of the flow map, and conservation of quantities corresponding to
symmetries of the system.

From a Euclidean configuration spaceVN , Lagrangian MOR derives an approx-
imate configuration space of lower dimension, namely a submanifold Vn ⊂ VN ,
using standard dimension reduction techniques, e.g. POD or modal decomposition.
Then the reducedmechanical system is constrained to the configuration space given
byVn. This approach separates the configuration space selection from the dynamic
reconstruction. The original Lagrangian

L(q, Ûq; µ) =
1
2
Ûq>M(µ) Ûq − V(q; µ),

restricted to the constraint submanifold Vn, gives a new Lagrangian Lr on Vn:

Lr (qr, Ûqr ; µ) =
1
2
Ûq>r U>M(µ)U Ûqr − V(Uqr ; µ). (4.18)

Here U ∈ RN×n is a parameter-independent matrix whose orthonormal columns
represent a reduced basis spanning an n-dimensional subspace ofVN , and qr ∈ Vn

is such that Uqr approximates the full model solution q ∈ VN . The reduced
Lagrangian (4.18) defines the Euler–Lagrange equations for the reduced dynamics
on Vn:

d
dt
∇ Ûqr

Lr (qr, Ûqr ; µ) − ∇qr
L(qr, Ûqr ; µ) = 0 for t ∈ T . (4.19)

Since U>M(µ)U is a low-dimensional symmetric positive definite matrix, the first
term of (4.18) represents kinetic energy. Moreover, the reduced dynamics inherits,
by construction, the geometric structure of the full model.
Although the Lagrangian model order reduction method proposed in Lall et al.

(2003) yields equations of motion (4.19) of lower dimension, the computational
cost of solving the reduced dynamics scales with the dimension of the full model
whenever the operators cannot be assembled in the offline phase, namely when they
exhibit arbitrary parameter dependence and the potential is nonlinear. In order to
reduce the complexity of reduced order models of nonlinear Lagrangian systems,
Carlberg et al. (2015) proposed further approximating the reduced Lagrangian
quantities before deriving the Euler–Lagrange equations. To approximate the
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reduced symmetric positive definite matrix U>M(µ)U, two alternatives are pro-
posed in Carlberg et al. (2015): a reduced basis sparsificationmethod that consists
in projecting the full matrix M onto a sparse basis, and a gappy POD procedure
applied to M that approximates the reduced matrix as a linear combination of
precomputed reduced matrices.
To deal with nonlinearities in the potentialV , first the reduced basis U is replaced

by a sparse parameter-dependent matrix UV (µ) ∈ RN×n, and then the gradient of
the corresponding reduced potential ∇qr

V(UV (µ)qr ; µ) is approximated with its
Taylor polynomial expansion about the reference configuration, truncated at the
second term. This technique, although not effective for general systems, provides
an efficient and good approximation when the expansion is performed around an
equilibrium point and the dynamical system is assumed to be asymptotically stable.

4.2.3. Symplectic model order reduction
A second family of structure-preserving model order reduction techniques for
conservative systems relies on the Hamiltonian formalism. Let us first consider
parametric Hamiltonian systems, in the so-called canonical symplectic form (4.12):
for any µ ∈ P and for u0(µ) ∈ V2N , find u(µ) ∈ C1(T ;V2N ) such that{

Ûu(t; µ) = J2N∇uH(u(t; µ); µ) for t ∈ T ,
u(t0, µ) = u0(µ).

(4.20)

A Petrov–Galerkin projection-based approach consists in constructing a reduced
basis U ∈ R2N×2n spanning the reduced space V2n and a matrix W ∈ R2n×2N such
that W>U = I2n. The reduced order model is then derived by requiring that the
equation residual vanishes in the space spanned by the columns of the projection
matrix UW>; thereby{

Ûur (t; µ) =W>J2N∇uH(Uur (t; µ); µ) for t ∈ T ,
ur (t0; µ) =W>u0(µ),

(4.21)

where ur ∈ V2n is such that Uur is an approximation of the full model solution
u ∈ V2N .
Reduced basismethods aimed at preserving the physical and geometric properties

of Hamiltonian dynamics (4.20) hinge on two main aspects: (i) an approximate
phase space of reduced dimension endowed with the same symplectic structure
of the full phase space, and (ii) a projection operator that preserves the geometric
properties of the flow field (4.13).

Proposition 4.5. For any fixed parameter µ ∈ P, the reduced model (4.21) is
Hamiltonian provided that the reduced basis and the projection operator satisfy the
constraint

W>J2N = J2nU>. (4.22)
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Moreover, under the constraint (4.22), the resulting Hamiltonian system reads{
Ûur (t; µ) = J2n∇urHr (ur (t; µ); µ) for t ∈ T ,
ur (t0; µ) =W>u0(µ),

(4.23)

where the Hamiltonian is given byHr (· ; µ) B H(· ; µ) ◦ U : V2n → R.

Proof. Condition (4.22) applied to (4.21) gives

Ûur (t; µ) =W>J2N∇uH(Uur (t; µ); µ)
= J2nU>∇uH(Uur (t; µ); µ)
= J2n∇urH(Uur (t; µ); µ)
= J2n∇urHr (ur (t; µ); µ),

with Hr (x; µ) = H(Ux; µ) for any x ∈ V2n and µ ∈ P.

The first method following this construction was proposed in Peng and Mohseni
(2016b), where the reduced space is spanned by an orthosymplectic basis and
a symplectic Galerkin projection yields a reduced Hamiltonian system on this
subspace.

To construct a Galerkin projection, symplectic MOR relies on the fact that a
linear map A : (V2N, ω) → (V2n, ω), N ≥ n, is symplectic if and only if the
corresponding matrix representation A ∈ R2n×2N satisfies AJ2NA> = J2n. The
symplectic right inverse of A is defined as the matrix B B J2NA>J>2n ∈ R

2N×2n.
The symplectic condition AJ2NA> = J2n is equivalent to B>J2NB = J2n. Owing
to this equivalence, with a small abuse of notation, the space

Sp(2n,R2N ) B {M ∈ R2N×2n : M>J2NM = J2n}

is often used to denote the space of symplectic matrices and M+ B J>2nM>J2N ∈

R2n×2N defines the symplectic inverse of M ∈ Sp(2n,R2N ); see Peng and Mohseni
(2016b, Definition 3.2).

Symplectic rectangularmatrices that are also orthogonal are calledorthosymplec-
tic; thereby

U(2n,R2N ) B St(2n,R2N ) ∩ Sp(2n,R2N ), (4.24)

where St(2n,R2N ) B {M ∈ R2N×2n : M>M = I2n} is the Stiefel manifold. Ortho-
symplectic rectangular matrices can be characterized as follows; see e.g. Buchfink
et al. (2019, Proposition 4).

Lemma 4.6. Let M ∈ Sp(2n,R2N ) and let M+ = J>2nM>J2N ∈ R
2n×2N be its

symplectic inverse. Then M>M = I2n if and only if M+ =M>.

The method proposed in Peng and Mohseni (2016b) consists in setting W> =

U+ in (4.21) so that condition (4.22) is satisfied. This choice corresponds to a
symplectic projection in the sense that ω(u −UU+u, w) = 0 for any w in the range
of U.
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Stability and conservation properties of the reduced order model
The fact that the reducedmodel constructed by the symplectic projection isHamilto-
nian has the important consequence that energy and stability are preserved during
the time evolution. As shown in Peng and Mohseni (2016b, Theorem 3.10) and
Maboudi Afkham and Hesthaven (2017, Theorem 18), if u∗ ∈ Im(U) is a stable
equilibrium of the full model (4.20), then it is a stable equilibrium of the reduced
system (4.23) constructed by the symplectic projection.
Concerning the invariants ofmotion of the dynamics, the error of theHamiltonian

evaluated in the full solution u and in the reduced solution ur , for any parameter
µ ∈ P, is given by

|H(u; µ) −H(Uur ; µ)| = |H(u; µ) −Hr (ur ; µ)|
= |H(u0; µ) −Hr (ur (t0; µ); µ)|
= |H(u0; µ) −H(UW>u0; µ)|,

(4.25)

where, in the second line, we have used the fact that the Hamiltonian is a conserved
quantity. This implies that the error in the Hamiltonian is constant in time and
vanishes if the initial condition u0 belongs to the range of U. The latter condition
can be enforced by either including the vector u0 ∈ R

2N in the reduced basisU or by
reformulating the Hamiltonian system (4.20) for the shifted variable u(t; µ)−u0(µ)
as in Gong, Wang and Wang (2017, Section 4.2) and Hesthaven and Pagliantini
(2021, Section 3.2.1).

With the exception of the Hamiltonian, if I ∈ C∞(V2N ) is an invariant of motion
of the Hamiltonian system (4.20), U ◦ I ∈ C∞(V2n) is not necessarily an invariant
of the reduced order model (4.23), since U is not a symplectic map. This is possible
under the stronger condition that the HamiltonianH(·; µ) belongs to the range of the
pullback of U+ for any µ ∈ P; see Hesthaven and Pagliantini (2021, Lemma 3.8).

Construction of the reduced basis
Let Mh denote the solution set which collects, as in (4.3), solutions of (4.20)
under variation of time and parameter. Different data-driven techniques have
been proposed in the literature to construct structure-preserving reduced bases
from partial information on the solution space given by full order snapshots S B
[u(η1), . . . , u(ηM )] ∈ R2N×M . All these methods consist in selecting the linear
subspace ofV2N in which the projection error of the snapshots is minimal, namely,
V2N is spanned by the column of the matrix U ∈ R2N×2n that satisfies

U B argmin
W∈W

‖S − PWS‖, (4.26)

where PW denotes a suitable Petrov–Galerkin projection operator, W is a matrix
space and ‖ · ‖ is a given matrix norm. The geometric structure of the reduced space
is enforced by constraining W toW in the minimization problem (4.26): the choice
W = St(2n,R2N ) yields an orthogonal reduced basis, while W = Sp(2n,R2N )
yields a symplectic basis. The minimization problem associated with the latter
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choice is significantly more challenging than the orthogonal case, and rigorous
results are not available. However, two families of numerical algorithms have been
proposed: SVD-based methods and greedy algorithms. We discuss them in the
following.

Proper symplectic decomposition (PSD), introduced by Peng and Mohseni
(2016b), is the extension to the orthosymplectic case of the proper orthogonal
decomposition (POD) (see Section 3) archetype of SVD-based algorithms to find
the best low-rank approximation of S. Three different PSD algorithms are derived
in Peng and Mohseni (2016b) in a non-parametric setting.

(i) The cotangent lift (Peng and Mohseni 2016b, Section 4.1) consists in con-
structing a symplectic reduced basis in the subset of block diagonal matrices
with equal diagonal blocks Φ ∈ RN×n that are orthogonal. An optimal basis
in this subset can be found by deriving Φ via SVD of the snapshot matrix

S B [q(t1), . . . , q(tM ), p(t1), . . . , p(tM )] ∈ RN×2M .

(ii) Complex SVD (Peng andMohseni 2016b, Section 4.2) relies on the isomorph-
ism between the set U of orthosymplectic matrices (4.24) and the complex
Stiefel manifold St(2n,C2N ) B {M ∈ C2N×2n : M∗M = I2n}. An optimal
orthosymplectic reduced basis results from the unitary matrix of left singular
vectors obtained via SVD of the snapshot matrix

S B [q(t1) + ıp(t1), . . . , q(tM ) + ıp(tM )] ∈ CN×M .

(iii) The nonlinear programming (NLP) algorithm (Peng and Mohseni 2016b,
Section 4.3) provides a (suboptimal) solution to the minimization problem
(4.26) without imposing the orthogonality constraint in the feasibility set.
It consists of an optimization strategy where a POD symplectic basis is
constructed from a linear transformation of an orthosymplectic matrix, as
follows. First an orthosymplectic basisU∗ ∈ U(2r,R2N ) is generated using the
complex SVD method, then the algorithm looks for a basis U ∈ Sp(2n,R2N ),
with n < r � N , such that U = U∗C, for some C ∈ R2r×2n. Using
this expression for U in (4.26) results in a minimization problem for the
coefficient matrix C. Although the latter is of significantly smaller dimension
(4nr unknowns) compared to the original minimization problem for U (4Nn
unknowns), no optimality results are available in this setting.

A slightly different SVD-based algorithm is the Galerkin POD method proposed
in Gong et al. (2017). The method considers Hamiltonian systems (4.20) where
the Poisson tensor J2N (4.11) is replaced by any skew-symmetric matrix D2N ∈
R2N×2N . The reduced basis U ∈ R2N×2n is then assumed to be block diagonal with
blocks Uq ∈ St(n,RN ) and Up ∈ St(n,RN ). These blocks are obtained via POD
from the snapshot matrices Sq B [q(t1), . . . , q(tM )] and Sp B [p(t1), . . . , p(tM )],
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respectively. Although the resulting reduced basis is not guaranteed to be optimal,
it satisfies U>D2N = D2nU>, with D2n B U>D2NU, and thus choosing W = U in
(4.21) yields a Hamiltonian reduced model.
A different approach to solving the minimization problem (4.26) is via a greedy

strategy. The greedy method is an iterative algorithm that consists in enlarging,
at each iteration, the reduced basis in the direction that gives the worst projec-
tion error of the full model snapshots. In the symplectic greedy algorithm of
Maboudi Afkham and Hesthaven (2017), the error in the Hamiltonian (4.25) is
used as an error indicator to iteratively select a direction in the parameter space,
namely, at the kth iteration of the algorithm

µ∗ = argmax
µ∈Ph ⊂P

|H(u0(µ)) −H(PWk−1u0(µ))|, (4.27)

where Ph is a finite subset of the parameter space and Wk−1 is the reduced basis
constructed at the (k−1)th step. Since the error in the Hamiltonian depends only on
the initial condition, it does not require the integration of the full model (4.20) over
the whole temporal interval and for all parameter values, thus making the procedure
faster compared to the SVD-type algorithms described in (i)–(iii). On the other
hand, if the initial condition u0(µ) belongs to the range of Wk−1 the procedure will
fail and the error indicator needs to be replaced with the more expensive projection
error. After a parameter has been selected according to (4.27), the projection error
in the snapshots S∗ B [u(t1, µ∗), . . . , u(tNT , µ

∗)] is used to select as the new basis
vector x B u(t∗, µ∗), where

t∗ B argmax
1≤i≤NT

‖u(ti, µ∗) − PWk−1u(ti, µ∗)‖.

