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The controllability of passive microparticles that are advected with the fluid flow generated
by an actively controlled one is studied. The particles are assumed to be suspended in a
viscous fluid and well separated so that the far-field Stokes flow solutions may be used
to describe their interactions. Explicit elementary moves parametrized by an amplitude
ε > 0 are devised for the active particle. Applying concepts from geometric control theory,
the leading-order resulting displacements of the passive particles in the limit ε → 0 are
used to propose strategies for moving one active particle and one or two passive particles,
proving controllability in such systems. The leading-order (in ε) theoretical predictions of
the particle displacements are compared with those obtained numerically and it is found
that the discrepancy is small even when ε ≈ 1. These results demonstrate the potential for
a single actuated particle to perform complex micromanipulations of passive particles in a
suspension.
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1. Introduction

Manipulation of microparticles suspended in fluids has relevance to several applications,
including targetted drug delivery (Nelson, Kaliakatsos & Abbott 2010; Li et al. 2017; Zhou
et al. 2021; Ezike et al. 2023), environmental remediation (Wang, Khezri & Pumera 2016),
cell sorting (Bhagat et al. 2010; Wang, Jalikop & Hilgenfeldt 2011), assisted fertilization
(Fishel et al. 1993) and microassembly (Ghadiri et al. 2012; Agnus et al. 2013).

Some common mechanisms for transporting large collections of particles in microfluidic
devices are using pressure-driven fluid flow along channels, electrokinetic effects and
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acoustic streaming (Chakraborty & Chakraborty 2010; Wu et al. 2019). It has also been
shown that spatially and temporally patterned fluid flows can be generated in microfluidic
chambers through buoyancy and electrokinetic effects associated with chemical reactions
(Sengupta et al. 2014; Ortiz-Rivera et al. 2016; Niu et al. 2017; Shum & Balazs 2018) or
by harnessing bacterial or artificial cilia carpets (Darnton et al. 2004; Kim et al. 2015).
The motion of individual particles subject to these effects could be dependent on the size
or other properties of the particle, so there is some control over at least the direction and
speed of transport, but these mechanisms are not typically used for fine manipulation of
individual particles along specific, arbitrary paths.

Precise manipulation of individual particles suspended in fluids is challenging, but can
be achieved mechanically using micropipettes (Zhang et al. 2024). Rotating externally
applied magnetic fields are commonly used as a non-invasive method to produce rotational
motion of magnetic particles, possibly leading to translational propulsion depending on
the shape of the particle or proximity to a wall (Ghosh & Fischer 2009; Khalil et al. 2012;
Martinez-Pedrero et al. 2018). Optical tweezers use focused laser beams to exert optical
forces on particles, allowing cells and other microparticles to be held in a trap, which can
be moved to manipulate particles along arbitrary paths (Ghadiri et al. 2012; Bradac 2018;
Polimeno et al. 2018; Bunea & Glückstad 2019; Jamil, Pokharel & Park 2022).

The problem of swimming by body deformations, without the application of external
forces or torques, has been studied under the framework of geometric control theory (see,
e.g. Agrachev & Sachkov 2004) in low- and high-Reynolds-number flows (Shapere &
Wilczek 1989; San Martín, Takahashi & Tucsnak 2007; Chambrion & Munnier 2012;
Hatton & Choset 2013; Koens & Lauga 2021). Similar approaches have been used to prove
controllability of a single non-spherical swimmer by an externally applied torque in an
unbounded fluid (Buzhardt & Tallapragada 2020). For spherical particles in unbounded
fluid, an external torque produces only rotational motion so translational motion is not
attainable. For a pair of such microrotors, each can generate translational motion of the
other, but Buzhardt, Fedonyuk & Tallapragada (2018b) showed that their positions are
still not controllable in an unbounded two-dimensional fluid domain, while they are in a
confined domain (see also Buzhardt et al. 2018a).

In addition to controlling the motion of magnetic particles through magnetic fields,
it has been shown theoretically (Buzhardt & Tallapragada 2021) that such particles can
be used as robots or active agents to arbitrarily manipulate another, passive particle
through hydrodynamic interactions. Or et al. (2009) showed that arbitrarily small bounded
motions of a cylinder could be used to control the motion of a passive tracer particle
in a two-dimensional domain, noting the same geometric structure for inviscid fluids as
for Stokes flow. Walker et al. (2022) studied a similar system where an active spherical
particle controlled by either external forces or external torques is used to direct the motion
of a passive spherical particle in three-dimensional Stokes flow. In particular, they showed
that the Lie brackets generated by the vector fields controlling the velocity of the active
particle spanned the full six-dimensional configuration space for one active and one
passive particle; controllability follows owing to the Rashewsky–Chow theorem (Agrachev
& Sachkov 2004, Theorem 5.9).

In the current work, we build on the previous theoretical studies, exploring a strategy
for manipulating passive particles suspended in a viscous fluid through hydrodynamic
interactions with one active particle directly controlled by other means (for example,
optical tweezers or magnetic forces).

The general set-up for our model is that a collection of neutrally buoyant particles
is suspended in an incompressible Newtonian fluid. Since we are primarily interested
in microfluidic systems, it is natural to adopt the equations of incompressible Stokes
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Hydrodynamic control of microparticles

flow to characterize the behaviour of the fluid in low-Reynolds-number applications.
For particles separated by a distance r = 100 μm and moving with characteristic speeds
U = 100 μm s−1 in a fluid with the kinematic viscosity ν = 1 mm2 s−1 (comparable to
that of water at 20 ◦C), the Reynolds number is Re = Ur/ν = 0.01, for example.

We consider the case where one of these particles is directly controlled by external
forces, so that its velocity and position are prescribed functions of time, and the remaining
particles move passively in the fluid flow generated by the actively controlled one.
We use the far-field expressions for the Stokes flow field produced by a translating rigid,
spherical particle to determine the velocity and trajectory of passive particles in the
fluid.

Using explicit constructions inspired by the work of Dal Maso, DeSimone & Morandotti
(2015), we prove total controllability of systems consisting of one active and either one
or two passive particles. That is, such particles can be moved from arbitrary initial
positions to arbitrary final positions in unbounded three-dimensional space, provided that
the particles are far apart from each other in these configurations so that the far-field
approximation is valid.

We provide a strategy that breaks down the desired displacements into a sequence of
steps that can be achieved by iteratively applying elementary moves, in which a passive
particle moves in the radial direction or in the polar direction around the active particle, for
example. We extend the controllability result to two passive particles, proposing a separate
strategy for this case. Using numerical solutions, we test the accuracy of asymptotic
expressions for displacements predicted for our elementary moves and also assess the
errors associated with adopting the far-field hydrodynamic approximation.

Our results are a step towards the more general problem of independently manipulating
an arbitrary number of passive particles using a small number of control variables.
Although the strategies we discuss in the current work do not readily extend to larger
numbers of particles, the framework can be generalized to describe such systems in a
straightforward manner.

To motivate the study of controlling passive particles through one or more actively
manipulated particles, we note that optical traps can be used for multiple particles
simultaneously, but this requires more complicated experimental procedures, making it
inconvenient as a method for controlling many particles. Moreover, optical tweezers face
challenges and limitations from heating effects, the dependence on the size and dielectric
properties of the particle being trapped, and degraded laser focus when particles are
located deeper in the fluid, far from the bounding glass surface (Melzer & McLeod 2018;
Jamil et al. 2022; Malinowska et al. 2024).

In contrast, exploiting the hydrodynamic interaction has several advantages: forces
propagate throughout the whole fluid and influence particles that are far away from one
that is moving (or being moved), overcoming both the spatial limitation of optical tweezers
and the need to have one tweezer for each particle to be displaced. Another advantage is
that, in the far-field approximation, the size of the passive particles does not enter the
equations of motion, so, in principle, one can control arbitrarily large particles (provided
other modelling assumptions remain valid).

The paper is organized as follows: in § 2, we present the mathematical formulation of
the problem; in § 3, we construct the elementary and compound moves that will be used
in § 4 to prove controllability of our system of one active particle and one or two passive
ones. In § 5, we discuss the errors due to finite amplitudes and separations in comparison
to the theoretically predicted trajectories. Finally, in § 6, we offer an overview of the results
we obtained and an outlook for future research.
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2. Mathematical formulation

We introduce the general set-up for a system of spherical particles immersed in a viscous
fluid. Of these, one is an active particle, whose velocity is directly prescribed, and the
remaining M are passive particles, whose motions are determined by the interaction with
the active one.

We let a > 0 be the radius of the active particle and we denote by t �→ x(t) its position
in space at time t and by t �→ ẋ(t) its velocity at time t. Analogously, we denote by
aj > 0, t �→ yj(t) and t �→ ẏj(t), for every j = 1, . . . , M, the radius, position and velocity,
respectively, of the jth passive particle.

Assuming that the Reynolds number is small enough that inertial effects may be
neglected, the fluid flow is governed by the equations of incompressible Stokes flow,

∇p − μ∇2u = 0, ∇ · u = 0, (2.1a,b)

where u is the velocity field, p is the pressure field and μ is the dynamic viscosity of
the fluid. We assume that the velocity field vanishes at infinity and satisfies the no-slip
boundary conditions on the surfaces of the particles, namely,

u(z) =
{

U0 + Ω0 × (z − x) for ‖z − x‖ = a,

U j + Ω j × (z − yj) for ‖z − yj‖ = aj, j = 1, . . . , M,
(2.2)

where U j and Ω j ( j = 0, . . . , M) are the translational and rotational velocities,
respectively, of the active and passive particles. We denote by t �→ F (t) the force that
the active particle exerts, at time t, on the surrounding fluid and we assume that all passive
particles are force-free. All particles, whether active or passive, are torque-free.

By linearity of the equations of Stokes flow, the relationship between active forces
and the velocities of the particles, in the absence of background flows, are generically
described by (Kim & Karrila 1991)(

U j
Ω j

)
=
(

M j
N j

)
F for j = 0, . . . , M. (2.3)

The quantities M j ( j = 0, . . . , M) are the mobility tensors for the translational velocities
of the active and passive particles, respectively, due to the force on the active particle,
and N j ( j = 0, . . . , M) are the mobility tensors for the rotational velocities of the active
and passive particles, respectively, due to the force on the active particle. In general, the
mobility tensors depend on the relative positions of all particles and it is not possible to
obtain a closed-form expression for them. By symmetry of the spherical particles, the
mobility tensors are independent of the orientations of the particles. We focus on the
problem of controlling the particle positions without regard to their orientations, hence,
the rotational velocities need not be considered.

Let dj := yj − x ( j = 1, . . . , M) be the displacement vector of the jth passive particle
from the active one. Assuming that all of the pairwise distances rj := ‖dj‖ are large
compared with all of the particle radii a and aj, as well as the mutual distances between the
passive particles, we use the far-field approximation for the translational mobility tensors
(Zuk et al. 2014; Graham 2018) given by

M j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

6πμa
1 for j = 0,(

1 +
a2 + a2

j

6
∇2

)
G(dj) for j = 1, . . . , M,

(2.4)
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Hydrodynamic control of microparticles

where the function G : R
3 \ {0} → R

3×3
sym defined by

G(d) := 1
8πμ

(
1

r
+ d ⊗ d

r3

)
(2.5)

is the Stokeslet Green’s function for the Stokes equation (2.1a,b) such that G(d)F is the
velocity at d due to a singular force F applied at the origin. Equation (2.4) is accurate up
to O(r−3

j ) and can be extended to higher orders of accuracy by the method of reflections
(Kim & Karrila 1991). Note that, to this order of accuracy, the passive particles do not
affect the velocities of other particles (active or passive).

The matrix M0 is evidently invertible and its inverse R0 = M−1
0 = 6πμa1 is the

resistance matrix describing the linear relationship between forces applied to the fluid
and the velocities of the particles, F = R0U0. The equations of motion for our system of
active and passive particles are then{

ẋ(t) = u(t),
ẏj(t) = M j(t)F (t) = M̄ j(t)u(t) for j = 1, . . . , M,

(2.6)

where M̄ j(t) = M j(t)R0(t) = 6πμaM j(t). We further simplify the equations by retaining
only the leading order terms, namely, those of order O(r−1

j ). Notice that, with this
approximation, the radii of the passive particles do not enter the system of equations,
which becomes⎧⎪⎨⎪⎩

ẋ(t) = u(t),

ẏj(t) = 3a
4

(
1

rj(t)
+ dj(t) ⊗ dj(t)

rj(t)3

)
u(t) = G(dj(t))u(t) for j = 1, . . . , M,

(2.7)

where G(d) := (3a/4)(1/r + d ⊗ d/r3) is a 3 × 3 matrix. We remark that the passive
particles move as tracers or point particles in the flow field induced by the moving active
particles. Equation (2.7) can be written in matrix form as⎛⎜⎜⎝

ẋ
ẏ1
...

ẏM

⎞⎟⎟⎠ = Hu, where H =

⎛⎜⎜⎝
13×3
G1
...

GM

⎞⎟⎟⎠ , Gj = G(dj) for j = 1, . . . , M. (2.8)

3. Elementary and compounds moves

In this section, we construct the elementary and compound moves, which are the building
blocks for proving the controllability results in § 4. Below, we use ek, k = 1, 2, 3 to denote
the standard basis vectors in R

3 and we use 0 to denote the zero vector in R
3.

3.1. Elementary moves and Lie brackets of vector fields
We describe three elementary classes of control functions from which we will construct
strategies to move the active and passive particles from arbitrary initial positions to
arbitrary target positions. Since the equations for the passive particles are decoupled, i.e.
the velocity of the jth passive particle does not depend on the ith passive particle with
i /= j, the action of the active particle is the same on all the passive particles. For this
reason, in what follows, the three elementary classes of control functions will be described
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for the case M = 1 in (2.7) and (2.8). Let hk ∈ R
6 be the kth column of H in (2.8) for

M = 1 and k = 1, 2, 3. The first three components of hk represent the velocity of the active
particle and the last three components represent the velocity of the passive particle when
the control u = ek is applied.