To enforce the orthosymplecticity of the resulting reduced basis, the algorithm adds,
at each iteration, the new vector x and its symplectic dual J>2N x. Moreover, the
orthonormalization step of traditional greedy algorithms is replaced by a variation
of the QR method, known as the SR method (Salam 2005), which is based on the
symplectic Gram–Schmidt method leading to a symplectic basis. If the projection
error is used as the criterion to select the new basis elements, the greedy algorithm
is shown in Maboudi Afkham and Hesthaven (2017, Theorem 20) to converge at
an exponential rate, under the assumption of good approximability properties of
the full model (i.e. exponential decay of the Kolmogorov n-width of the solution
space).

Reduced bases that are symplectic but do not satisfy the orthogonality constraints
were proposed in Buchfink et al. (2019). The gist of the proposed algorithm is to
perform a symplectic SVD-like decomposition of the snapshot matrix and to retain
the 2n modes associated with the largest so-called weighted symplectic singular
values. In more detail, a result by Xu (2003) ensures that any matrix S ∈ R2N×M

admits a factorization S = VDQ, where V ∈ Sp(2N,R2N ), Q ∈ St(M,RM ) and
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D ∈ R2N×M is of the form

D =

p q p n−2p−q



Σ 0 0 0 p
0 I 0 0 q
0 0 0 0 m−p−q
0 0 Σ 0 p
0 0 0 0 q
0 0 0 0 m−p−q

,

with Σ = diag(σ1, . . . , σp), and σi > 0, for all i = 1, . . . , p, known as symplectic
singular values. The weighted symplectic singular values of S are defined as

wi =

{
σi

√
‖Vi ‖

2
2 + ‖Vn+i ‖

2
2, 1 ≤ i ≤ p,

‖Vi ‖2, p + 1 ≤ i ≤ p + q,

where Vi ∈ R
2N denotes the ith column of V and ‖ · ‖2 is the Euclidean norm.

Starting from the factorization of the snapshot matrix S B [u(η1), . . . , u(ηM )] ∈
R2N×M , a symplectic reduced basis U ∈ Sp(2n,R2N ) is obtained by selecting the
pairs of columns from the symplectic matrix V corresponding to the n largest
energy contributors, namely U = [Vi1, . . . ,Vin,VN+i1, . . . ,VN+in ], where

{ik}nk=1 B argmax
I⊂{1,..., p+q }

(∑
i∈I

w2
i

)
.

Similarly to POD (see Section 3), the projection error of the snapshots in the
derived reduced basis is bounded by the neglected weighted symplectic singular
values (Buchfink et al. 2019, Proposition 11).

4.2.4. Conservative systems on Poisson manifolds
In this subsection we consider the generalization of Hamiltonian systems on sym-
plectic manifolds to more general phase space manifold structures. Many dynam-
ical systems describing conservative processes are indeed characterized by a phase
space whose manifold structure is degenerate, meaning that the Poisson tensor is
rank-deficient. Moreover, the Poisson tensor J2N (u) introduced in (4.9) might de-
pend on the state variable u so that the geometric structure of the phase space has a
purely local characterization. Despite the complexity of such phase space manifold
structure, many problems of interest in scientific applications can be considered
within this framework, for example rigid body motion, the Toda lattice problem
(Kostant 1979), certain Lotka–Volterra models and, in infinite dimensions, the
Korteweg–de Vries equation (Miura, Gardner and Kruskal 1968), compressible
(Marsden et al. 1983) and incompressible (Arnol’d 1966) Euler equations, and the
Vlasov–Poisson and Vlasov–Maxwell equations (Morrison 1980).
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The phase space of a general Hamiltonian system is a Poisson manifold. An
N-dimensional Poisson manifold is a smooth differential manifold VN endowed
with a bracket {·, ·}N : C∞(VN ) × C∞(VN ) → C∞(VN ), namely a bilinear form
satisfying the following properties, for all F,G, I ∈ C∞(VN ):

skew-symmetry {F,G}N = −{G,F }N,
Leibniz rule {FG, I}N = {F, I}N G + F {G, I}N,
Jacobi identity {F, {G, I}N }N + {G, {I,F }N }N + {I, {F,G}N }N = 0. (4.28)

The bracket can be equivalently defined via the Poisson tensor as

{F,G}N (u) = 〈T ∗VN
dF,JN (u) dG〉TVN

for all F,G ∈ C∞(VN ).

Allowing degeneracies of the Poisson structure entails that there exists a set of
functions C ∈ C∞(VN ) such that {C,F }N = 0 for all F ∈ C∞(VN ). These are
called Casimir invariants. Contrary to the invariant of motions, Casimir invariants
are independent of the dynamics and only depend on the Poisson structure of the
manifold, in particular its degeneracy. Most Hamiltonian systems on Poisson mani-
folds that appear in applications are characterized by globally conserved quantities,
such as energy, angular momentum, helicity and vorticity. Hence we assume that
the phase space VN is a regular Poisson manifold, that is, the rank of the Poisson
tensor is constant, rank(JN (u)) = 2R, for all u ∈ VN , with R ∈ N, 2R ≤ N .

A fundamental property of Poisson manifolds is that they can be expressed as
a union of symplectic manifolds. Two points u and v on a Poisson manifold VN

are said to be on the same symplectic leaf of VN if there is a piecewise smooth
curve joining u and v, each segment of which is a trajectory of a locally defined
Hamiltonian vector field. Any Poisson manifold VN is the disjoint union of its
symplectic leaves, and the dimension of the leaf through a point u equals the rank of
the Poisson tensor at that point. This result allows us to introduce local coordinate
charts as the generalization of the canonical coordinates on symplectic manifolds:
for any ball B ⊂ VN and u ∈ B, there exist(

q1(u), . . . , qR(u), p1(u), . . . , pR(u), c1(u), . . . , cN−2R(u)
)
,

such that {qi, qk}N = {pi, pk}N = {qi, ck}N = {pi, ck}N = 0 and {qi, pk}N = δi,k
for all i, k = 1, . . . , R and k = 1, . . . , N − 2R. In the neighbourhood B of u, the
coordinates {ck}N−2R

k=1 correspond to the Casimir invariants, whereas {(qi, pk)}R
i,k=1

are the symplectic canonical coordinates. For any u ∈ VN , the Poisson tensor
JN (u) in the local canonical coordinates takes the form

JN B

 0R IR 0R,q

−IR 0R 0R,q

0q,R 0q,R 0q

 ∈ RN×N, (4.29)

where 0R,q is the matrix of size R times q with all zero entries. There are many
advantages in using canonical coordinates and having the Poisson tensor in the

https://doi.org/10.1017/S0962492922000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000058


294 J. S. Hesthaven, C. Pagliantini and G. Rozza

constant-valued form (4.29). However, canonical coordinates for general Poisson
tensors are often not known and not trivial to construct.

In this subsection we consider the following general parametric Hamiltonian
systems: for any µ ∈ P and for u0(µ) ∈ VN , find u(µ) ∈ C1(T ;VN ) such that{

Ûu(t; µ) = DN (u)∇uH(u(t; µ); µ) for t ∈ T ,
u(t0, µ) = u0(µ),

(4.30)

whereDN (u) ∈ RN×N is thematrix representation of the Poisson tensorJN (u) in a
local coordinate system onVN , not necessarily the canonical one. In the following,
we consider degenerate Poisson structures: first the constant-valued case and then
the state-dependent case.

Hamiltonian systems with degenerate constant-valued structures
On the N-dimensional vector space VN we consider, for each parameter µ ∈ P, the
initial value problem (4.30) with constant-valued Poisson tensor, namely,

Ûu(t; µ) = DN∇uH(u(t; µ); µ) for t ∈ T , (4.31)

where DN ∈ R
N×N is a skew-symmetric linear operator. Every skew-symmetric

matrix of odd dimension can be seen as the representation of the Poisson tensor
(4.11) in a given coordinate system. In particular, even-dimensional skew-sym-
metric operators are associated with symplectic structures. Hesthaven and Paglian-
tini (2021, Proposition 2.11) showed that when N is odd, any skew-symmetric
matrix DN ∈ R

N×N of rank 2R < N admits a decomposition of the form

ΨDNΨ
> = JN, (4.32)

where Ψ ∈ RN×N is invertible – but not orthogonal in general – and JN ∈ R
N×N is

thematrix representation of the Poisson tensor in canonical form (4.29). The factor-
ization (4.32) is unique up to transformations in the symplectic group Sp(2R,R2R).
Although the factorization (4.32) entails that the phase space of any system of
the form (4.31) has a degenerate symplectic structure, orthogonal and symplectic
projection-based model order reduction fails to preserve this geometric structure
and its degeneracy.
A structure-preserving reduced basis method was proposed in Hesthaven and

Pagliantini (2021). The gist of the method is to recast the full model using a suitable
coordinate systemwhere the null space of the structure is isolated, and then to apply
symplectic model order reduction only on the non-degenerate component of the
dynamics. In more detail, the factorization (4.32) ensures that there exists a linear
bijective map Ψ such that

Ψ : VN −→ V2R ×N , ΨDNΨ
> = JN, (4.33)

whereV2R is a symplecticmanifold of dimension 2R andN is a submanifoldwhose
dimension equals q, the number of independent Casimir invariants associated with
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the operatorDN . This entails that the fullmodel dynamics can be decoupled into the
dynamics on the symplectic leaf and the trivial dynamics of the Casimir invariants,
that is, (4.31) can be recast in canonical form as follows: find z(·; µ) ∈ C1(T ;VN )
such that {

Ûz(t; µ) = JN∇zHc(z(t; µ); µ) for t ∈ T ,
z(t0, µ) = Ψu0(µ),

(4.34)

whereHc B (Ψ−1)∗H for every µ ∈ P.
Since Ψ is a Poisson map, the invariants of motion of the system (4.31) are in

one-to-one correspondence with the invariants of motion of (4.34) (Hesthaven and
Pagliantini 2021, Corollary 3.2).
The idea of themethod proposed in Hesthaven and Pagliantini (2021) is to exploit

the splitting of the dynamics (4.33), to perform symplectic model order reduction
on the symplectic manifold V2R, while leaving unchanged the submanifold N
associated with the centre of the Lie algebra C∞(VN ). Formally this means that
a reduced basis U ∈ Rn×N is constructed to span an n-dimensional vector space
Vn, for n � N , such that the rank of the canonical Poisson tensor Jn on Vn,
rank(Jn) C 2r , satisfies n − 2r = q, namely,

U : V2r ×N −→ V2R ×N , U = Us × I,

where Us is taken to be an injective `2-orthogonal symplectic map, i.e. Us ∈

Sp(2r,R2R). This is constructed via one of the techniques presented in Section 4.2.3
using the snapshot matrix S = [Ψsu(t1), . . . ,Ψsu(tNT )], where the map Ψs is
defined from Ψ by V2R = Ψs(VN ). If U+ B U+s × I, and U+s ∈ R2R×2r is
the symplectic inverse of U, then a reduced model is obtained via the Poisson
projection UU+ onto Im(U) ⊂ VN of the dynamical system (4.34) in canonical
Poisson form: for t ∈ T and µ ∈ P, the approximation Uzr (t; µ) of z(t; µ) is such
that {

Ûzr (t; µ) = Jn∇zrHr (zr (t; µ); µ) for t ∈ T ,
zr (t0, µ) = U+Ψu0(µ),

(4.35)

whereHr B U∗Hc for all µ ∈ P.
The structure-preserving properties of this reduced basis method have important

effects: the reduced dynamics preserves the Lyapunov stable equilibria contained
in Im(U), the Poisson map U+ provides a Hamiltonian-preserving model reduction
and, since the null spaceN is not affected by the reduction, the Casimir invariants of
the full model are exactly conserved in the reduced problem. Furthermore, a priori
convergence estimates of the L2-error – both in time and parameter space – between
the full model solution and the reduced solution were established in Hesthaven and
Pagliantini (2021, Proposition 3.13), including the case when the symplectic DEIM
of Peng and Mohseni (2016b) and Maboudi Afkham and Hesthaven (2017) is used
as hyper-reduction of general nonlinear terms.
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Hamiltonian systems with state-dependent and degenerate structures
The numerical discretization and model order reduction of problems with state-
dependent and degenerate structures, DN = DN (u) in (4.30), is challenged by
the time dependence and nonlinearity intrinsic to the manifold structure. Approx-
imations of the Poisson tensor may indeed destroy this structure since the Jacobi
identity (4.28) generally fails to hold for the approximate tensor.
Hesthaven and Pagliantini (2021) introduced a reduced basis method that pre-

serves general Poisson structures for non-parametric systems. The method uses the
temporal discretization of the dynamics to ‘freeze’ the phase space manifold struc-
ture in each discrete temporal interval, then recasts the local problem in canonical
form, and subsequently constructs a local reduced model in canonical Hamiltonian
form.
Let VN be a Poisson manifold and let DN (u) denote the Poisson tensor at each

state u ∈ VN . On the temporal mesh Th =
⋃

k∈Υh Tk , with Υh ⊂ N a given set of
indices, the approach of Hesthaven and Pagliantini (2021) considers the following
discretization of (4.30): for u0 ∈ VN , find {uk+1}k∈Υh ⊂ VN such that{

uk+1 = uk + ∆t DN (ûk)∇H(ûk) for k ∈ Υh,
u0 = u0,

(4.36)

where ûk
∈ VN is determined by the temporal discretization. Alternative discret-

izations of the Poisson tensor and of the Hamiltonian are possible. To recast the
local dynamical system (4.36) in canonical Poisson form, each local Poisson tensor
DN (ûk), with k ∈ Υh, is factorized as in (4.32). In more detail, if VN,k denotes an
open subset of VN containing the states uk+1, uk and ûk , (4.32) identifies a biject-
ive linear function ψk+1/2 : VN,k → VN,k that satisfies ψk+1/2DN (ûk)ψ>

k+1/2 = JN

at the state(s) ûk
∈ Tk dictated by the temporal discretization (4.36). Each map

ψk+1/2 provides the local splitting ψk+1/2 : VN,k → V2R ×Nk , whereNk is the ap-
proximation of the subspace associated with the kernel of the Poisson tensor at ûk .
Similarly to the degenerate symplectic case described earlier in this subsection, the
function ψk+1/2 introduces a change of coordinates on VN,k so that, if uk+1 ∈ VN

is the solution of (4.36) in Tk , then the function zk+1 = ψk+1/2u
k+1 ∈ V2R × Nk

satisfies {
zk+1 = Tk z

k + ∆t JN∇Hk (̂zk) for k ∈ Υh,
z0 = ψ1/2u0,

(4.37)

where ẑk B ψk+1/2 û
k , JN is as in (4.29) and the Hamiltonian is Hk(z) B

H(ψ−1
k+1/2z) for all z ∈ VN,k . The functions {Tk}k∈Υh are defined as transition

maps between neighbouring subsets,

Tk : ψk−1/2(VN,k−1 ∩ VN,k) −→ ψk+1/2(VN,k−1 ∩ VN,k),

with Tk B ψk+1/2 ◦ ψ
−1
k−1/2, for k ∈ Υh \ {0} and T0 B I.
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A reduced model for the discrete dynamical system (4.36) is derived by an
approach analogous to the degenerate symplectic case, with the difference that here
the projection is performed locally, in each temporal interval. The reduced phase
space is an n-dimensional Poisson manifold, n � N , endowed with the canonical
Poisson tensor Jn such that n− rank(Jn) = q, with q the dimension of the null space
of DN (u). This is constructed by means of a global linear surjective map U+ such
that, for every k ∈ Υh,