3.1.1. Zeroth-order control
Given an amplitude ε > 0 and time duration Δt > 0, consider the zeroth-order (constant)
control

u(t) = uε, hk
�t (t) :=

⎧⎨⎩
ε

�t
ek, 0 � t < �t,

0, otherwise.
(3.1)

The net displacements of the active and passive particles over the time interval [0, �t]
with initial positions x(0) = x◦ and y(0) = x◦ + d (with d ∈ R

3 \ {0}), respectively, are

Δε,hk(d) =
(

Δ
ε,hk
x (d)

Δ
ε,hk
y (d)

)
:=
(

x(�t) − x(0)

y(�t) − y(0)

)
=
⎛⎝ ε ek

3aε

4r

(
ek + dkd

r2

)
+ O(ε2)

⎞⎠
= εhk(d) +

(
0

O(ε2)

)
, (3.2)

where O(ε2) denotes a vector in R
3 with components that are O(ε2) as ε → 0. This

zeroth-order control is primarily used to control the position of the active particle since its
velocity is directly prescribed by the control. The passive particle will also move, due to
the flow field generated by the translating active particle and we can compute the trajectory
of the passive particle according to (3.2), see figure 1(a).

To displace the passive particle without any net displacement of the active particle, we
construct higher-order controls.

3.1.2. First-order control
Consider a control that moves the active particle around a square loop with sides of length
ε in the ek and el directions, namely,

uε,[hk,hl]
�t (t) := uε,hk

�t/4(t) + uε,hl
�t/4

(
t − �t

4

)
− uε,hk

�t/4

(
3�t

4
− t
)

− uε,hl
�t/4(�t − t) (3.3)

for k, l = 1, 2, 3. The inversion of the time variable in the last two terms represents
performing the reverse control of the first two terms in the sum. The controls here are
constant over each subinterval but in later examples, it will be necessary to make this
distinction. Explicitly, the function in (3.3) can be expressed as

uε,[hk,hl]
�t (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4ε

�t
ek, 0 � t <

�t
4

,

4ε

�t
el,

�t
4

� t <
�t
2

,

− 4ε

�t
ek,

�t
2

� t <
3�t

4
,

− 4ε

�t
el,

3�t
4

� t < �t,

0, otherwise.

(3.4)
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Figure 1. Streamline plots of the displacement vector field of a passive particle, given by components 4–6 of
the Lie brackets, for (a) the h1 zeroth-order control, (b) the [h1, h2] first-order control, (c) the x–y plane of
the [h2, [h1, h2]] second-order control and (d) the x–z plane of the [h2, [h1, h2]] second-order control. In all
cases, we use an active particle of radius a = 1 and the plots are in the same plane as the active particle, which
is located at the origin. By symmetry, there are no out-of-plane components of displacements for the passive
particle. The colour scale indicates the base 10 logarithm of the magnitude.

The net displacements, for small ε, are

Δε,[hk,hl](d) =
(

Δ
ε,[hk,hl]
x (d)

Δ
ε,[hk,hl]
y (d)

)
= ε2[hk, hl](d) +

(
0

O(ε3)

)
, (3.5)

where [hk, hl] :− hk · ∇hl − hl · ∇hk is the first-order Lie bracket of the vector fields hk
and hl. The Lie bracket evaluates to

[hk, hl](d) =
⎛⎝ 0

3a
2r3

(
1 − 9a

8r

)
(dkel − dlek)

⎞⎠ =
(

0
ωωω × d

)
, (3.6)

where ωωω(r) = (3a/2r3)(1 − 9a/8r)ek × el and 0 is the three-dimensional zero vector.
Hence, for k /= l and small ε, the control uε,[hk,hl]

t0,�t results approximately in a rotation of
the passive particle by an angle

�θε(r) = 3aε2

2r3

(
1 − 9a

8r

)
(3.7)
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about the axis passing through the active particle and perpendicular to ek and el. By
construction, the active particle returns to its initial position, x(�t) = x(0). If k = l, then
the net displacements are exactly zero as this is a time-reciprocal motion.

The interpretation of this result is that a particle forced to move around in a closed,
square loop produces a net displacement field that is, to leading order, equivalent to a
rotlet, see figure 1(b). Indeed, the time-averaged distribution of forces applied to the fluid
over the interval [0, �t] corresponds to the sum of a Stokeslet dipole with force in the el
direction and displacement in the ek direction and a Stokeslet dipole with force in the −ek
direction and displacement in the el direction.

We refer to the control uε,[hk,hl]
�t as the first-order control (and assume that k /= l) since

it corresponds to a first-order Lie bracket.
Since rotations preserve the distance r, we require another class of controls: one that

generates net displacements of the passive particle in the radial direction, with respect to
the active particle, without a net displacement of the active particle.

3.1.3. Second-order control
Consider second-order control functions of the form u(t) = uε,[hk,[hl,hm]]

�t (t) defined as in
(3.3), replacing hl with [hl, hm]. Since [hl, hm] corresponds to a rotlet-like flow field if
l /= m, the Lie bracket [hk, [hl, hm]] has the approximate form of a rotlet dipole, with axis
(el × em) and displacement in the ek direction, acting on the passive particle,

[hk, [hl, hm]](d)

=

⎛⎜⎜⎜⎜⎜⎜⎝

0

3a
2r3

(
1 − 9a

8r

)
(δmkel − δlkem) + 9a

2r3

(
1 − 3a

2r

)2 dk

r

(
dlem − dmel

r

)
−9a2

8r4

(
1 − 9a

8r

)
δmk

(
el + dld

r2

)

⎞⎟⎟⎟⎟⎟⎟⎠ (3.8)

=
⎛⎝ 0

3a
2r3

{
(ek × (el × em) + 3dk(el × em) × d

r2

}
+ O(1/r4)

⎞⎠ , (3.9)

see figure 1(c).
The net displacements of the active and passive particles are given, for small ε, by

Δε,[hk,[hl,hm]](d) =
(

Δ
ε,[hk,[hl,hm]]
x (d)

Δ
ε,[hk,[hl,hm]]
y (d)

)
= ε3[hk, [hl, hm]](d) +

(
0

O(ε4)

)
. (3.10)

Notice that if, for a given relative position of the passive particle with respect to the active
particle, we choose a right-handed reference frame in which d = d1e1, then the control
corresponding to [h2, [h1, h2]] results in a passive particle displacement

Δε,[h2,[h1,h2]]
y (d1e1) = 3aε3

2r3

(
1 − 3a

2r

)(
1 − 9a

8r

)
e1 + O(ε4), (3.11)

where r = |d1|. To leading order in ε, this produces a displacement in the e1 direction.
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Hydrodynamic control of microparticles

In the more general configuration assuming only that d2 = 0, we have the result that

Δε,[h2,[h1,h2]]
y (d1e1 + d3e3) = 3aε3

2r3 e1 + O(1/r4) + O(ε4), (3.12)

which implies that, to leading order in 1/r and ε, the displacement of passive particles
in the plane d2 = 0 is purely in the e1 direction and the magnitude of the displacement
depends on the magnitude but not the direction of the vector d. This is illustrated in
figure 1(d).