U+ : V2R ×Nk −→ V2r ×Nk, U+ = U+s × I,

where U+s ∈ U(2r,R2R). In the offline phase, snapshots of system (4.36) in each
temporal interval Tk are collected, and the corresponding maps {ψk+1/2}k are
computed via (4.32). This information is used to construct a global symplectic
reduced basis via one of the algorithms presented in the previous subsection. The
local projection of (4.37) onto Im(U) ∩ VN,k ⊂ VN yields the following reduced
model: for u0 ∈ VN , find {zk+1

r }k∈Υh ⊂ Vn such that{
zk+1
r = τk z

k
r + ∆t Jn∇Hk

r (̂zkr ) for k ∈ Υh,
z0
r = U+ψ1/2u0,

(4.38)

where the quantity U ẑkr approximates the pseudo-state ẑk , the reduced Hamiltonian
is Hk

r (zr ) B H(ψ−1
k+1/2Uzr ) for all zr ∈ Vn, and the reduced transition maps τk

are defined as τk B U+ ◦ Tk ◦ U for all k ∈ Υh \ {0}, with τ0 B I, and can be
precomputed in the offline phase.
The global Poisson structure, the stability and the conservation properties of

the phase flow are retained by the reduced model up to local errors in the Poisson
tensor approximation; see Hesthaven and Pagliantini (2021, Section 4.2). If the
approximate maps {ψk+1/2}k∈Υh are constructed to be continuous at the interface
between temporal intervals, i.e. ψk−1/2uk = ψk+1/2u

k , where uk is the solution of
(4.36) in Tk , then the reduced model exactly preserves the Hamiltonian and the
global manifold structure.
Dynamical systems of the form (4.30), with state-dependent operator D2N (u)

and no parameter dependence, have been considered inMiyatake (2019). However,
there D2N (u) is not a Poisson tensor, namely, it is assumed to be skew-symmetric
but it does not satisfy the Jacobi identity (4.28). Any dynamical system with a
conservation law can be represented in such a form. Miyatake (2019) derived a
reduced model with the method proposed in Gong et al. (2017); thereby{

Ûur (t) = U>D2N (Uur )UU>∇uH(Uur (t)) for t ∈ T ,
ur (t0) = U>u0,

where U ∈ R2n×2N is orthogonal and the gradient ∇uH has been approximated by
its projection into the reduced space. The skew-symmetry of the reduced operator
D2n(ur ) B U>D2N (Uur )U, for any ur ∈ R

2n, is guaranteed by the orthogonality
transformation and ensures preservation of the conservation law of the full model.
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Moreover, its efficient computation is carried out in Miyatake (2019) via a matrix
DEIM strategy (Wirtz, Sorensen and Haasdonk 2014, Carlberg et al. 2015).
The structure-preserving reduced basis methods described in the previous sub-

sections has proved successful in the efficient and stable solution of several prob-
lems such as the linear wave equation (Peng andMohseni 2016b, Maboudi Afkham
and Hesthaven 2017, Gong et al. 2017), sine-Gordon equation (Peng and Mohseni
2016b), nonlinear Schrödinger equation (Maboudi Afkham and Hesthaven 2017,
Karasözen and Uzunca 2018), shallow water equations (Karasözen, Yıldız and
Uzunca 2021), Korteweg–de Vries equation (Gong et al. 2017, Hesthaven and
Pagliantini 2021, Uzunca, Karasözen and Yıldız 2021) and population dynamics
models (Hesthaven and Pagliantini 2021).

4.2.5. Methods based on constraints
A different class of projection-based reduced basis methods for conservative sys-
tems relies on the preservation of certain geometric structures in the reducedmodels
by enforcing suitable constraints.
Carlberg, Choi and Sargsyan (2018) constructed a model order reduction method

for finite-volume models to guarantee conservation over each control volume of
the computational mesh. This projection-based method endows the optimiza-
tion problems of Galerkin and least-squares Petrov–Galerkin projection with a
minimum-residual objective function and nonlinear equality constraints that ex-
plicitly enforce conservation over subdomains. These constrained optimization
problems are solved online, at each time step. Moreover, to efficiently handle
nonlinearities in the flux and source terms while respecting the finite-volume dis-
cretization, hyper-reduction techniques are applied to the nonlinear residuals that
appear in the constraints.
General constrained-optimization formulations for projection-based model re-

duction were proposed in Schein, Carlberg and Zahr (2021) to enforce the resulting
reduced models to satisfy specific physical properties such as conservation of in-
variants.
An energy-conserving POD-Galerkin reduced basis method for the incompress-

ible Navier–Stokes equations is proposed in Sanderse (2020). The method relies
on a finite-volume discretization of the full model that preserves mass, momentum
and kinetic energy. Moreover, it possesses a skew-symmetric convective operator,
a symmetric diffusive term, and satisfies the compatibility relation between diver-
gence and gradient. Based on this semidiscrete problem, the method of Sanderse
(2020) constructs a reduced velocity space from snapshots of divergence-free ve-
locities via POD with a weighted inner product. To enforce exact conservation
of momentum and energy in the reduced model – in the inviscid case and under
periodic boundary conditions – the minimization problem that underlies the SVD
is replaced by a constrained minimization problem. The formulation of dynamical
systems and fluid flow equations in a skew-symmetric form, and its numerical
discretization, has received considerable attention thanks to the conservation prop-
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erties associated with the preservation of the skew-symmetric form at the discrete
level, e.g. quadratic invariants such as energy. In Maboudi Afkham, Ripamonti,
Wang and Hesthaven (2020), nonlinear conservation laws with quadratic nonlin-
earities are reduced using a POD-Galerkin reduced basis method applied to the
skew-symmetric form of the semidiscrete full model. By preserving the skew-
symmetry of the differential operators, conservation of the quadratic invariants of
the reduced model is guaranteed. The loss in energy is associated with the ap-
proximation of the full model invariants due to the model order reduction, which,
however, remains constant in time.

4.2.6. Non-conservative dynamics
The favourable properties of the reduced models obtained via structure-preserving
MOR have also stimulated the development of analogous techniques in the context
of non-conservative systems, whose dynamics can be described by special geomet-
ric structures. In this setting, model order reductionmethods have been developed to
address forced Lagrangian systems (Carlberg et al. 2015), forced Hamiltonian sys-
tems (Peng and Mohseni 2016a), time dispersive and dissipative (TDD) problems
(Maboudi Afkham and Hesthaven 2019) and port-Hamiltonian systems (Polyuga
and van der Schaft 2010, 2011, Beattie and Gugercin 2011, Chaturantabut, Beattie
and Gugercin 2016, Beattie, Gugercin and Mehrmann 2019). As discussed below,
several of these techniques are based on modifications of the Lagrangian and sym-
plectic model order reduction techniques introduced in the previous subsections.

Forced Hamiltonian systems
Carlberg et al. (2015) dealt with parametric mechanical systems in Lagrangian
form subject to the external and dissipative forces arising from Rayleigh viscous
damping. The equations ofmotion of such systems are given by the Euler–Lagrange
equations

d
dt
∇ ÛqL(q, Ûq; µ) − ∇qL(q, Ûq; µ) = f (q, Ûq, t; µ)) − ∇ ÛqF( Ûq; µ), (4.39)

where L is the Lagrangian as in (4.16), f denotes the external force that is derived
from the Lagrange–D’Alembert variational principle, and dissipation is modelled
by the Rayleigh dissipation function

F( Ûq; µ) =
1
2
Ûq>C(µ) Ûq, (4.40)

where C(µ) is a parametric symmetric positive semidefinite matrix.
The model order reduction strategy described in Section 4.2.2 is based on

the Galerkin projection of the Euler–Lagrange equations into the reduced space
spanned by the columns of an orthonormal matrix U ∈ RN×n. The resulting re-
duced order model preserves the Lagrangian structure even in the non-conservative
case. Indeed, it leads to a positive semidefinite reduced dissipation function
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Fr ( Ûqr ; µ) = 1
2 Ûq
>
r U>C(µ)U Ûqr , and a reduced external force fr derived by ap-

plying the Lagrange–D’Alembert principle to the full model force f restricted to
variations in the configuration space Qr . To deal with non-affine dependence and
nonlinear terms, the complexity reduction strategies used in the conservative case
(see Section 4.2.2) can be applied to the non-conservative forces mutatis mutandis,
as shown in Carlberg et al. (2015, Sections 4.3–4.4). In particular, a reduced basis
sparsification method and a gappy POD procedure can be used to approximate
the reduced damping matrix U>C(µ)U to maintain the Rayleigh-damping struc-
ture. Concerning the external force fr , traditional DEIM or gappy POD can be
employed since this function has no particular geometric structure.
Analogously to the Lagrangian case, non-conservative forces often consist of

applied external forces and dissipative effects that can be modelled as perturbation
of a Hamiltonian system; thereby{

Ûu = J2N∇uH(u(t; µ); µ) + f (u(t; µ), t) for t ∈ T ,
u(t0, µ) = u0(µ).

(4.41)

Peng and Mohseni (2016a) considered non-parametric dynamical systems with
forcedHamiltonian structure (4.41) in the special casewhere f : V2N×T → V2N is
a vertical vector field, namely, it has zero component in the generalized coordinate
f (u, t) = (0, fH (u, t)). To obtain a reduced order model that retains a forced
Hamiltonian structure, Peng andMohseni (2016a) proposed performing a structure-
preserving projection of the full model as described in Proposition 4.5, using an
orthosymplectic reduced basis U ∈ U(2n,R2N ). The resulting reduced dynamics
possesses a forced Hamiltonian structure for any Hamiltonian functions H and
force fields fH , under the further constraint that the upper right block of U of size
N×n vanishes; see Peng andMohseni (2016a, Lemma 3.3). This condition ensures
that the reduced force field is a vertical vector.
Moreover, the variation of the energy of the system is preserved by the reduced

model if the force field f belongs to the reduced space at each instance of the
reduced state Uur (or an equivalent condition is satisfied: see Peng and Mohseni
2016a, Theorem3.13). Although this assumption can be hardly satisfied in practice,
Peng and Mohseni (2016a) proposed several algorithms to construct the reduced
space in such a way that the above property on the time derivative of the energy
holds approximately.
In the framework of Peng andMohseni (2016a), dissipative Hamiltonian systems

can be seen as special forced Hamiltonian systems, where the system energy is
decreasing with time. When the dissipation is Rayleigh dissipation as in (4.39),
i.e. fH (u) = fH (q, p) = −Cp, with C that might depend on q or a parameter µ,
Peng and Mohseni (2016a) showed that the aforementioned structure-preserving
approach exactly preserves the dissipativity independently of the construction of
the reduced basis.
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A different approach is proposed in Maboudi Afkham and Hesthaven (2019)
to deal with non-parametric linear dissipative problems. The idea is to include
dissipation by recasting (4.41) as time dispersive and dissipative (TDD) (Figotin
and Schenker 2007); thereby{

Ûu = J2NK>g(t) for t ∈ T ,
u(t0) = u0,

(4.42)

where K ∈ R2N×2N is such that the Hamiltonian readsH(u) = (u>K>Ku)/2, and
g is the solution of the Volterra integral equation

g(t) +
∫ t

t0

χ(t − s)g(s) ds = Ku,

where χ : R+ → R2N×2N is a matrix-valued function (bounded in the Frobenius
norm) called general susceptibility. Under suitable assumptions on χ (see Figotin
and Schenker 2007 and Theorem 2 of Maboudi Afkham and Hesthaven 2019),
problem (4.42) can be recast as an extended closed conservative system by coupling
the full model with a canonical heat bath that absorbs the dissipated energy of the
original system. This extension is obtained by defining a suitable Hilbert space
(H2N, ‖ · ‖H2N ) and an isometric injection I : R2N → R2N ×H2N , such that

Ûu = J2NK>g(t),
∂tφ = θ(t, x),
∂tθ = ∂

2
xφ(t, x) +

√
2δ0(x) · χ1/2g(t),

u(t0) = u0, θ(t0, ·) = 0, φ(t0, ·) = 0,

(4.43)

where φ and θ are vector-valued functions in H2N , δ0 is the Dirac delta and g
solves g(t) +

√
2χ1/2φ(t, 0) = Ku(t). Problem (4.43) is a conserved Hamiltonian

system with Hamiltonian given by

Hex(u, φ, θ) =
1
2
(
‖Ku − φ(t, 0)‖22 + ‖θ(t)‖2H2N + ‖∂xφ(t)‖2H2N

)
.

By choosing a reduced basis that is orthosymplectic, the actions of model reduction
and Hamiltonian extension commute and the reduced model inherits the closed
Hamiltonian structure of the full model (Maboudi Afkham and Hesthaven 2019,
Section 3.3). The reformulation of the model as an extended Hamiltonian system
and its structure-preserving projection allows us to retain stability properties of the
full model and to integrate the reduced system with a symplectic integrator, which
guarantees conservation of the system energy and the correct dissipation of energy.

Port-Hamiltonian systems
Port-Hamiltonian systems rely on a system-theoretic network modelling paradigm
that formalizes the interconnection of subsystems (van der Schaft 2006). They can
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be formulated as dynamical systems of the form{
Ûu(t) = (D2N − R2N )∇uH(u(t)) + Bw(t) for t ∈ T ,
Ûy(t) = B>∇uH(u(t)) for t ∈ T ,

(4.44)

under suitable initial conditions. Here w : T → Rm represents the system input,
D2N ∈ R

2N×2N is a skew-symmetric matrix describing the interconnection of
energy storage elements in the system, R2N ∈ R

2N×2N is a symmetric positive
definite matrix, the dissipation matrix, describing energy loss in the system, B ∈
R2N×m is the port matrix describing how energy enters and exits the system, and
the HamiltonianH is assumed to be a positive function. Port-Hamiltonian systems
are characterized by stability and passivity via

H(u(t2)) −H(u(t1)) ≤
∫ t2

t1

y(t)>w(t) dt, (4.45)

and it is desirable to retain such properties in reduced models.
With the intention of closely mimicking the input–output response of systems of

the form (4.44), Beattie and Gugercin (2011) developed Petrov–Galerkin reduced
models that preserve the port-Hamiltonian structure, as follows. As explained at
the beginning of Section 4.2.3, a projection-based reduced basis method consists
in first constructing reduced spaces spanned by the bases U,W ∈ R2N×2n, n � N ,
respectively. Then the system trajectory u ∈ V2N is approximated by Uur so that
the reduced system reads{

Ûur (t) =W>(D2N − R2N )∇uH(Uur (t)) +W>Bw(t) for t ∈ T ,
Ûyr (t) = B>∇uH(Uur (t)) for t ∈ T .