3.2. Compound moves
In this section, we establish a set of manipulations that can be performed on a system of one
active and two passive particles (i.e. M = 2), assuming that their motion is governed by
system (2.7), using the elementary moves discussed in § 3.1. Since this system is based on
the far-field approximation, we will ensure that the particles always remain well separated,
according to the following definition.

DEFINITION 3.1. Let R > 0 be the minimum separation we wish to maintain between any
two particles. Given a number M ∈ N of passive particles, we define the state space of the
system as the set of configurations that respect this minimum distance,

S1+M
R = {(x, y1, . . . , yM) ∈ R

3(1+M) : ‖yi − x‖ > R, ‖yj − yi‖ > R for all i, j = 1, . . . , M}. (3.13)

We say that a configuration (x(t), y1(t), . . . , yM(t)) at time t is well separated if it is in
S1+M

R . We say that a solution, or trajectory, (x, y1, . . . , yM) ∈ (AC([0, T]; R
3))1+M of

system (2.7) is well separated if the configuration (x(t), y1(t), . . . , yM(t)) ∈ S1+M
R for all

times t ∈ [0, T].

By AC([0, T]; R
3), we denote the class of R

3-valued absolutely continuous functions
defined on [0, T].

For brevity, we will not reiterate the well-separated conditions in Propositions 3.2–3.7
that follow, but these conditions will be implied in all cases, namely, we will always
move the particles from an initial configuration (x◦, y◦

1, y◦
2) ∈ S3

R to a final configuration
(x f , y f

1 , y f
2 ) ∈ S3

R ensuring that the particles stay well separated at all times.

PROPOSITION 3.2 (Equidistant to non-equidistant configurations). The particles can be
moved from any non-collinear initial configuration (x◦, y◦

1, y◦
2) with the two passive

particles equidistant from the active particle, i.e. ‖y◦
1 − x◦‖ = ‖y◦

2 − x◦‖, to a final
configuration (x f , y f

1 , y f
2 ) satisfying ‖y f

1 − x f ‖ /=‖y f
2 − x f ‖.

Proof . The goal can be achieved using the second-order control. We choose a
right-handed orthonormal reference frame {e1, e2, e3} in which e3 = d◦

1/‖d◦
1‖, d1 and d2

belong to the span of e1 and e3 so that di,2 = 0 for i = 1, 2, and e1 · d2 > 0 (see figure 2a).
Applying the second-order control uε,[h2,[h1,h2]]

�t causes no net displacement of the active
particle and displaces each passive particle by the same distance in the e1 direction (to
leading order in both 1/r and ε), according to (3.12). Moving both passive particles in the
e1 direction breaks the symmetry and results in a final configuration with ‖d f

2‖ > ‖d f
1‖.

To leading order, the distance between passive particles is unchanged and the distance
between each passive particle and the active particle is increased so the configuration
remains well separated.
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ȳ1

ȳ2
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Figure 2. Schematic illustration of the compound moves for two passive particles. The objectives of these
moves are to (a) produce a non-equidistant configuration, (b) produce a collinear configuration, (c) make
collinear particles equidistant, (d) rotate equidistant collinear particles to a new orientation, (e) translate
equidistant collinear particles together and ( f ) adjust the distance between equidistant collinear particles.

PROPOSITION 3.3 (Arbitrary to collinear configurations). The particles can be moved
from any initial configuration (x◦, y◦

1, y◦
2) to a collinear final configuration with the active

particle between the two passive particles, i.e. a configuration (x f , y f
1 , y f

2 ) satisfying d f
1 =

−αd f
2 for some α > 0.

Proof . Suppose that the initial configuration does not satisfy the desired final properties.
We may also suppose without loss of generality that ‖d◦

1‖ > ‖d◦
2‖. If this is not the case

(i.e. if the two passive particles are exactly the same distance from the active particle),
then we apply Proposition 3.2 to produce a new configuration in which the first passive
particle is farther from the active particle.

We choose a right-handed orthonormal reference frame {e1, e2, e3} in which e1 =
d1/‖d1‖, d1 and d2 belong to the span of e1 and e2, and e2 · d2 � 0 (see figure 2b).
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Hydrodynamic control of microparticles

Ignoring the O(ε3) terms, applying the first-order control uε,[h1,h2]
�t with small ε causes

no net displacement of the active particle and rotates each of the passive particles around
the active particle about the e3-axis in the anticlockwise direction by small angles �θ1
and �θ2 given by (3.7). In the far field, �θ decreases with r, so �θ1 < �θ2 so the angle
θ12 = arccos(d1 · d2/(‖d1‖ × ‖d2‖)) between d1 and d2 increases by

�θ12 = �θ2 − �θ1 = 3aε2

2

[
1
r3

2

(
1 − 9a

8r2

)
− 1

r3
1

(
1 − 9a

8r1

)]
=: �̃θ12ε

2 (3.14)

upon each application of the first-order control.
Repeating the application of this control with a suitable choice of ε, we can rotate

the particles to the final desired collinear configuration with the two passive particles on
opposite sides of the active particle, corresponding to θ

f
12 = π. Specifically, if we choose

to apply the control N times, we will choose

ε =
(

π − θ◦
12

N�̃θ12

)1/2

. (3.15)

The distances from the active particle to the passive ones are unchanged by repeated
applications of the first-order control while the distance between the two passive particles
increases so the system remains well separated.

PROPOSITION 3.4 (Collinear to equidistant collinear configurations). The particles can
be moved from any collinear initial configuration (x◦, y◦

1, y◦
2) with d◦

1 = −αd◦
2 for some

α > 0 to a collinear final configuration with the two passive particles equidistant from the
active particle, i.e. a configuration (x f , y f

1 , y f
2 ) satisfying d f

1 = −d f
2 .

Proof . Suppose without loss of generality that ‖d◦
1‖ > ‖d◦

2‖ and that e1 = d◦
1/‖d◦

1‖ (see
figure 2c). Applying the zeroth-order control uε,h1

�t moves all three particles in the e1
direction according to (3.2). The active particle translates by the largest magnitude, ε,
and the second passive particle translates by a larger distance than the first particle
because the displacement decreases with r. Hence, ‖d1‖ decreases and ‖d2‖ increases with
each application of the zeroth-order control. Note that, within the far-field assumption,
the active particle can approach the first passive particle arbitrarily closely by repeated
applications of the control. Hence, by continuity, a point can be reached at which ‖d f

1‖ =
‖d f

2‖. The configurations are always well separated if the initial configuration is.

PROPOSITION 3.5 (Reorienting equidistant collinear configurations). The particles can
be moved from any equidistant collinear initial configuration (x◦, y◦

1, y◦
2) with d◦

1 = −d◦
2 to

any other equidistant collinear final configuration (x f = x◦, y f
1 , y f

2 ) with the same position
of the active particle and the same distance between the active and passive particles, i.e. a
configuration with d f

1 = −d f
2 and ‖d f

1‖ = ‖d◦
1‖.