(4.46)

The reduced system (4.46) does not inherit the port-Hamiltonian structure of (4.44)
and does not even satisfy the energy dissipation (4.45). The method proposed in
Beattie and Gugercin (2011) ensures preservation of the port-Hamiltonian structure
by assuming W>U = I and by approximating the gradient of the Hamiltonian in the
space spanned by W, i.e. ∇uH(u) ≈ WU>∇uH(u) for all u in the range of U, or
equivalently, the Hamiltonian H(u) is approximated by H(WU>u). The resulting
approximate reduced system reads{

Ûua,r (t) = (D2n − R2n)∇ua,rH(Uua,r (t)) +W>Bw(t) for t ∈ T ,
Ûya,r (t) = B>W∇ua,rH(Uua,r (t)) for t ∈ T ,

(4.47)

where D2n B W>D2NW, R2n B W>R2NW, and Uua,r is an approximation of
the full model solution u ∈ V2N . The reduced basis U is constructed via POD to
minimize the projection error of the matrix of the snapshots, while W minimizes
the projection error in the Hamiltonian gradient evaluated at the snapshots; see
Beattie and Gugercin (2011, Algorithm 1) for further details. Although such an
approach preserves the port-Hamiltonian structure and ensures energy dissipation,
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it does not guarantee the same energy distribution between dissipative and null
energy contributors.
Note that the reduced dynamical system (4.46) inherits the port-Hamiltonian

structure of the full model (4.44) without further approximation if

W>D2N = D2nU> and W>R2N = R2nU>

for a suitable D2n ∈ R
2n×2n skew-symmetric matrix and R2n ∈ R

2n×2n symmetric
positive definite matrix.
Besides projection-based reduced basis techniques, dimension reduction of linear

control systems and linear or quadratic bilinear port-Hamiltonian problems has also
been developed via balanced truncation (Reis and Stykel 2008, Ionescu, Fujimoto
and Scherpen 2010), interpolatory techniques andmoment-matching (Freund 2003,
Beattie and Gugercin 2009, Wolf, Lohmann, Eid and Kotyczka 2010, Polyuga and
van der Schaft 2010, 2011, Benner and Breiten 2012, Gugercin, Polyuga, Beattie
and van der Schaft 2012, Ionescu and Astolfi 2013, Beattie et al. 2019).

4.2.7. Hyper-reduction of nonlinear gradient fields
As described at the beginning of Section 4, hyper-reduction methods provide a
further level of dimension reduction via convenient approximations of nonlinear
and non-affine operators. Although these methods have led to the successful con-
struction of inexpensive low-dimensional models, little attention has been paid to
retaining, during the approximation, specific structures of the nonlinear operators,
which are generally destroyed in the hyper-reduction step. This is, in particular, the
case of gradient fields: if X = ∇H, for some H : R2N × P → R, as in e.g. (4.23),
the approximate vector field ensuing from the hyper-reduction of X is no longer a
gradient, which implies that hyper-reduced models of Hamiltonian and Lagrangian
systems do not result in Hamiltonian and Lagrangian flows, and hence the under-
lying physics is compromised. This drawback becomes particularly troublesome
when aiming at stable and efficient model order reduction of conservative systems.
A symplectic discrete empirical interpolation method (SDEIM) has been pro-

posed by Peng and Mohseni (2016b) and Maboudi Afkham and Hesthaven (2017),
and consists in applying aDEIM approximation to the nonlinear Hamiltonian gradi-
ent. Although the proposed method does not exactly preserve the gradient structure
of the Hamiltonian vector field, the energy of the system is shown to be bounded;
see Peng and Mohseni (2016b, Theorem 5.1). Moreover, by choosing (U+)> as the
DEIM basis and constructing a sufficiently large reduced space via snapshots of the
solution and of the nonlinear terms, the reduced dynamics possesses asymptotically
(in n) a Hamiltonian structure.
Chaturantabut et al. (2016) have proposed a variation of the DEIM that preserves

the Hamiltonian structure and consists in approximating the nonlinear Hamiltonian
velocity field in the space where the DEIM projection is orthogonal. Since or-
thogonal projections preserve gradient structures, the Hamiltonian dynamics is
retained, but there is no guarantee on the accuracy of the approximation.
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A different strategy consists in considering the reduced functions rather than the
high-dimensional operators: first the full order nonlinear terms are mapped into the
reduced space via structure-preserving projections, and then the resulting reduced
functions are approximated. This is the idea behind the cubature approach called the
energy-conserving sampling and weighting (ECSW) scheme, proposed in Farhat,
Chapman and Avery (2015), that guarantees exact preservation of the gradient
structure. The nonlinear vector field obtained from the semidiscretization of a
Hamiltonian PDE is approximated with a weighted average of the field components
on a coarser mesh. The application of this method is, however, limited to dynamical
systems ensuing from the finite element discretization of PDEs, and requires a very
expensive offline phase, especially for parametric problems.

4.3. Localized and adaptive methods

Traditional dimension reduction techniques are based on global and linear approx-
imations of the solution space. However, some major challenges need to be faced
when dealing with complex problems: (i) slowly decaying Kolmogorov n-widths,
namely there might not exist a low-dimensional manifold on which lie all solutions
obtained under variations of time and parameters (DeVore 2017); (ii) knowledge
of the dynamics from simulation data needs to span a sufficiently large and in-
formative portion of the parameter space and time horizon, but simulation data are
expensive to collect; (iii) the reduced models derived need to be robust enough to
deal with solution behaviour that was not encountered in the offline training phase.
Nonlinear and adaptive model order reduction has been proposed in recent years
to overcome the limitations of global reduced models based on approximations on
linear subspaces.
In the following subsections we let η ∈ Γ ⊂ Rs, s ≥ 1, denote a generic

quantity that represents the parameter of the problem of interest. Depending on the
application and on the reference, η can be a time instant t ∈ T , a parameter µ ∈ P
or a pair (t; µ) ∈ T × P. We will refer to it as a generalized parameter.

Localized reduced basis methods
A major issue concerns the accuracy of the reduced order model (ROM) solution,
as, in many cases, the number of basis functions required to guarantee a certain
error might be too large to benefit computationally from the dimension reduction.
Assume we have an error estimate for the reduced solution (see Section 4.1). In
the case in which the ROM solution is identified as not sufficiently accurate, a
procedure that is easy to implement is to enrich the reduced basis by resorting
to full model solutions from multiple parameter configurations, called calibration
points, and then proceed with the enriched reduced order model (Weickum, Eldred
and Maute 2008). These points are chosen either randomly or via adaptive search
strategies, such as trust-region optimization. Since enrichment procedures require
us to revert to the high-fidelity model and to solve the associated high-dimensional
equations online, they incur large computational costs.
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A more effective approach is localized model order reduction, which hinges on
an adaptive partition of the (generalized) parameter domain and a collection of
low-dimensional approximate models associated with these clusters of parameters
(Eftang, Patera and Rønquist 2010, Haasdonk, Dihlmann and Ohlberger 2011,
Maday and Stamm 2013, Hess et al. 2019, Bonito et al. 2021). In the context
of parametrized time-dependent PDEs, the idea is to consider a set of reduced
order spaces {V(k)

r }
K
k=1, each of them spanned by a different set of reduced basis

functions, namely,

V(k)
r = span{ξ(k)

1 , . . . , ξ(k)
n }, 1 ≤ k ≤ K .

To each reduced space is associated a local reduced order model that provides
accurate approximations to the full order solution for parameters belonging to a
certain subdomain of the parameter space. It is additionally required to construct an
assignment function F : Γ → {1, . . . ,K} that assigns the current time-parameter
instance to one of the reduced spaces under consideration. This function will then
be employed to select the set of reduced basis functions to be used for the expansion,
namely (4.6) becomes

ur (η) =
n∑̀
=1

ur,`(η) ξ(F (η))
`

.

The main ingredients of this approach can be summarized as follows (see Hess
et al. 2019):

• select sample points in the generalized parameter space Γ;
• cluster the corresponding snapshots so that each cluster is associated with
parameters in a different part of the parameter domain;
• construct the local bases corresponding to each cluster;
• assign a cluster to any new parameter and use the corresponding local basis
to construct a reduced order model.

Note that although the snapshots are used to determine the clusters, the identification
and assignment of the local basis to a new parameter is performed in the online
phase and thus cannot rely on the expensive snapshot but needs to be done in
parameter space.
There are several approaches to creating dictionary models of this type, which

differ mainly in the adaptive partitioning step of the space Γ. Many approaches
are based on a notion of distance. Eftang et al. (2010) have considered stationary
problems and proposed a hierarchical splitting of the parameter domain based on
the proximity to chosen parameter anchor points in each subdomain. A reduced
basis is then constructed on these subdomains by a greedy sampling procedure.
Subdomains can be added in certain regions of the parameter space by adapting
(offline) the training sample with the inclusion of new points at each level of the
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h-refinement. A similar adaptive parameter domain partition, based on structured
meshes, was proposed in Haasdonk et al. (2011).

In the localized MOR approach of Maday and Stamm (2013), the reduced solu-
tion for a certain given parameter η = µ ∈ P is computed in the approximation
space spanned by the (precomputed) basis functions whose corresponding para-
meter values lie in a ball around µ. The distance function used to define the ball
takes into account the geometry of the solution manifold and the local anisotropies
in the parameter space. It is constructed empirically by approximating the geodesic
between two elements in the parameter space.
The splitting of the parameter space in localized MOR allows reduced spaces

of lower dimension compared to global strategies, and it is particularly effective
for problems in which the solution presents very different behaviours in different
regions of the parameter domain. This is typical of bifurcation phenomena. Hess
et al. (2019) have proposed a model for PDEs with bifurcating solutions in which
the assignment function is based on the parameter belonging to one of the clusters
computed via the k-means algorithm (MacQueen 1967) on the offline snapshots.
Peherstorfer, Butnaru, Willcox and Bungartz (2014) have used k-means clustering
and nearest neighbour classifiers with respect to parameters or a low-dimensional
representation of the current state in combination with hyper-reduction strategies.
We remark that it is possible to operate the localization procedure with respect to

the system state, and thus choose a local reduced space according to the subregion
of the solution space where the current high-fidelity solution lies (Amsallem, Zahr
and Farhat 2012). Similarly, Amsallem and Haasdonk (2016) use the projection
error, rather than the Euclidean distance, as a partitioning criterion for a given set
of snapshots.

Transformation-based model order reduction
A second family of model order reduction methods has been developed to deal with
transport phenomena efficiently. Indeed, the application of reduced basis methods
to convection-dominated problems and wave-type solutions might lead to poor
approximations. Sufficiently large spaces are needed to achieve even moderate
accuracy in the approximation of sets of solutions – characterized by travelling
waves, moving shocks, sharp gradients and discontinuities – which do not possess
a global low-rank structure and are therefore characterized by slowly decaying
Kolmogorov n-widths. As a simple example, a shift of the solution cannot be
represented by a linear combination of global modes.
To overcome the difficulties of approximating advection phenomena, a common

strategy consists in recasting the problem in a coordinate frame where it is more
amenable to reduction via a global approach. Given the solution manifold (4.3),
the idea is to construct a mapped solution manifold

M̂h = {Gη(uh(η)) ∈ Vh | η ∈ Γ},
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that has a smaller Kolmogorov n-width compared to Mh. The transformation
Gη : Vh → Vh is generally nonlinear; it depends on the generalized parameter η ∈ Γ
and possibly on hyperparameters. A particular case is Gη(uh(·, η)) = uh(·, η) ◦Φη ,
where Φη : Ω → Ω represents a suitable change of coordinates of the spatial
domain Ω, so that the reduced solution (4.6) has the form

ur (η) =
n∑̀
=1

ur,`(η) ξ` ◦ Φ−1
η .

In this framework, albeit for problems with no dependence on parameters, Rowley
and Marsden (2000) have focused on removing the discrete translational symmet-
ries by applying POD in a shifted frame of reference, with the travelling speed
determined using template fitting and reconstruction. A generalization to self-
similar solutions was proposed later by Rowley, Kevrekidis, Marsden and Lust
(2003) with the implementation of both translation and scaling in space and time.
Sesterhenn and Shahirpour (2019) also proposed a space–time transformation of
the solution snapshots to construct a reference frame along the characteristics
defined by the group velocity of travelling waves. The resulting approach, called
characteristic DMD, hinges on a modal decomposition in space and time along
the characteristics, which allows a POD or DMD with only a few modes. With a
similar goal, shifted POD (Reiss, Schulze, Sesterhenn and Mehrmann 2018) and
transport reversal (Rim, Moe and LeVeque 2018) introduce time-dependent shifts
of the snapshot matrix based on the dominant transport velocities of the problem.
Reiss et al. (2018) determined the velocities by front tracking or by considering
the dependence of the singular values of the shifted snapshot matrix on the time-
dependent shift. The corresponding low-dimensional subspace is then used to build
a reduced model using standard techniques such as Galerkin projection. Rim et al.
(2018) developed a greedy generalization of template-fitting to approximate the
snapshot matrix by the superposition of multiple transport dynamics.
Several other techniques have looked for a spatial change of coordinates for better

representation of the solution manifold. The transformed snapshot interpolation
(Welper 2017) considers the problem of interpolation of parameter-dependent
jumps and kinks. The idea is to perform a transformation Φη , for any parameter
η, that allows us to align the discontinuities of a set of snapshots to the discontinu-
ity of the target function u(η). The transformation Φη is computed by solving a
non-smooth optimization problem that minimizes the sup-norm over the parameter
domain of the approximation error on a training sample of snapshots. With a similar
goal of constructing the frame of reference of the solution, a Lagrangian projection-
based model order reduction has been proposed in Mojgani and Balajewicz (2017).
This approach was motivated by the observation that certain wave-type and moving
shock solutions exhibit low-rank structures in the Lagrangian frame of reference.
A projection-based approach using global basis functions is to approximate both
the state variable and the Lagrangian computational grid that is evolving in time.
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Cagniart, Maday and Stamm (2019) have constructedmapped solution snapshots
offline based on snapshots of the high-fidelity solution. In the online phase, the
map Φη is computed, for any new instance of η, via a minimization of the fully
discrete equation residual, in the spirit of shock-fitting methods. The algorithm
simultaneously looks for an appropriate change of coordinates Φη , and thus a
reduced basis, and for the expansion coefficients {ur,i(η)}i in this reduced basis.
A related approach is the method of freezing (Ohlberger and Rave 2013, Beyn and
Thümmler 2004), where the transformation of the solution manifold is interpreted
in the frame of Lie groups as a decomposition of the full model solution into a
phase/group component Φη and a shape component v B u(·, η) ◦ Φη . Such a
decomposition can be performed for arbitrary Lie group actions, provided they
satisfy an equivariance condition (Ohlberger and Rave 2013, equation (4)). Rather
than solving an optimization problem as in Cagniart et al. (2019), the full model
is reformulated as a partial differential equation for the shape component, which is
much simpler to solve than the original model. The phase component is determined
via a set of algebraic constraints, called phase conditions. A further method in
this direction has been proposed by Iollo and Lombardi (2014) in a non-parametric
setting, i.e. η = t. The method approximates the full model solution with a modal
decomposition that takes into account advection via a ranked sequence of mappings
and diffusion via a ranked global mode expansion. The advection modes are
obtained by fitting the Wasserstein distance between snapshots and modes derived
from Monge–Kantorovich optimal transport problems relative to a reference mode
u0. However, the method is limited to problems where the solution exhibits such a
main mode.
The optimization procedure for the construction of Φη in Iollo and Lombardi

(2014) is related with the registration method of Taddei (2020). In this approach
for stationary parametrized PDEs, a bijective map Φη is constructed from a set of
snapshots with the aim of low-dimensional representations of the mapped solution
manifold. The method is based on a nonlinear non-convex minimization of the
difference between a reference state uh(η) and the mapped snapshots uh(η) ◦ Φη
at the training parameters. To determine the transformation Φη for all parameters
in P outside the training set, a kernel-based multitarget regression procedure is
proposed.
Ehrlacher et al. (2020) have proposed a data-driven approach that targets one-

dimensional transport problems characterized by slowly decaying Kolmogorov
n-width. The idea is to perform a nonlinear model reduction in metric spaces via
tangent principal component analysis or a barycentric greedy algorithm.