Proof . We choose a right-handed orthonormal reference frame {e1, e2, e3} in which d◦
1

and d f
1 lie in the span of e1 and e2. Then, the transformation from the initial to the desired

final configuration can be described as a rotation about the e3 axis through the active
particle by an angle θ = arccos(d◦

1 · d f
1/‖d◦

1‖2).
As in the proof of Proposition 3.3, we repeatedly apply the first-order control uε,[h1,h2]

�t ,
but now r1 = r2 so the particles rotate by equal angles and remain collinear.
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PROPOSITION 3.6 (Translating a group of equidistant collinear particles). Let the
particles be initially equidistant and collinear, i.e. the initial configuration (x◦, y◦

1, y◦
2)

satisfies d◦
1 = −d◦

2. Given any scalar 
 > 0 and unit vector e⊥ ⊥ d◦
1, the active and two

passive particles can be translated by the same vector Δ = 
e⊥ to the final configuration
(x f , y f

1 , y f
2 ) = (x◦ + Δ, y◦

1 + Δ, y◦
2 + Δ).

Proof . We consider a right-handed orthonormal reference frame {e1, e2, e3} in which
e1 = e⊥ and e2 = d◦

2/‖d◦
2‖. In this reference frame, d◦

1 = (0, −d◦, 0)� and d◦
2 =

(0, d◦, 0)�, where d◦ = ‖d◦
1‖.

Our strategy is to use the zeroth-order control to move the particles along the e1
direction. Since the passive particles move less than the active particle, they gradually
fall behind. We use the first-order control to bring the passive particles in front of the
active particle as needed and use symmetry to arrive with the same relative configuration
as the initial state (see figure 2e).

More specifically, the first stage of our strategy involves applying the zeroth-order
control u
/2,h1

�t to move the active particle to x̄ = x◦ + (
/2)e1. For small 
, the
displacements of the passive particles are approximated by (3.2). To leading order in 
, the
two passive particles undergo the same displacement, which is in the e1 direction. For finite
(possibly large) 
, the exact displacements of the two passive particles are constrained
by symmetry to have the form Δy1 = (Δ1, Δ2, 0)� and Δy2 = (Δ1, −Δ2, 0)�. Hence,
the relative position vectors of the passive particles in this configuration are of the form
d̄1 = ȳ1 − x̄ = (−d̄1, −d̄2, 0)� and d̄2 = ȳ2 − x̄ = (−d̄1, d̄2, 0)�. Since the component
of the velocity in the e1 direction is always larger for the active particle than for the passive
particles, we expect d̄1 > 0. We note, however, that this observation is not necessary for
our proof.

In the second stage, we use Proposition 3.5 to rotate the passive particles by the angle π
about the e2 axis through x̄ to achieve the configuration (x̄, ỹ1, ỹ2) with relative position
vectors d̃1 = (d̄1, −d̄2, 0)� and d̃2 = (d̄1, d̄2, 0)�.

In the third stage, we apply the zeroth-order control u
/2,h1
�t , bringing the active particle

to x f = x̄ + (
/2)e1 = x◦ + 
e⊥. This is equivalent to a time-reversal of the control
applied at the beginning of our strategy in a coordinate frame that has been rotated by
π about the e2 axis through x̄. Hence, the displacements of the passive particles are the
negative of the displacements Δy1 and Δy2 described earlier, rotated about the e2 direction.
The final positions of the passive particles are, therefore, y f

1 = x f + d◦
1 = y◦

1 + 
e⊥ and
y f

2 = x f + d◦
2 = y◦

2 + 
e⊥.
The procedure described above achieves the desired outcome provided that the

configuration remains well separated at all times. Note that the second stage of the strategy
does not alter distances between particles and the third stage is a rotated reversal of the
first stage. Hence, we need only consider the changes in distances during the first stage of
our strategy. In this stage, the distances r1 = ‖y1 − x‖ and r2 = ‖y2 − x‖ increase from
their initial values r◦

1 and r◦
2, respectively, because the active particle moves faster than

the passive particles in a direction away from them. In contrast, the distance between
the passive particles, ‖y2 − y1‖ = 2d̄2, decreases during this stage because the passive
particles move towards each other in the e2-direction and always have the same position
in the e1-direction. Hence, it is possible for the distance between the passive particles to
decrease to the well-separated limit R.

Suppose that this would occur at the point where the active particle has travelled a
distance 
∗. To avoid reaching this point, we break up the motion into a number N
 of
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Hydrodynamic control of microparticles

shorter segments of length 
̄ = 
/N
 < 
∗, so that we may accomplish translations of the
particles by a displacement vector 
̄e1 without violating the well-separated condition. The
repetition of this shortened motion achieves the desired final outcome and maintains the
desired separation.

PROPOSITION 3.7 (Adjusting distances between particles in an equidistant collinear
configuration). The distance between the active and passive particles in an equidistant
collinear configuration can be changed arbitrarily. That is, given an initial configuration
(x◦, y◦

1 = x◦ − r◦e2, y◦
2 = x◦ + r◦e2) with r◦ > R, there is a control that achieves the final

configuration (x f = x◦, y f
1 = x◦ − r f e2, y f

2 = x◦ + r f e2) with r f > R.

Proof . We first describe how to achieve a final distance r f < r◦. Repeated applications of
the second-order control uε,[h2,[h1,h2]]

�t leave the active particle at the initial position and
move the passive particles along curves in the e1–e2 plane that lead to the active particle,
shown as streamlines in figure 1(c). By symmetry, the passive particles maintain equal and
opposite displacements in the e2-direction. We stop applying this control when we reach
relative positions e2 · d2 = −e2 · d1 = r f .

We then apply the second-order control uε,[h3,[h1,h3]]
�t . By (3.12), replacing the index

2 with 3, this control moves the two passive particles in the e1-direction. We repeat
this control until we achieve e1 · d1 = e1 · d2 = 0, which then satisfies the desired final
configuration. The complete process is illustrated in figure 2( f ).

By the assumption that r f > R, we have that ‖dj‖ � e2 · dj � r f > R for j = 1, 2
and ‖y2 − y1‖ = 2‖d1‖ > R throughout this strategy, so the configuration remains well
separated.

In the case where r f > r◦, we apply the control strategy above in reverse.

4. Controllability for one or two passive particles

In this section, we prove controllability results for systems of one active particle and one
or two passive particles, based on system (2.7). We first prove the case for two passive
particles. Note that controllability with one passive particle follows from the controllability
with two passive particles, since the two passive particles act as tracers and do not affect
the dynamics of each other or of the active particle. The control strategy, however, can be
simplified for a single passive particle, so we will present a separate proof.

THEOREM 4.1 (Controllability with M = 2 passive particles). An active particle and two
passive particles can be moved from any well-separated initial configuration (x◦, y◦

1, y◦
2)

to any well-separated final configuration (x f
1 , y f

1 , y f
2 ) along a well-separated trajectory.