Online adaptive model order reduction
The main limitation of most localized and transformation-based approaches lies
in their a priori adaptivity, that is, the construction of the different reduced order
models is done during the offline phase, following which it is therefore not possible
to incorporate new information into the model. Online adaptive model order
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reduction techniques have been developed to overcome this limitation by updating
the reduced space online according to various criteria associated with changes of
the system dynamics in parameters and time.
One of the first examples of online adaptive MOR relies on subspace enrichment

by refining the reduced order space based on a posteriori estimates of the recon-
struction error. The method proposed in Carlberg (2015) draws inspiration from
mesh-adaptive h-refinement to generate a hierarchy of subspaces online. Similarly
to other enrichment techniques (e.g. Weickum et al. 2008), the refinement is built
following a tree structure constructed offline but the enrichment step does not re-
quire high-fidelity solves. Starting from an initial reduced basis and ROM solution,
the method identifies a set of basis vectors using a dual-weighted residual approach
that aims to reduce error in an output quantity of interest. The reduced basis is
refined by splitting the selected reduced basis vectors into multiple vectors with
disjoint support. This procedure is justified by the heuristic according to which two
strongly correlated state variables can be described by the same reduced variables
and must belong to the support of the same reduced basis function.
Another class of methods is based on the construction of reduced basis spaces
Vr that directly depend on time,

V(t)
r = span{ξ1(t), . . . , ξn(t)},

so that the reduced solution is given as an expansion with time-dependent basis
and coefficient, namely,

ur (t; µ) =
n∑̀
=1

ur,`(t; µ) ξ`(t), t ∈ T , µ ∈ P. (4.48)

Specifically, this type of procedure entails two sets of operations: (i) compute or
infer the expansion coefficients with respect to the adaptive basis functions, and
(ii) update the basis.
Low-rank updating of the reduced operators is at the basis of dynamic data-driven

model reduction (Peherstorfer and Willcox 2015a), in which the SVD updating
method (Brand 2006) is exploited to compute the reduced operators of the current
iteration as a function of the previous ones. Although the resulting reduced models
adapt directly from sensor data without recourse to the full model, the sensor
samples need to measure the high-dimensional state of the system. This limitation
does not preclude the use of the methods in applications where dynamic sensor
data are available, such as structural assessment. Moreover, a generalization to
the case of incomplete sampling has been proposed in Peherstorfer and Willcox
(2016b). The aforementioned dynamic data-driven methods consider problems
with affine parameter dependence in both the linear operator and the source term.
Although the affine decomposability of more general operators can be obtained
via hyper-reduction strategies (see Section 4), a low-rank online adaptation of
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nonlinear operators has been developed in Peherstorfer and Willcox (2015b). The
adaptive discrete empirical interpolation method (ADEIM) of Peherstorfer and
Willcox (2015b) and Zimmermann, Peherstorfer and Willcox (2018) adapts the
DEIM reduced space at each time step via a low-rank correction of the reduced
basis from a previous time step. The update is obtained by querying the full order
system, in a certain temporal window, at a few selected components in order to
guarantee a computationally efficient adaptation.

An alternative to a discrete-in-time update of the (hyper-) reduced space consists
in prescribing a differential evolution equation for the reduced basis. This is
done in the approximated Lax pair (ALP) algorithm of Gerbeau and Lombardi
(2014), which deals with non-parametric evolution PDEs characterized by the
propagation of fronts. In this work, the time-dependent reduced basis functions
are the eigenfunctions of a linear Schrödinger operator L(u(t))· = −∆ · −χu(t),
where χ is a positive constant and u(t) is the solution of the PDE of interest at
time t. These eigenfunctions are shown to satisfy an evolution PDE. The original
PDE is projected into the reduced space associated with the time-dependent basis
and, in a final post-processing step, the reduced solution is reconstructed on the full
order space by propagating the reduced order basis in time with an approximation
of a Lax operator. Although the ALP algorithm provides an interesting criterion
to select the reduced basis, it does not appear to cure the large increase in the
dimension of the reduced space when the accuracy requirement is tightened.
The idea of approximating solutions of evolution problems via a modal decom-

position with time-dependent modes, as in (4.48), has a surprisingly long history
and is common to various fields. Low-rank approximations based on such decom-
positions have already been widely studied in quantum mechanics by Dirac (1930),
and later in themulticonfiguration time-dependent Hartree (MCTDH) method; see
e.g. Beck, Jäckle, Worth andMeyer (2000) and Lubich (2008). A related approach,
known as dynamical low-rank approximation, has been developed by Koch and
Lubich (2007) for the approximation of time-dependent data matrices. For the
discretization of time-dependent stochastic PDEs, Sapsis and Lermusiaux (2009)
proposed the so-called dynamically orthogonal (DO) scheme, where the determin-
istic approximation space adapts over time by evolving according to the differential
operator describing the stochastic problem. All these methods share a common
paradigm: an approximation of the solution, possibly a matrix-valued function,
is obtained by projecting its time derivative onto the tangent space of a reduced
manifold at the current approximation. In the context of model order reduction
of evolution equations, this means that the full model solution is approximated by
the trajectory in the reduced space associated with the best approximation of the
velocity field in the tangent space to the reduced manifold. A connection between
dynamical low-rank approximations and DO methods was established in Mushar-
bash, Nobile and Zhou (2015) and a geometric interpretation of this connection
was investigated in Feppon and Lermusiaux (2018). In recent years, dynamical
model order reduction and DO discretizations have also addressed the challenge of
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preserving geometric structures (see Section 4.2). ADOdiscretization of stochastic
PDEs that possesses a symplectic Hamiltonian structure (4.10) at the semidiscrete
level has been developed in Musharbash and Nobile (2017). In Pagliantini (2021),
reduced models for parametrized Hamiltonian systems are derived using a dynam-
ical approach that yields a low-dimensional Hamiltonian system coupled with an
evolution equation for the reduced basis dictated by the original dynamics. Paglian-
tini (2021) also proposed a structure-preserving temporal discretization of these
reduced models. Hesthaven, Pagliantini and Ripamonti (2022) showed that a dy-
namical MOR approach, with adaptive size of the reduced basis, allows a small
reduced basis, improving accuracy and efficiency of the reduced models.
While all the aforementioned adaptive procedures achieve speed-ups compared

to traditional reduced models, their computational cost scales with the complexity
of the full model. The pay-off is the absence of a – generally expensive – offline
phase.

4.4. Data-driven methods

The data-driven revolution represents one of the most important consequences of
the advent of the new digital era, and is destined to change the way of working and
managing data and information in many sectors. In the last twenty years, so-called
‘big data’ has been the driving force behind the digital transformation: both the
data collection and the underlying management process changed and was enhanced
by technological developments in the sensor field and the growing availability of
low-cost media for their storage. However, despite the former collection occurring
in all sectors and with low costs, it is not sufficient for the generation of insights.
In particular, a greater amount of information generally translates into a more
difficult analysis. So the real revolution is the enormous progress in data science
(Baesens 2014). This discipline aims to extract insights of various kinds from
collected statistics, to open up new strategies for decision support and predictions of
scenarios at different scales. This is done through the intersection of a wide range
of multidisciplinary fields, including statistics, data mining, machine learning,
complex systems, network science and applied mathematics.
However, despite the aforementioned impact of the data-driven revolution, the

consequences it will have on the scientific sector, which is a major producer of big
data, are unknown. For example, it is estimated that the Square Kilometre Array
project (Dewdney, Hall, Schilizzi and Lazio 2009) (an intergovernmental radio
telescope) will generate up to 1 exabyte (1018 bytes) of raw data per day, which
is more than the daily global mobile data registered in 2017 (CISCO 2019). This
amount of data cannot currently be analysed or understood via traditional methods.
In fact, in the past, the collection of data in science and engineering was exclusively
motivated by the validation of hypotheses on the models and theories proposed to
describe certain phenomena. As such, data collection was based on the creation of
ad hoc experiments, which made the process sporadic and difficult to implement.
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Data science is promoting a rapid paradigm shift in the scientific sector too:
the wide availability of large datasets can lead to the discovery of patterns that
can be incorporated into the modelling process and used to better understand the
complexity of the phenomena under investigation. A prime example is the concept
of the digital twin, an industry 4.0 paradigm that aims to create a virtual replica
of physical, potential and actual resources connected to objects, processes, people,
places, infrastructure, systems and devices. Since a static digital is incapable of
delivering the performance needed in the modern digital era, one must provide the
model with dynamic integration of real-time information coming from sources such
as sensors, external services and simulations. In particular, this change in approach
was initially pioneered in those sectors that did not have adequate modelling tools,
leading to very successful applications, such as for recommender systems. How-
ever, recently data-driven approaches have also affected traditional sectors, which
had so far been able to provide excellent results both in terms of modelling and
design. For example, in the field of computational fluid dynamics (CFD), several
data-driven models (Brunton, Noack and Koumoutsakos 2020) have been proposed
to address problems such as the development of turbulence closure models (Hijazi,
Stabile, Mola and Rozza 2020), shock wave propagation (Dupuis, Jouhaud and
Sagaut 2018), optimal flow control (Novati, Mahadevan and Koumoutsakos 2019),
velocity reconstruction for PIV images (Semeraro, Bellani and Lundell 2012, Lee,
Yang andYin 2017) and hydrodynamic instabilities (Stegeman, Ooi and Soria 2015,
Gao et al. 2021). For a more complete review on the topic we refer to Rozza et al.
(2018) and Yu, Yan and Guo (2019) for the CFD field and to Montáns, Chinesta,
Gómez-Bombarelli and Kutz (2019) for a broader discussion of applications to
other science and engineering fields.

Non-intrusive reduced basis method
In the field of reduced order modelling, the most popular data-driven approaches
are surrogate data-fit (Eldred and Dunlavy 2006) reduced models. The term sur-
rogate refers to replacing the original full order system with a reduced counterpart
that allows for real-time evaluation, while the data-fit nature concerns the use of
interpolation or regression to map the input parameters to quantities of interest.
These methods represent an alternative to the classical projection-based approach,
in which the full order operators of the original problem are projected onto a
reduced order space of a much smaller dimension.
Both data-driven and projection-based methods start with a set of full order

trajectories, which are compressed to unveil a lower-dimensional representation
of the solution manifold. This can be accomplished in various ways, using for
example linear methodologies such as POD, but also non-linear methods such as
autoencoders. The substantial difference lies in how the evolution of the general
coordinates is recovered in the compressed solution space. As anticipated, in
the case of projection-based approaches this result is obtained by employing a
Galerkin or least-squares projection of the original system onto the reduced space.
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This means having access to the high-dimensional algebraic system, but it has the
big advantage of preserving the underlying structure of the original problem, and
providing a framework for deriving rigorous error estimates for the reconstructed
quantities.
Data-driven methods try to infer the map between the parameters and the expan-

sion coefficients of the solution by using only the data. This approach allows us to
operate in a non-intrusivemanner, that is, the simulation software can be considered
as a black box that produces the datasets upon which the model is built, following
the prescription of an appropriate set of parameters. Non-intrusive approaches are
easier to implement, and since there is no need to access the underlying system of
equations, one canmake use of commercial codes for the data generation. However,
a purely data-driven technique usually lacks conservation of physical principles and
a rigorous error certification.
Recently some methods have been proposed to deal with this limitation, by

integrating the knowledge of the model within the data learning framework; this is
what is done in physics-informed neural networks (PINNs) (Raissi, Perdikaris and
Karniadakis 2019), i.e. neural networks that are trained to respect the imposition
of a generic nonlinear partial differential equation. An alternative approach results
from applications in the context of system identification (Brunton, Proctor and Kutz
2016), which attempt to reconstruct the system dynamics from noisy samples of
the trajectories.
Another major limitation concerns the need for a large amount of data, and in

fact, within the data-scarce regime, the projection-basedmethods generally perform
better. This last scenario is of crucial importance, since for high-dimensional com-
plex systems, obtaining solutions to use for training the model can be prohibitively
expensive. Examples of this situation can be found in fields such as geophysics,
neuroscience and fluid-dynamic turbulence, which differ greatly from traditional
machine learning tasks where training data are massively available.
In the following, we will review the most used techniques in the field of data-

driven non-intrusive model order reduction. In particular, in Section 4.4.1 we will
review some of the best-known techniques for dimension reduction. In Section 4.4.2
we will discuss proper orthogonal decomposition with interpolation (PODI), an
abstract framework that builds an interpolation phase on top of POD-based ROMs.
Finally, Section 4.4.4 presents the algorithm known as dynamic mode decomposi-
tion (DMD), which uses regression to learn adaptively the best-fit linear dynamical
model.