That is, given (x◦, y◦
1, y◦

2), (x
f
1 , y f

1 , y f
2 ) ∈ S3

R, there exist T ∈ (0, +∞) and a control map
u ∈ L∞([0, T]; R

3) such that system (2.7) with M = 2, namely,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ(t) = u(t),

ẏ1(t) = 3a
4

(
1

‖d1(t)‖ 1+ 1
‖d1(t)‖3 d1(t) ⊗ d1(t)

)
u(t),

ẏ2(t) = 3a
4

(
1

‖d2(t)‖ 1+ 1
‖d2(t)‖3 d2(t) ⊗ d2(t)

)
u(t),

(4.1)

admits a solution (x, y1, y2) ∈ AC([0, T];S3
R) (depending on u), such that (x(0), y1(0),

y2(0)) = (x◦, y◦
1, y◦

2) and (x(T), y1(T), y2(T)) = (x f , y f
1 , y f

2 ).
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Proof . We first describe three parts of the control strategy and then explain how they are
combined.

Part 1. Using Propositions 3.3 and 3.4, we can bring the particles from the arbitrary initial
configuration (x◦, y◦

1, y◦
2) to an intermediate configuration (x̃◦, ỹ◦

1, ỹ◦
2) that is equidistant

and collinear.

Part 2. Likewise, we can bring the particles from the final configuration (x f
1 , y f

1 , y f
2 ) to a

configuration (x̃ f , ỹ f
1 , ỹ f

2 ) that is equidistant and collinear.

Part 3. Using Propositions 3.5, 3.6 and 3.7, the particles can be moved from (x̃◦, ỹ◦
1, ỹ◦

2)

to (x̃ f , ỹ f
1 , ỹ f

2 ).

The sequence of steps in our complete strategy is, therefore: (i) apply Part 1; (ii) apply
Part 3; (iii) apply Part 2 in reverse. Indeed, by the time-reversibility property of the Stokes
equation, we can reverse the control for Part 2 to bring particles from (x̃ f , ỹ f

1 , ỹ f
2 ) to the

given final configuration. This strategy takes inspiration from Dal Maso et al. (2015).
Each of the Parts 1–3 above can be achieved in finite time. Defining T as the sum of

these times, a control map u ∈ L∞([0, T]; R
3) can be constructed by concatenating the

controls associated with the parts above. This control map steers the system from the
initial conditions to the final conditions along a well-separated trajectory. The theorem is
proved.

THEOREM 4.2 (Controllability with M = 1 passive particle). An active particle and a
single passive particle can be moved from any well-separated initial configuration (x◦, y◦)
to any well-separated final configuration (x f , y f ) along a well-separated trajectory.
That is, given (x◦, y◦), (x f , y f ) ∈ S2

R, there exist T ∈ (0, +∞) and a control map u ∈
L∞([0, T]; R

3) such that system (2.7) with M = 1, namely,⎧⎪⎨⎪⎩
ẋ(t) = u(t),

ẏ(t) = 3a
4

(
1

‖d(t)‖ 1+ 1
‖d(t)‖3 d(t) ⊗ d(t)

)
u(t),

(4.2)

admits a solution (x, y) ∈ AC([0, T];S2
R) (depending on u), such that (x(0), y(0)) =

(x◦, y◦) and (x(T), y(T)) = (x f , y f ).

Proof . We provide a constructive proof of controllability, which is achieved by an
appropriate composition of the zeroth-, first- and second-order controls. We apply the
propositions from § 3.2, which concerned systems with two passive particles; by simply
neglecting the second passive particle, those propositions describe possible moves for an
active particle and a single passive particle.

Let us denote by Π◦ the plane containing x◦, y◦ and x f , and let us notice that it is not
restrictive to assume that x◦ is the origin. We may also choose the reference frame such
that e3 is perpendicular to Π◦ and x f = x f e1 lies on the positive x-axis (see figure 3).

Step 1: rotation about x◦. By Proposition 3.5, the passive particle can be rotated about x◦
to lie on the negative e1 axis (see figure 3a); its position at the end of this step will be
ŷ = −d◦e1, where d◦ = ‖y◦‖.
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Step 2: translation of active particle. Using the direct control u(t) = ux f ,h1
1 (t) = x f − x◦,

we move the active particle from x◦ to x f . The passive particle moves in the e1 direction
to ȳ. Since the velocity of the active particle is greater than that of the passive particle, the
particles remain well separated during this step.

Step 3: rotation about x f . We consider the plane Π f containing ȳ, x f and y f , and
change the reference frame, using orthonormal vectors e f

1 = d f /‖d f ‖ and e f
2 in this plane.

By Proposition 3.5, we can rotate the passive particle around the active one until it reaches
a position ȳ f = d̄e f

1 on the positive x-axis analogously to Step 1.

Step 4: translation of passive particle (distance adjustment). Note that y f and ȳ f both lie on
the positive e1-axis relative to the active particle x f . By Proposition 3.7, we can adjust the
distance between the active and passive particle to achieve the desired final configuration
(x f , y f ).

Conclusion of the proof. Each of the Steps 1–4 above can be achieved in finite time.
Defining T as the sum of these times, a control map u ∈ L∞([0, T]; R

3) can be constructed
by concatenating the controls associated with the steps above. This control map steers
the system from the initial conditions to the final conditions along a well-separated
trajectory.

REMARK 4.3 (An alternative proof strategy for Theorems 4.1 and 4.2). Controllability
can also be proved by appealing to the Rashewsky–Chow theorem (Agrachev & Sachkov
2004, Theorem 5.9). For the case of M = 1, it is sufficient that the six-dimensional vector
fields h1, h2, h3 defined in § 3.1 generate a Lie algebra 𝔏𝔦𝔢{h1, h2, h3} that satisfies the
Lie algebra rank condition

dim (𝔏𝔦𝔢{h1(x, y), h2(x, y), h3(x, y)}) = 6 for all (x, y) ∈ S2
R. (4.3)

Since the system is translationally and rotationally invariant, we may consider a
reference frame in which the active particle is at the origin and the passive particle
lies along the positive x-axis. The Lie algebra rank condition can then be verified
by direct computation of the determinant of the 6 × 6 matrix whose columns are (in
this reference frame) h1, h2, h3, [h1, h2], [h3, h1], [h2, [h1, h2]], evaluated at the point
(x, y) = (0, 0, 0, y1, 0, 0)�. To see why we expect the span of these vectors to be
six-dimensional, note that h1, h2, h3 move the active particle precisely in the e1, e2, e3
directions, respectively. All first- and higher-order Lie brackets result in zero velocity of the
active particle. The components of the first-order Lie bracket [h1, h2] corresponding to the
passive particle are (3a/2y2

1)(1 − 9a/8y1)(0, 1, 0)� for the configuration x = (0, 0, 0)�,
y = ( y1, 0, 0)� according to (3.6), implying that the velocity of the passive particle is in
the e2-direction. Similarly, [h1, h3] produces a passive particle velocity in the e3-direction.
For the second-order Lie bracket [h2, [h1, h2]], the velocity of the passive particle is in the
e1-direction, according to (3.11). It follows that we may generate motion in any direction
independently for the active and the passive particle. Similar arguments can be made for
the case M = 2.