4.4.1. Dimension reduction
Let uk

h
(µ) ∈ RN denote the vector of degrees of freedom associated with the

discrete truth solution uk
h
(µ) at time tk belonging to the solution manifoldMNT

h
in

(4.8). We consider the snapshot matrix

S =
[
u0
h(µ1) | . . . | uNT

h
(µ1) | . . . | u0

h(µM ) | . . . | uNT

h
(µM )

]
∈ RN×Ns, (4.49)
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where Ns B M(NT + 1) is the total number of samples. To ease the notation, we
combine the indices associated with time and parameter into a single index, so that
u

(j)
h
B uk

h
(µm), where

j = (m − 1)(NT + 1) + (k + 1), 0 ≤ k ≤ NT , 1 ≤ m ≤ M .

The snapshot matrix can then be written as

S =
[
u(1)
h
| . . . | u(Ns )

h

]
∈ RN×Ns .

Proper orthogonal decomposition, discussed in Section 4.1, can also be imple-
mented on the Gram matrix C = S>S of inner products of the snapshots.

Some of the disadvantages to using POD concern the loss of information related
to the phase of modes and small field fluctuations in CFD, as well as the difficulty in
representing moving discontinuities, due to the linearity of the method. In general,
nonlinear reduction techniques are found to better span the nonlinear manifold
associated with a parametrized PDE, which is why they have also become popular
in the ROM community (see Section 4.3).
A nonlinear generalization of proper orthogonal decomposition is kernel POD

(KPOD) (Schölkopf, Smola and Müller 1997). The idea of KPOD is to project the
full order snapshots into a high-dimensional space via a nonlinear map and then to
apply classical POD in the mapped space. KPOD starts by computing the kernel
(similarity) matrix K ∈ RNs×Ns as

(K)i j = κ
(
u(i)
h
, u

(j)
h

)
,

where κ : RN × RN → R is a bivariate symmetric form, referred to as a kernel
function. A popular choice for the kernel function is given by radial basis functions,
such as the squared exponential

κ(x, y) = exp
(
−γ‖x − y‖22

)
with γ ∈ R+.

The result of the projection of the full order model (FOM) solutions onto the
principal components is then given by

ur,i =

[ Ns∑
j=1

(v1)j
√
λ1

κ
(
u

(j)
h
, u(i)

h

)
, . . . ,

Ns∑
j=1

(vd)j
√
λd

κ
(
u

(j)
h
, u(i)

h

)]
,

where {(vi, λi)}di=1 are the first d dominant eigenvalue–eigenvector pairs of K, and
the notation (vi)j refers to the jth component of vector vi. Note that unlike the POD
procedure, here the projection is performed without having an explicit expression
for the principal components, that is, the high-dimensional feature space is used
only implicitly via the kernel function.
Other reduction techniques try to optimize a non-convex objective function,

which therefore contains local optima. An example in this context is the Sammon
mapping (Sammon 1969), in which the contribution of each sample pair in the cost
function is weighted by their mutual distance. The minimization, in this case, can
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be conducted through the Newton method. A more important example, because of
its recent wide diffusion, is given by the use of neural networks (NNs) (Goodfellow,
Bengio and Courville 2016). In Section 4.4.2 we will introduce the main concepts
for this type of regression, and discuss their application in retrieving the map from
the parameter space to the space of expansion coefficients with respect to the basis
obtained by POD. However, a special type of NN, known as an autoencoder (Wang,
Yao and Zhao 2016), also plays a key role in the preliminary compression phase of
the solution manifold. This particular architecture of unsupervised neural network
aims at reconstructing an identity map, i.e. Ĩ : uh 7→ ũh. The lower-dimensional
representation is obtained via an encoder architecture Fen(wen) : uh 7→ ur , whose
output is subsequently mapped back to the high-dimensional space by a decoder
network Fde(wde) : ur → ũh (see Figure 4.1). The network parameters (wen, wde)
are obtained via a training process, which minimizes a given loss function,(

w∗en, w
∗
de
)
= argmin

wen,wde

L(ũh, uh),

where L is typically the mean square error between the input and the output of the
network.
The main limitation in the use of autoencoders is the high number of parameters

to train, in the case of systems with high-dimensional state. In fact, the number of
parameters of fully connected autoencoders far exceeds the size of the state itself.
For this reason it is common to use convolutional autoencoders (Masci, Meier,
Cireşan and Schmidhuber 2011), which have layers characterized by the sharing
of parameters and local connectivity, that is, the nodes of a feature map are linked
only to a local number of the input vector, and therefore extract local features.
The above properties allow considerable reduction of the number of parameters
with respect to feedforward autoencoders, making it possible to deal with slowly
decaying Kolmogorov n-width problems, such as advection-dominated problems
(Lee and Carlberg 2020). Following the same idea, a deep-learning-based ROM
(POD-DL-ROM) was introduced in Fresca and Manzoni (2022).
Other dimension reduction techniques which result in solving a generalized

eigenvalue problem for a full matrix are Isomap (Tenenbaum, de Silva and Langford
2000), maximumvariance unfolding (Weinberger, Sha and Saul 2004) and diffusion
maps (Lafon and Lee 2006). These are all global techniques, in that like POD they
attempt to maintain the globalized properties of the full order data in the reduced
order representation. There are also local methods that operate this conservation
of solution properties only in the neighbourhood of the solution samples of the
training dataset. To this category belong the Laplacian eigenmaps (Belkin and
Niyogi 2001), local tangent space analysis (Zhang and Zha 2004) and t-distributed
stochastic neighbour embedding (van der Maaten and Hinton 2008).
The above techniques can act on any set of raw data, although they may prove

more efficient for dealing with a particular type of problem; for instance, con-
volutional NNs are the standard network architecture for computer vision tasks.
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Input Layer  ² Hidden Layer  Hidden Layer  ² Hidden Layer  Output Layer  ²input layer ∈ R20

hidden layer ∈ R8 hidden layer ∈ R2 hidden layer ∈ R8

output layer ∈ R20

Figure 4.1. The architecture of a fully connected autoencoder: the latent reduced
representation of the input is given by the values in the middle hidden layer.
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One technique that has not yet been mentioned but will be discussed separately in
Section 4.4.4 is dynamic mode decomposition (DMD), which provides an eigen-
decomposition for the best-fit linear operator that describes the temporal dynamics
of snapshots in a given dataset.

Parameter space reduction
Data-driven reduced order models were developed to address problems involving
the simulation of complex systems and requiring high computational resources.
However, all data-drivenROMs demand the preliminary calculation of a set of high-
fidelity solutions, whose number depends on the number of parameters taken into
consideration. In this context it is typical to speak of the curse of dimensionality,
referring to the fact that the amount of data required to obtain a reliablemodel grows
exponentially with the dimension of the parameter space. This is problematic for
methods that require a significant amount of data to be valid, making them inefficient
or inoperative otherwise. Typical examples in this regard are optimization, optimal
control, uncertainty quantification and inverse problems. In these applications
the number of parameters can be O(Ns), where N is the state dimension and s
is a positive integer, an exponent dictated by the particular problem (Himpe and
Ohlberger 2015). Since the industrial field widely exploits the former types of
analysis, this plays a crucial role from an application perspective.
The above considerations make it necessary to operate with a reduced number

of parameters, as the possibility to explore the solution manifold effectively during
the offline stage is strictly connected to the cardinality of the set of independent
parameters considered. For this reason, various strategies have been proposed to
operate a compression of the parameter space, as is done for the state space.
A simple example involves the use of Galerkin or Petrov–Galerkin projections

for the low-rank approximation of the parameter vector µ ∈ P ⊂ RP. In such a
case one will be operating with a reduced parameter vector µr ∈ RPr given by

µr = Pµ ∈ RPr ,

where P ∈ RPr×P is the projection matrix into the low-dimensional parameter
space, and satisfies P>P = I. The matrix P can be obtained, for example, via
an iterative procedure based on a greedy approach, which tries to minimize the
reconstruction error. For this purpose, the reduced parameter set is obtained by
iteratively maximizing an appropriate objective function, such as the one proposed
by Bashir et al. (2008), that is,

J(θ) = α ε(ur (µr )) − β‖µr ‖2K−1,

where α, β ∈ [0, 1] are appropriate hyperparameters, while

‖µr ‖
2
K−1 B (Pµr )TK−1(Pµr )

is the weighted 2-norm induced by the inverse of the prior covariance matrix K ∈
RP×P. The quantity ε(ur (µr )) is an estimate of the reconstruction error, which can
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be obtained for example by using a p-norm, i.e. ε(ur (µr )) = ‖ur (µr ) − ur (µ)‖p,
with p ∈ [0,+∞). Clearly, since the former reconstruction error may be excessively
expensive to evaluate, it is convenient to use a suitable a posteriori error estimation.

Another conceivable approach exploits a possible low-dimensional structure
directly at the level of the model function. In this context a very popular data-
driven technique is the active subspace (AS) method (Constantine, Dow and Wang
2014, Zahm, Constantine, Prieur and Marzouk 2020), which aims at constructing
a ridge approximation of the function by using the gradient of the function itself.
A ridge function is a real-valued multivariate function F : RP → R such that

F(µ1, µ2, . . . , µP) = F(a1µ1 + a2µ2 + · · · + aPµP) = f (a · µ),

where a ∈ RP is called direction and is such that F is constant on the hyperplanes
a · µ = c ∈ R. A generalization of the above concept concerns the existence of
multiple directions, which gives rise to generalized ridge functions:

F(µ1, µ2, . . . , µP) = f (A>µ),

where A ∈ RP×s is a matrix with 1 ≤ s < P, and f : Rs → R.
The AS method aims at approximating a prescribed target function with a gen-

eralized ridge function. This is done by finding the leading eigenspaces of the
second moment matrix of the model function’s gradient. Through this procedure
it is possible to identify and exploit the directions of maximum variability of the
model function, to build its low-dimensional representation, chosen through the
resolution of the minimization problem

argmin
Pr ∈RP×P

Eρ
[
‖F(µ) − f̃ (Pr µ)‖2V

]
, (4.50)

with the following quantities:

• ρ : RP → R is the probability density of µ with support P ⊂ RP;
• Pr : RP → RP is the r-rank projection operator within the parameter space;
• V = (Rs,RV ) is the Euclidean space for the output, whose distance is induced
by the norm ‖y‖V B yTRV y, with RV ∈ R

s×s a symmetric and positive
definite matrix;
• f̃ : (RP,B(RP), ρ)→ V is the ridge-regression profile associated to the target

F : P ⊂ RP → V , with B(RP) the Borel σ-algebra of RP.

The linear space Im(Pr ) will be the reduced parameter space and the profile f̃ is
such that

f̃ ◦ Pr = Eρ[F | σ(Pr )], (4.51)

for a given σ-algebra σ(Pr ). For a scalar model function, the covariance matrix of
∇F can be replaced by

H =
∫
P
(DµF(µ))TRV (ρ)(DµF(µ)) dρ ∈ RP×P,
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where DµF(µ) is the Jacobian of F. The solution to the minimization problem
(4.50) is then given by

Pr =

r∑
j=1

v j ⊗ v j,

where {v j}rj=1 are the r leading eigenvectors of H. The dimension r is chosen in
order to satisfy an upper bound for Eρ[‖F(µ)− f (Pr µ)‖2V ] obtained by a Poincaré-
like inequality (Zahm et al. 2020). Once Pr is computed, the response surface
in equation (4.51) can be evaluated using the Monte Carlo method or exploiting
regression (Constantine et al. 2014).

Other techniques that aim at identifying low-dimensional structures within the
parameter space are the sliced inverse regression (SIR) method (Li 1991), and
more generally any supervised dimension reduction technique in the field of mani-
fold learning algorithms (see Section 4.4.1), such as supervised kernel principal
component analysis (Barshan, Ghodsi, Azimifar and Zolghadri Jahromi 2011).
Although the above approaches concern a parameter space reduction only, they

can be combined with amodel order reduction technique, to deal with very complex
numerical studies. For instance, the iterative procedure of correcting the projection
operator on the reduced parameter space has been combined with goal-oriented
model constrained optimization (Bui-Thanh, Willcox, Ghattas and van Bloemen
Waanders 2007) to solve large-scale inverse problems (Himpe and Ohlberger 2015,
Lieberman, Willcox and Ghattas 2010). Instead, within the AS context, vari-
ous analyses have been conducted combining this technique with POD-Galerkin
(Tezzele, Ballarin and Rozza 2018a), proper orthogonal decomposition with inter-
polation (Demo, Tezzele and Rozza 2019) (see Section 4.4.2) and dynamic mode
decomposition (Tezzele et al. 2018b) (see Section 4.4.4).

4.4.2. POD with interpolation (PODI)
Proper orthogonal decomposition with interpolation (PODI) is a technique widely
used in the ROM community, which builds data-driven ROMs by replacing the
projection phase typical of the classical approach with an interpolation phase, used
to approximate the solution manifold.
As described in Section 4.1, POD allows extraction of an optimal basis from a

set of high-dimensional snapshots. We additionally assume that we do not know
or do not want to employ the underlying mathematical model used to obtain the
high-fidelity solutions. In fact the PODI methodology can be applied even if the
numerical solver that computed the solutions is not available; this also allows
its application to data coming from experimental measurements, such as particle
image velocimetry (PIV) images (Semeraro et al. 2012). The non-intrusiveness of
this approach resides exactly in the lack of modification to the simulation software,
as often happens with data-driven methodologies. However, we recall that there are
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also non-data-driven techniques that allow operation in a non-intrusive way (Zou,
Conti, Díez and Auricchio 2018).

The basic steps of PODI are:

• collection of the solution database;
• extraction of a reduced basis via POD;
• use of a regression model to recover the reduced basis coefficients.

Assume that we have a training databaseD = {(ηj, u(j)
h

)}Ntr
j=1 consisting of Ntr ≤ Ns

pairs of time-parameter values ηj = (tk, µm), with j = (m − 1)(NT + 1) + (k + 1),
and degrees of freedom u

(j)
h
∈ RN of the associated full order solution. Typically

this database coincides with that used to perform POD. Since we are interested in
recovering themap from the time-parameter space to the reduced order coefficients,
we need to project the high-fidelity solutions onto the reduced space Vr . This can
be done in terms of the coefficient vectors via

u
(j)
r B U>u(j)

h
, 1 ≤ j ≤ Ntr,

where U ∈ RN×n collects the left-singular vectors of the snapshot matrix. At
this point we have a database Dr = {(ηj, u(j)

r )}Ntr
j=1, which can be used to fit the

regression model.
The final task will in fact consist in constructing a regression π : T × P → Rn

which approximates the function F : (t; µ) ∈ T × P 7→ ur ∈ R
n. Through the

database Dr we have Ntr known points of F , and any interpolation technique can
be used to evaluate the reduced coefficients at other parameter values. The full
order solution will then be approximated as

uh(t; µ) = Uπ(t; µ) for all t ∈ T , µ ∈ P. (4.52)

Note that the reconstruction of the solution is conducted through the matrix–vector
multiplication in equation (4.52) and consequently requires O(Nn) operations. As
can be seen from the above discussion, it is theoretically possible to treat time
as an additional parameter. Therefore, in the following, the various regression
methods will be presented to construct a map π : P → Rn, thus assuming that the
parameter also incorporates the variable t, i.e. µ = [t, µ1, µ2, . . . , µP−1]. This is
not the only possible approach, and, for this reason, in the next subsections we
will first discuss different strategies to deal with the time dependence, and then
introduce the main regression methods used in the ROM community, namely radial
basis function (RBF) regression, Gaussian process regression (GPR) and artificial
neural networks (ANNs).

Time-dependent problems
Regarding time dependence, we have seen that the above framework allows us to
treat the time variable as an additional parameter, for which the model must learn
the dynamics. As pointed out in Wang, Hesthaven and Ray (2019), the problem
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with the above approach is that the regression task is more complex and the cost
of POD increases considerably. For these reasons many works exploit a two-level
POD (Chen et al. 2018, Xiao, Fang, Pain and Hu 2015), which we will describe
using the approach presented by Audouze, De Vuyst and Nair (2009). We consider
the following two discretizations for the time domain and the parameter space:

Th = {t1, t2, . . . , tNT } ⊂ T , Ph = {µ1, µ2, . . . , µM } ⊂ P.

We then consider the set obtained via numerical resolution of the PDE under
consideration for a given value of the parameter µm ∈ Ph:

MNT

h
(µm) = {uk

h(µm) | 1 ≤ k ≤ NT }.

We note that the above set simply represents the discrete trajectory of the dynamical
system, by fixing the value of the parameter. The idea is to compress this trajectory
by extracting spatial and temporal modes separately, with the aim of speeding up
the offline computations. A set of Km reduced spatial basis functions is obtained
via POD of the following snapshot matrix:

SN
m =

[
u1
h(µm) | . . . | uNT

h
(µm)

]
∈ RN×NT .

Let Um ∈ R
N×Km denote the matrix whose columns are the resulting POD basis

functions. After obtaining a set of bases for each value of the parameter µm ∈ Ph,
we proceed to compute a global spatial basis {ξi}

Nr,x

i=1 via a high-level POD, which
will be performed on the U matrix obtained by concatenating the matrices Um from
the above step, namely,

U = [U1 | . . . | UM ] ∈ R
N×K,

where K =
∑M

m=1 Km and Km is the number of POD modes extracted at the mth
iteration. Typically this procedure is conducted by setting a tolerance threshold on
the energy retained by the spatial modes for each value of the parameter µm ∈ Ph.
This causes the number of bases Km extracted for each value of the parameter to
be different.
To obtain temporal modes, the procedure is analogous: the snapshots are ob-

tained by fixing the spatial degree of freedom, that is,

SNT
m = [uh,1(µm) | . . . | uh,N (µm)] ∈ RNT×N,

where uh, j denotes the NT -dimensional vector that collects all time instances of the
jth degree of freedom of uh(µm). Reproducing the two-level POD for time mode
extraction results in a temporal reduced basis {ϕj}

Nr, t

j=1 . The expansion expressed
by (4.6) is replaced by

ur (µ) =
Nr,x∑
i=1

Nr, t∑
j=1

α(i, j)(µ) ϕj ξi .
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Therefore, within the data-driven context, the approximation will involve the func-
tions α(i, j)(µ) : P→ R.
Another effective approach to addressing the problem involves using tensor

decomposition for the reduced coefficients (Guo and Hesthaven 2019). This tech-
nique consists in organizing the reduced coefficients into matrices that exploit the
time-parameter grid structure Th × Ph. We decompose the matrix

[Pk](i, j) = ur,k(ti, µj), 1 ≤ i ≤ NT , 1 ≤ j ≤ M,

by relying again on POD for the extraction of time modes {ψ(k)
`
}n
`=1 and parameter

modes {φ(k)
`
}n
`=1, namely,

Pk ≈ P̃k =

n∑̀
=1
λ(k)
`
ψ(k)
`

(φ(k)
`

)>,

where λ(k)
`

is the `th singular value. At this point the elements of the former discrete
modes are used as a dataset to approximate the functions

t 7→ ψ̂(k)
`

(t) such that ψ̂(k)
`

(ti) ≈ (ψ(k)
`

)i,

µ 7→ φ̂(k)
`

(µ) such that φ̂(k)
`

(µj) ≈ (φ(k)
`

)j .

A continuous regression function ûr,k for the kth projection coefficient with respect
to time-parameter values can therefore be recovered as

ur,k(t; µ) ≈ ûr,k(t; µ) =
n∑̀
=1
λ(k)
`
ψ̂(k)
`

(t) φ̂(k)
`

(µ) for all (t; µ) ∈ T × P.

A final approach can be implemented when we are not interested in treating time
as a continuous variable (Berzins, Helmig, Key and Elgeti 2020). In such a case
we can construct a snapshot matrix whose columns are represented by complete
trajectories of the solution, i.e. S ∈ RNNT×M . The basis extracted from POD in this
case is spatio-temporal and thus regression should be performed only to recover
the dynamics with respect to the parameter.

Radial basis function interpolation
Radial basis function (RBF) interpolation (Lazzaro andMontefusco 2002) is one of
the primary tools used formultivariate scattered function interpolation. Its coupling
with proper orthogonal decomposition (POD-RBF) has found wide acceptance
in the ROM community due to its remarkable flexibility. In particular, it was
applied by Audouze et al. (2009) to solve the parametrized Burgers’ equation and
a parametrized convection–reaction–diffusion problem. In the CFD context it was
effective for solving the Navier–Stokes equations in both two (Xiao et al. 2015) and
three dimensions (Walton, Hassan and Morgan 2013). The various investigations
have shown that this method can effectively capture the nonlinearities of PDEs and
can provide a spectral convergence rate (Buhmann and Dyn 1993).
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Table 4.1. Some examples of radial basis functions in common
use. The parameter σ typically scales the width of the function.

Radial basis function Expression

Gaussian ψ(µ) = e−(‖µ−µc ‖/σ)2

Linear spline ψ(µ) = ‖µ − µc ‖
Multiquadric ψ(µ) =

√
‖µ − µc ‖2 + σ2

Inverse multiquadric ψ(µ) = 1/
√
‖µ − µc ‖2 + σ2

Cubic spline ψ(µ) = ‖µ − µc ‖3

A generic radial function ψ : RP → R is a multivariate function, which however
depends only on an appropriate norm ‖ · ‖ of its argument: ψ = ψ(‖µ‖). A typical
example consist in taking the Euclidean distance of the argument from a point, with
respect to which the function will be radially symmetric ψ = ψ(‖µ − µc ‖). Some
popular choices concerning radial basis functions are given in Table 4.1.
Within the regression task, multiple radial functions are used, namely,

ψm = ψ(‖µ − µm‖), 1 ≤ m ≤ M,

which means that we are taking M different basis function by shifting the centre
within the discretized parameter space Ph.
The idea is to approximate component-wise the vector of reduced coefficients

using the former set of functions as a basis, that is,

ur,k(µ) ≈ π̃k(µ; wk) =
M∑
m=1

(wk)mψ(‖µ − µm‖). (4.53)

The coefficients of the expansion wk ∈ R
M can be derived by requiring exact

interpolation of the training data:

π̃k(µm; wk) = ur,k(µm), 1 ≤ m ≤ M .

Substituting the above M conditions in equation (4.53), we arrive at the following
linear system:

Awk = ur,k, where

{
A(i, j) = ψ(‖µi − µj ‖), 1 ≤ i, j ≤ M,

(ur,k)j = ur,k(µj), 1 ≤ j ≤ M .
(4.54)

Note that we must solve a total of n systems (one for each component of the reduced
vector ur ) but that, as pointed out in system (4.54), the matrix A ∈ RM×M (and
its subsequent decomposition) is the same for all the systems under consideration.
This makes the resolution computationally efficient. All the weights can then be
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collected in a single matrix given by

W = [w1 | . . . | wn] ∈ R
M×n.

The map for the reduced coefficients will then be given by

π(µ) =WTΨ(µ), with (Ψ(µ))m = ψ(|‖µ − µm‖), 1 ≤ m ≤ M .

Gaussian process regression
Regression with a Gaussian process (GP) (Rasmussen and Williams 2005) is a
supervised Bayesian approach to regression. This technique is closely related
to Bayesian linear regression; indeed, in the case of using a kernel, these two
approaches coincide. Moreover, it has been shown that GPs are also equivalent
to NNs, with a single hidden layer of infinite width (Neal 1996). In the context
of the reduced basis methods, this approach was first tested to evaluate particular
outputs of interest of the dynamical system (Nguyen and Peraire 2016). Guo and
Hesthaven (2018) proposed recovering the solution field of a nonlinear structural
analysis problem. Later this techniquewas also applied to time-dependent problems
(Guo and Hesthaven 2019) and industrial applications, such as shape optimization
for naval engineering (Ortali, Demo and Rozza 2022).
This approach is applied initially to a literature case, the simulation of the Stokes

problem, and in the following to a real-world industrial problem, within a shape
optimization pipeline for a naval engineering problem.
The main idea of GP regression lies in learning a distribution over functions.

This provides a significant advantage over classical Bayesian linear regression,
which requires specifying the set of basis functions in advance and restricts the
approximation to reside in the space generated by the bases. In contrast, GPs do
not assume a parametric form for the approximate function, but learn a distribution
over what is the output of the unknown underlying function for any point in its
domain. By doing so, we obtain a flexible model that allows the capture of any
function that interpolates the available dataset.
According to this perspective, let us consider a fixed point µ∗ ∈ P. We are

trying to approximate the kth component ur,k(µ) of the vector ur (µ), so in the
continuation we will denote such scalar regression by f : P → R. The evaluation
of the regression function must then be considered as a Gaussian distribution, i.e.
f (µ∗) ∼ N (m(µ∗), σ2). We now consider a finite set of inputs that we collect
into the vector x = [µ1, µ2, . . . , µM ]. The values of the output then result in N
different Gaussian distributions. However, since all the outputs in question are to
be considered the values of the function when evaluated at different points, then
these distributions must necessarily be correlated to each other. For example, if
we start with a value in parameter space for which the function assumes a certain
value with relative uncertainty, we expect that a small perturbation of the input will
correspond to a limited change in both the output and the uncertainty value because
of correlation. The former requirement means that the input x is associated to a
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multivariate distribution for the output y = [ f (µ1), f (µ2), . . . , f (µM )], that is,

y ∼N (m,K), where

{
(m)i = E[yi],
K(i, j) = E[(yi − mi)(yj − mj)],

(4.55)

where m is the mean vector and K is the covariance matrix. The above con-
siderations suggest that the regression function must be an infinite (continuous)
multivariate Gaussian distribution, which is what we refer to as a Gaussian pro-
cess:

f (µ) ∼ GP(m(µ), κ(µ, µ′)) for all µ, µ′ ∈ P. (4.56)

More formally, a GP is a stochastic process f (µ) such that any finite number of
random variables taken from the collection that forms the random process itself has
a joint Gaussian probability distribution. Equation (4.56) represents a distribution
over functions. In fact, as for a regular Gaussian distribution, we specify amean and
a covariance. However, since the dimensions are infinite, the vector m is replaced
by the mean function m(·), and the matrix K is replaced by the two-dimensional
kernel covariance function κ(·, ·), such that

m(µ) = E[ f (µ)],
k(µ, µ′) = E[( f (µ) − m(µ))( f (µ′) − m(µ′)].

In particular, the quantities that appear in equation (4.55) turn out to be particular
realizations of a GP, over a finite subset of the input. That is, if we consider a vector
xtr = [µ1, . . . , µM ] that contains all elements of the training set Ph, we will obtain

m = m(xtr) B [m(µi)]1≤i≤M ∈ RM,

K = k(xtr, xtr) B [k(µi, µj)]1≤i, j≤N ∈ RM×M .

As for the regression task, it begins by choosing prior distributions for m(·) and
κ(·, ·) that must be representative of our assumptions about the profile of these
functions before looking at the observed values. A widely used assumption for
m(·) is that of zero mean, i.e. m(µ) = 0. This assumption is particularly suitable in
the case in which the set Ph is processed by subtracting the mean. Regarding the
covariance function, different choices greatly influence the regression profile. For
example, a common choice is the squared exponential,

κ(µ, µ′) = σ2
f exp

(
−

1
2`2 ‖µ − µ

′‖2
RP

)
,

where σf is the standard deviation parameter that scales the uncertainty value
outside the training set, and ` is the correlation length scale. If we have more
information about the correlation between pairs of parameter components, we can
use the anisotropic squared exponential kernel:

κ(µ, µ′) = σ2
f exp

(
−

P∑
i=1

(µi − µ′i)
2

2`2

)
.
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The posterior distribution is obtained by conditioning the prior based on the ob-
served data, namely,

P( f (·) | xtr, ytr) = GP( f̄ (·), k ′(·, ·)),

where the revised mean f̄ (·) and covariance κ′(·, ·) are given by the following
expressions: {

f̄ (·) = k(·, xtr)K−1ytr,

k ′(·, ·) = k(·, ·) − k(·, xtr)K−1k(xtr, ·).
(4.57)

We want to use the former expressions for prediction purposes. In particular, we
imagine that we have a set of new instances of the parameters that we collect in
the vector xpr. We want to compute the expected value of the output ypr, namely
m(xpr). By using the expressions in equation (4.57), together with the properties
of GPs, we obtain

ypr | xpr, xtr, ytr ∼ N (mpr,K′pr),

with mean vector and covariance matrix given by

mpr = f (xpr) = k(xpr, xtr)K−1ytr,

K′pr = k(xpr, xpr) − k(xpr, xtr)K−1k(xtr, xpr).

The values of the hyper-parameters that appear in the kernel function have an
important effect on the predictive performances of the model. For instance, in the
case of the squared exponential we need to find a suitable value for θ = [σf , `].
This is achieved by maximizing the log of the conditional density of ytr given xtr:

θ = argmax
θ̂

log p(ytr | xtr, θ̃)

= argmax
θ̂

{
−

1
2
y>tr K−1(θ̂)ystr −

1
2

log |K−1(θ̂)| −
M
2

log(2π)
}
.

As mentioned in Section 4.4.2, the GP regression can be integrated with proper
orthogonal decomposition, using the PODI framework. The regression map
πGP : P → Rn is constructed component-wise by using the former procedure. In
particular, the kth entry of this map will be obtained by considering xtr = [µ]µ∈Ph
and ytr = [ur,k(µ)]µ∈Ph as training data. The result will consist of n independent
Gaussian distributions, whose mean functions can be used to predict the reduced
coefficients at new parameter points.