5. Errors due to finite amplitudes and separations

In the control strategies for compound moves and the general controllability theorems
of § 4, we used the far-field hydrodynamic flow field associated with a moving particle
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Figure 3. A schematic illustration of the four steps for moving one active and one passive particle from
arbitrary initial positions x◦, y◦ to arbitrary final positions x f , y f . Steps 1 and 2 are shown in panel (a), while
Steps 3 and 4 are shown in panel (b) with a change of reference frame.

and we used Lie brackets to generate the necessary directions of motion of the passive
particles in the asymptotic limit ε → 0. Since the displacement per cycle decreases as ε

decreases, it may be preferable in practice to use a relatively large value of ε. In this
section, we present numerical results for solutions of system (2.7), applying the first-
and second-order controls to achieve a fixed target angular or linear displacement of a
single passive particle with various values of ε. Numerical results for the zeroth-order
control are omitted because the strategies we propose do not rely on the leading-order
form of displacements due to this control. We characterize the error between the intended
exact (target) displacement and the numerically computed displacement with finite ε.
Numerical trajectories were obtained using the solve_ivp function with the RK45 ODE
solver from the SciPy Python library. Additionally, we characterize the differences in
displacements using the far-field approximation (2.7) compared with applying the same
controls to system (2.6), which includes the O(1/r3) potential dipole in the velocity field,
represented by the ∇2G term in (2.4). We intentionally consider an initial separation that
is only a few times the particle diameter and in the following two subsections, we show
that the leading-order expressions based on far-field hydrodynamics from § 3.1 give good
estimates for the particle displacements; we expect that errors would be reduced if particles
are further apart.

5.1. Angular displacements
To characterize the errors associated with finite ε when rotating a passive particle about
the active particle, we consider a target angular displacement of θ = π/6 about the z-axis
for a passive particle initially at position y◦ = (5, 0, 0)� and an active particle of radius
a = 1 at the origin. The target position for the passive particle is, accordingly, ytarget =
(5

√
3/2, 5/2, 0)�.

For a range of choices of integers N, we use (3.7) to define corresponding values
of ε such that each of N applications of the first-order control uε,[h1,h2]

�t is expected to
produce a rotation by the angle �θε = θ/N for the relevant values a = 1, r = 5. We then
numerically solve system (2.7) for N applications of the control, obtaining the final
position yε

num.
Equation (3.7) neglects terms of order ε3 from (3.5). Hence, we can expect that the

displacement generated with a finite value of ε deviates from the desired (leading-order)
motion. By symmetry, however, the velocity of the passive particle remains in the x–y plane
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Figure 4. Convergence of the passive particle displacement with N repeated applications of the first-order
control corresponding to [h1, h2] with control amplitude ε for a fixed target rotation by the angle π/6 about the
origin.

at all times, while the active particle moves in this plane. Hence, the exact displacement
(without truncation to finite order in ε) of the passive particle has zero component in
the z-direction. The two components of interest are the error in the angular (polar)
displacement, which in our case is

ηε
θ = 1

θ
arccos

(
yε

num

‖yε
num‖ · ytarget

‖ytarget‖

)
, (5.1)

and the radial error, which we define as

ηε
r =

∣∣‖yε
num‖ − r◦∣∣

r◦ . (5.2)

The convergence of these two components of error is shown in figure 4 (labelled
‘one-cycle polar’ and ‘one-cycle radial’ in the legend). Both components of error appear
to converge to zero with first-order rate of convergence with ε, which we could anticipate
since (3.7) neglects terms of order ε3 and the number of required iterations N scales as
1/ε2.

We can, however, improve the rate of convergence by modifying the first-order control.
The general first-order control (3.3) applied with any of the following (k, l) combinations
of indices – (1, 2), (−1, −2), (2, −1), (−2, 1) – all result in the same leading-order term
in the displacement (3.5), but the higher-order terms differ. Here, a negative index indicates
that we apply the control in the negative direction. As shown in figure 4, we find that
a strategy of alternating between the first two choices, which we refer to as a two-cycle
control, produces errors that decay quadratically with ε. A four-cycle strategy, in which
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Figure 5. A multi-cycle control corresponding to the first-order Lie bracket [h1, h2]. Initially, the active
particle is at x◦ = (0, 0, 0)� and the passive particle is at y◦ = (5, 0, 0)�. The panel on the right is a
magnification of the path of the passive particle. The two-cycle consists of portions 1 and 2, whereas the
four-cycle consists of portions 1 to 4, in sequence. The amplitude of the control is ε = 2.

we cycle through all four of the listed pairs of (k, l), results in radial errors that decay
cubically and polar errors that decay quadratically with ε. Note that values of ε as large as
1 can be used for rotations with errors of 10−3 or less. The paths of the active and passive
particles over one application of the four-cycle control are illustrated in figure 5.

When we include the potential dipole term in the flow field, we find that the radial error
is indistinguishable from the case without the potential dipole. In contrast, the polar error
does not converge to zero with the four-cycle strategy but it remains below 10−2 for ε < 1.

We assert that it is more important to reduce the radial error than it is to guarantee a
small polar error because we can easily adjust ε or the number of iterations to compensate
for errors in the angular component, whereas we require a different type of control to
correct for changes in radial distance. In particular, the second-order control could generate
a corrective radial displacement for one passive particle, but this may not be able to correct
the trajectories of two passive particles simultaneously.

Note that we considered particles that are initially close together, with ‖y◦ − x◦‖ = 5a.
This was chosen to illustrate that even when the far-field regime is not strictly observed,
the first-order control is an effective strategy for achieving circular motion of a passive
particle around an active one. Radial deviations are small and angular displacements are
well approximated by the leading-order expression given by (3.7). The analytical formula
could be modified to include the effect of the potential dipole if greater accuracy were
required.

5.2. Linear displacements
Errors for the second-order control are analysed similarly, using a target displacement
from y◦ = (5, 0, 0)� to ytarget = (5.1, 0, 0)�. For a given number N of applications of the
second-order control, we numerically determine the value of ε that would result in the
target displacement according to (3.11), noting that r in this equation changes with each
application of the control. The polar component of error is defined as

ηε
θ = arccos

( yε
num,1

‖yε
num‖

)
, (5.3)
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Figure 6. A multi-cycle control corresponding to the second-order Lie bracket [[h1, h2], −h2] =
[h2, [h1, h2]]. Initially, the active particle is at x◦ = (0, 0, 0)� and the passive particle is at y◦ = (5, 0, 0)�.
The panel on the right is a magnification of the path of the passive particle. The direction of travel along the
curves is indicated by arrows and the portions of the cycles correspond to applying the controls: (1a) uε,[h1,h2],
(1b) uε,−h2 , (2a) uε,[h1,−h2] and (2b) uε,h2 all with ε = 2.

and the radial component of error for this motion is

ηε
r =

∣∣∣yε
num,1 − ytarget,1

∣∣∣∣∣ytarget,1 − y◦
1

∣∣ = 10
∣∣yε

num,1 − ytarget,1
∣∣ . (5.4)

Following the description in § 3.1.3, the one-cycle second-order control is obtained by
applying the general pattern (3.3) with hk corresponding to the first-order control [h1, h2]
and hl = −h2. The two-cycle control alternates between this and the control with hk
corresponding to the first-order control [h1, −h2] and hl = h2. The motion of the two
particles generated by the two-cycle control is illustrated in figure 6.