4.4.3. Artificial neural networks
In the field of machine learning, an artificial neural network (ANN) is a computa-
tional model composed of artificial ‘neurons’, loosely inspired by the simplification
of a biological neural network. Like any other machine learning algorithm, this
technique involves a learning process, which improves the performance of the
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model by using available data. In particular, these models rely on learning not only
the map from input to output but also a representation of the input, which can better
justify the observed data. In the following, we will describe a particular ANN
architecture, known as multilayer perceptrons (MLPs) (Goodfellow et al. 2016) or
a feedforward neural network. This type of network constructs an approximation
of a function by composing multiple simple functions. The enormous diffusion of
this type of model has also reached the ROM community, and in fact Hesthaven
and Ubbiali (2018) have proposed the so-called POD-NN method, which consists
in using a neural network in the regression phase of PODI. This method has since
been used to conduct investigations in a variety of physical contexts, including
instability in the convection-dominated regime (Gao et al. 2021), aerostructural
design optimization (Park et al. 2013), combustion (Wang et al. 2019), bifurca-
tions in CFD (Pichi, Ballarin, Rozza and Hesthaven 2021), complex flow problems
(Berzins et al. 2020) and turbulence (Zancanaro et al. 2021). The potential of this
type of architecture can be understood via the universal approximation theorem
(Cybenko 1989), which states that for any continuous function f , on a compact
set K ⊂ Rn, there exists a standard MLP with a single hidden layer that uniformly
approximates f in K with arbitrary tolerance ε > 0. Moreover, in the case of two
hidden layers, this approximation property is extended to any function. As appeal-
ing as the above result is, we recall that it gives no indication of how to achieve the
approximation, and whether a single (or double) layer is the most efficient choice.
The operational unit of the network is represented by the so-called perceptron

(Rosenblatt 1958), which receives as input a vector whose components are the
activation states of the sending neurons, i.e. ys = [ys1, . . . , ysm ]

> ∈ Rm. This input
is converted into the scalar cj by means of a weighted sum,

cj(ys, ws, j) = w>s, j ys,

which is afterwards transformed into the excitation state of the neuron through a
scalar activation function:

yj = fact(cj ; b0, j) = fact(w>s, j y j + b0, j).

A typical example of activation function is the hyperbolic tangent:

fact(x) =
ex − e−x

ex + e−x
.

The idea for MLPs is to connect various perceptrons together, by organizing them
into consecutive layers. In particular, the first layer represents the input of the
network and thus y0 = µ, while the last layer yN ∈ R

P is the output. In the
interlude there are N` − 1 hidden layers {yi}1≤i≤N`−1, composed of perceptrons
that work according to the model just described. An example of an MLP with a
single hidden layer is proposed in Figure 4.2. The model is also called feedfoward
because the information flow unidirectionally from the input to the output, i.e.
y0 → y1 → . . .→ yN`

.
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Figure 4.2. An example of multilayer perceptron with a single hidden layer:
y0 = µ ∈ R

2 and yout = y2 ∈ R
2.

In practice, each layer of the network is obtained by first applying a linear
transformation to the vector of the previous layer, and then applying a nonlinear
transformation represented by the activation function. We can then model the
overall behaviour of the network as follows:

πNN(µ;Θ)


y0 = µ,

y j = φ j(Wj y j−1 + b j) for j = 1, . . . , N` ,
yout = yN`

,

where Wj ∈ R
N j×N j−1 and bj ∈ R

N j are the weights and the biases for the jth
hidden layer, and Nj is the number of nodes for the same layer. In particular, if we
introduce the intermediate transformation maps πj(y j−1) = φ j(Wj y j−1 + b j), we
can compactly rewrite

πNN : (µ;Θ) 7→ πN (µ; WN ; bN ) ◦ . . . ◦ π1(µ; W1; b1), (4.58)

where we have collected all the network parameters (weights and biases) within Θ.
Equation (4.58) corresponds to the intuition related to the construction of a regres-
sion map via the composition of simpler functions.
So far we have only seen how to use the neural network for predictions. However,

these predictions will only be accurate if the value of Θ is correctly prescribed.
For this reason, a supervised learning paradigm is used, that is, given a set of Ns

input–output pairs {µi, yi}Ns

i=1, find the optimal parameter vector Θ by optimizing a
loss (or cost) function on the training data:

Θ = argmin
Θ̂

J (Θ̂) = argmin
Θ̂

1
Ns

Ns∑
i=1

L(yi, yiN`
; Θ̂), (4.59)

whereJ is the loss function andL the per-sample loss function. A common choice
is given by measuring the per-sample error using the squared Euclidean distance,
to which corresponds the cost function known as cumulative mean square error
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(MSE):

J (Θ) =
1

Ns

Ns∑
i=1
‖yi − yiN`

‖2
RN`

.

A factor that has promoted the recent huge success of NNs is the possibility
of solving problem (4.59) efficiently. In particular, the most popular method is
stochastic gradient descent (SGD), whose efficient implementation requires us
to use back-propagation (Rumelhart, Hinton and Williams 1986) to compute the
partial derivatives of the loss function with respect to the parameters. In particular,
the gradient of J is approximated using a minibatch of m samples belonging to the
training set:

∇ΘJ (Θ) =
1
m

m∑
i=1
∇ΘL(yi, yiN ;Θ).

For an extended description of the alternative techniques in use for solving problem
(4.59), we refer to Goodfellow et al. (2016).

4.4.4. Dynamic mode decomposition
Dynamic mode decomposition (DMD) is a recent data-driven technique used to
obtain linear reduced order models for high-dimensional complex systems. This
method extracts from the given dataset a few spatio-temporal coherent structures,
which dominate the dynamics of the measured data. First introduced by Schmid
(2010) in the computational fluid dynamics field, it was later applied successfully
to a diverse range of problems (Kutz et al. 2016a). Its wide range of applications
depends on its purely data-driven nature, which makes it useful whenever there is
a lack of knowledge of the underlying equation of motion.
The DMD standard procedure (Schmid 2010) starts by considering a dynamic

process encoded by a generic ordinary differential equation:
duh(t)

dt
= f (uh(t), t) for t ∈ T , (4.60)

with uh ∈ R
N , N � 1. Typically the function f is nonlinear with respect to the

solution uh, which makes the resolution non-trivial. However, in the DMD setting
we assume that the function f is unknown, which happens for example when we
do not have governing first principles for the problem at hand. However, assume
that we can measure the state of the system, i.e. the solution uh at different times.
Even when it is not clear if we have measurements of uh, we can consider taking as
their proxy certain outputs of the dynamical system, i.e. y = g(uh). The main idea
of DMD is to approximate equation (4.60) by means of a linear dynamical system,
that is,

duh(t)
dt

= Auh(t) for t ∈ T , (4.61)

where A ∈ RN×N . Clearly the linear system in equation (4.61) becomes easy to
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treat since there is a closed form for its solutions:

uh(t) = eAtuh(t0),

where eAt ∈ RN×N is the exponential of the matrix A. Once the matrix A is
obtained, we proceed to compute the set {(λj,Φj)}1≤ j≤N of its eigenvalues and
eigenvectors. In particular, the eigenvectors Φj are called DMD modes, while the
eigenvalues λj provide information regarding the frequency ωj associated to the
corresponding mode, via

ωj =
Im(log λj)

2π∆t
.

We must remember that the function f in equation (4.60) is unknown and con-
sequently we cannot solve the problem by a simple linearization of the operator.
For the moment we assume that we have access to the complete state vector and
that we have some measurements uk

h
= uh(tk). These snapshots are used to create

the following snapshot matrices:

S =

| | |

u1
h

u2
h

. . . um−1
h

| | |

, S′ =

| | |

u2
h

u3
h

. . . um
h

| | |

 .
The idea is that the matrix A will perform a linear transformation of the current
snapshot database in the shifted one, that is,

S′ = AS. (4.62)

One can therefore proceed by multiplying equation (4.62) by the pseudo-inverse of
S, in order to obtain

A = S′S†. (4.63)

The former procedure is called exact DMD and involves the calculation of the
pseudo-inverse of the snapshot matrix, which we recall is a least-squares regression
algorithm. An important consideration is that thematrixA is the one thatminimizes
the error ‖S′ − AS‖F in the Frobenius matrix norm. This means that the matrix A
minimizes ‖uk+1

h
− Auk

h
‖ across all snapshots of the solution for 1 ≤ k ≤ m − 1.

However, this way of proceeding ignores the considerations already made in
Section 4.4.1, namely that many of the systems that are measured show low-rank
structures. For this reason, the DMD algorithm involves studying the dynamics of
the system over the subspace provided by POD. This is done by first substituting
the r-rank POD approximation S ≈ UΣV∗ in equation (4.63):

A = S′VΣ−1U∗.

We then project A onto the dominant single vectors, in order to obtain the operator

Ã = U∗AU = U∗S′VΣ−1,

which provides information about the time evolution of the POD modes. One
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can prove that the eigenvalues of A and Ã coincide, whereas the eigenvectors are
related by

Φ = X′VΣ−1W,

where Φ (respectively W) collects the eigenvectors of A (respectively Ã) column-
wise.
Finally, we can compute future state predictions as

uh(t) ≈
r∑
j=1
Φjλ

t/∆t
j bj = ΦΛ

t/∆t b. (4.64)

The amplitude vector b can be computed by considering (4.64) at initial time t = 0,
which leads to

b = Φ†u0
h . (4.65)

In particular, (4.65) can be used by substituting another snapshot uk
h
for u0

h
to

improve the approximation accuracy in the neighbourhood of that specific time
instant.
Following the remarkable application success of DMD, several variants have

been proposed that account for the limitations of this method, such as randomized
DMD (Bistrian and Navon 2016), optimized DMD (Chen, Tu and Rowley 2012)
and multiresolution DMD (Kutz, Fu and Brunton 2016b). For a broader discussion
of extensions and applications we refer the interested reader to Kutz et al. (2016a).

5. Concluding remarks and outlook
The development of reduced basis methods to recover accurate and efficient surrog-
atemodels for solutions to parametrized solutions has resulted in the very successful
applications of such methods to a variety of increasingly complex applications, in-
cluding Maxwell equations, acoustic and elastic problems, heat-conduction, and
the Navier–Stokes equations of incompressible fluid flows. We have discussed
some of these applications in this article, and Hesthaven et al. (2015) and Quarter-
oni et al. (2016) have provided many further examples. With a primary focus on
stationary problems, these developments have resulted in powerful methods that are
mathematically rigorous and are often complemented by an error theory to certify
the accuracy of the reduced models. This latter element has been achieved for most
linear problems and even for certain types of nonlinear problems with quadratic
nonlinearities.
However, in contrast to most past work we focus on the special case of time-

dependent problems. This focus adds additional challenges to the development of
reduced basis methods – challenges that originate in the stability of the reduced
models and in questions of efficiency of the reducedmodels, related both to reducib-
ility of the parametrized problem and to the efficient evaluation of nonlinear terms.
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Recent advances in structure-preserving reduced order models have demon-
strated that by insisting on preserving invariants, inherited from the continuous
model, stability of the reduced models can be preserved, and we have discussed
many of these developments in detail. Such techniques also typically result in
methods of increased accuracy. While the extension of such methods to complex
applications in fluid or plasma dynamics is non-trivial, the general approach has
successfully demonstrated a path forward.
The use of data-driven techniques has likewise shown itself to be a key tool

in the development of reduced basis methods that are both stable and, most im-
portantly, highly efficient, even for general nonlinear problems. This is achieved
by introducing non-intrusive reduced order models in which a data-driven map is
learned as the map between parameter space and coefficients of the reduced basis
to reconstruct the solutions. In other words, the complex nonlinear relationship
between parameters and coefficients is embedded into the data-driven map, e.g. a
neural network. This approach has the additional advantage that only access to
solutions is needed to build reduced order models.
While these are important steps towards the goal of making reduced basis meth-

ods an accurate and efficient tool to build surrogate model for general problems,
possibly of industrial complexity, a number of key questions remain open to fully
achieve this goal.
As discussed earlier, the reducibility of problem is highly problem-dependent,

as expressed in the Kolmogorov n-width discussed in Section 3.1. A particular
implication of this is that a nonlinear basis is required to ensure a compact basic for
transport-dominated problems to reach the promise of an substantial acceleration
of the surrogate. This challenge was discussed in Section 4.3 by the explicit update
of the basis and in Section 4.4 with the generation of a nonlinear basis via a
data-driven approach. However, much work is need to achieve this in a robust
and general fashion and enable substantial acceleration of the reduced models for
transport-dominated problems.
An attractive feature of the original development of reduced basis methods for

linear parametrized PDEs is the ability to develop a rigorous error theory to qualify
the output of the reduced basis method; that is, not only is the output a function of
interest but we are also interested in explicit estimates of the errors associated with
this output as a function of the size of the reduced basis (Hesthaven et al. 2015,
Quarteroni et al. 2016). This last step implies that one can have full confidence
in the output of the reduced model and choose the size of the reduced basis based
solely on accuracy requirements.

For time-dependent problems or general nonlinear problems, the analysis leading
to such estimates often either results in overly conservative error estimates or is
simply not possible with the tools available. There is some limited work in that
direction (Nguyen, Rozza and Patera 2009, Yano, Patera and Urban 2014), but there
are substantial open questions that need to be understood in order to make this a
practical tool.
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This quest for a rigorous understanding of the accuracy of reduced basis methods
is even more challenging when turning towards data-driven methods, in particular
for problems based on the use of neural networks. Some initial results have been
obtained by Kutyniok, Petersen, Raslan and Schneider (2022), but a more com-
prehensive understanding of the errors associated with such an approach remains
elusive.
The majority of problems for which reduced basis methods have been developed

so far are physics problems for which a global truth solver is available. However, for
many complex problems, e.g. in an industrial setting, a global solver is not available.
Instead the system is understood via a collection of local models, each of which
can be a surrogate model of some kind. An open question then arises as to whether
the availability of a collection of reduced models, coupled in a predefined way,
is sufficient to characterize the behaviour of the global system. There are some
early results in this direction for the harmonic Maxwell’s equations in Ganesh,
Hesthaven and Stamm (2012) and recently some also for time-dependent problems
(Carlberg, Guzzetti, Khalil and Sargsyan 2019, Discacciati and Hesthaven 2021).
Nonetheless, how to achieve this for more general time-dependent multi-physics
coupled systems remains open – in particular the question of how to guarantee that
global emergent behaviour, arising as a consequence of the model coupling, can
be established. The ability to rapidly sample the reduced models and parametrize
couplings suggests a path forward through iterations, but substantial advances are
needed to establish such an approach to modelling large-scale coupled systems of
industrial complexity.
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