As shown in figure 7, the errors in the radial (linear) direction are similar for the one-
and two-cycle controls over the range of ε considered, decaying approximately linearly
with ε. Polar errors decay quadratically with ε with the one-cycle strategy and quintically
for the two-cycle strategy. Both polar and radial errors are essentially unchanged when the
potential dipole terms are included, as shown in figure 7.

Since polar errors decay rapidly as ε decreases, we can readily achieve linear motion
of a passive particle using the second-order control. The errors in the radial direction,
which are larger in magnitude than those in the polar direction, can be corrected either
by considering higher-order terms in the analytic expression for the displacement or by
reducing ε, perhaps incrementally as the target position is approached.

6. Conclusions

In this paper, we have presented the motion planning problem for a system of one
active and M passive spherical particles immersed in a viscous fluid, in the far-field
approximation. We explicitly constructed elementary moves that, suitably concatenated,
resulted in strategies to achieve total controllability in the specific cases M = 1 and M = 2.
Moreover, the strategies we proposed ensure that the particles can maintain an arbitrary
minimum separation compatible with their initial and final configurations. The elementary

1004 A4-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1186


H. Shum, M. Zoppello, M. Astwood and M. Morandotti

10–1

10–3

10–5

10–7

10–9

10–11

10–1 100

217 215 213 211 29 27 25 23

N

E
rr

o
r

ε

One-cycle polar

One-cycle radial

Two-cycle polar

Two-cycle radial

Two-cycle polar with dipole

Two-cycle radial with dipole
O(ε)

O(ε2)

O(ε5)

Figure 7. Convergence of the passive particle displacement with N repeated applications of the second-order
control corresponding to [h2, [h1, h2]] with control amplitude ε for a fixed target displacement from y◦ =
(5, 0, 0)� to ytarget = (5.1, 0, 0)�.

and compound moves were expressed in terms of zeroth-, first- and second-order controls
characterized by an amplitude parameter ε, with asymptotic expressions valid in the limit
ε → 0. We showed that in this limit, the passive particle displacements resulting from
the zeroth-, first- and second-order controls correspond to the Stokeslet, rotlet and rotlet
dipole singularity solutions of Stokes flow, respectively. Higher-order singularities can be
generated by extension of the controls to higher orders.

Through numerical solutions of the equations of motion, we demonstrated that the
two key components of our motion planning strategy, namely, moving passive particles
in a circular orbit around an active one and translating a passive particle without a net
displacement of the active particle, could be achieved to a high accuracy even with ε ≈ 1
and with the particles as close as a few diameters apart.

This research contributes to the growing literature on ensembles of microparticles
subject to hydrodynamic interactions in low-Reynolds-number flows, including the
possibly chaotic behaviour of sedimenting particles (Hocking 1964; Jánosi et al. 1997),
mixing and transport in suspensions of microswimmers (Katija & Dabiri 2009; Lauga &
Powers 2009; Pushkin, Shum & Yeomans 2013), idealized models of swimmers such as
Purcell’s scallop or three-link swimmers (Purcell 1977) and three linked spheres (Najafi &
Golestanian 2004). Mathematical treatments of control of model swimmers started with
the seminal paper by Shapere & Wilczek (1989) and have since been applied in many
contexts (Alouges, DeSimone & Lefebvre 2008; Chambrion & Munnier 2012; Dal Maso
et al. 2015; Chambrion, Giraldi & Munnier 2019; Lohéac & Takahashi 2020; Zoppello,
Morandotti & Bloomfield-Gadêlha 2022; Attanasi, Zoppello & Napoli 2024).

The present contribution sets the basis for further investigations from multiple
viewpoints. Six areas of future research that could be of interest to the mathematical,
physical and engineering communities are as follows.
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(1) Using periodic controls for the active particles to produce flow fields that act as
hydrodynamic traps (Lutz, Chen & Schwartz 2006; Chamolly, Lauga & Tottori
2020). Rather than moving a passive particle from one specific location to another,
we may want to attract all nearby particles to a target and hold them there, possibly
against other effects such as a background flow or gravity.

(2) Considering cases in which we have N active particles and M passive ones, with both
N and M large. Generalizing the formulation (2.8) to arbitrary numbers of active and
passive particles is relatively straightforward but the task of effectively controlling M
passive particles with a minimal number of active particles is challenging. It could
also be of interest to investigate whether partial controllability results can be proved
for an even lower number of controllers. We stress that, even in the case N = 1 and
M = 3, the strategies proposed in our proofs would have to be substantially modified,
since the presence of a third passive particle disrupts the symmetry that has been
exploited in some of the moves. For example, the strategy used in Proposition 3.6
(translating a group of equidistant collinear particles) does not work even if the
particles are not all required to be collinear, because we cannot guarantee that the
symmetry is preserved for the third passive particle.

(3) Manipulating particles in bounded domains. As proved by, e.g. Alouges &
Giraldi (2013), Buzhardt et al. (2018a), the presence of boundaries can enhance
controllability. Confining walls are especially relevant to microfluidic systems so
studying such domains is a natural extension.

(4) Accounting for near-field interactions. One limitation of our setting is the far-field
approximation that we use to simplify the equations. In real-world systems,
especially spatially confined ones with many particles, it may be necessary to
accurately account for the mutual influence of particles that are close to one another,
in which case the mobility tensor of each particle depends on the positions of all
(nearby) particles in the system.

(5) Mixing fluids at low Reynolds number. This is known to be challenging in
microfluidic devices (Ward & Fan 2015); one proposed technique involves
using magnetic particles in rotating magnetic fields (Munaz et al. 2017), which
corresponds to our model of actively actuated particles but with applied torques
and rotations of the active particles playing significant roles.

(6) Accounting for stochastic terms (i.e. Brownian motion) in the dynamics of the
passive particles (Graham 2018). In the current work, we assumed that particles were
large enough that Brownian motion could be neglected, but this may not be valid if
the particles are small (more precisely, when the Péclet number is small). Including
random diffusion effects would be particularly interesting when the number of
passive particles is very large (ideally, diverging to infinity), to the point that a
description in terms of the distribution of particles would be preferable. In this
context, it is customary to study the partial differential equation (PDE) arising for the
limiting distribution, which, in this context, is expected to be a Fokker–Planck-type
equation featuring a transport term coming from the action of the active particles,
with the diffusion term resulting from the Brownian motion. While this is a very
promising and fertile research field, it is beyond the scope of the present paper.
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