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1. This note is concerned with an inequality for even order positive definite hermitian
matrices together with an application to vector spaces.

The abbreviations p.d. and p.s-d. are used for positive definite and positive semi-definite
respectively. An asterisk denotes the conjugate transpose of a matrix.

THEOREM 1. Let

A = VA1 B~[ (l.i)
IB* A2\

be an hermitian matrix of even order, partitioned in such a way that A x , A 2 and B are all nxn
matrices. If A is p.d. or p.s-d. then

| detB |2 = detBdetB* < de t^de t^ (1.2)

and equality occurs if and only if either (i) A is p.s-d., det A1 > 0, det A2 > 0 and A2 = B*A{'B
or (ii) det A1 det A2 = 0.
This result leads to

THEOBEM 2. Let V be a vector space over the field of complex numbers and denote by (,)
an inner product defined on V. Iffi,fit ••• , / „ and glt g2, ... ,gn all belong to V, then\

I det [(/„ gs)] |« < det [(/„/,)] det [(gr, g,)] (1 < r, s < n) (1.3)

A sufficient, but not necessary, condition for this inequality to be strict is that the setfvfv ... , / „ ,
glt g2, ••• ,gn should be linearly independent.

2. To prove Theorem 1 we use the fact that if an hermitian matrix A is p.d. or p.s-d.
and T is any non-singular matrix (of suitable order), then T*AT is p.d. or p.s-d. respectively.
Also if the hermitian matrix Ax is p.d. then the hermitian matrix A^1 is p.d.

The following inequality for n x n (n > 1) hermitian matrices is required [1, 420].

det {A +B) ^ det .4 +det.B (2.1)

provided that A and B are p.d. or p.s-d. If A is p.d., there is equality in (2.1) if and only if
B is the null matrix.

3. The case of Theorem 1 when n = 1 can be dismissed since the results follow at once
from the definition of p.d. or p.s-d. hermitian matrices.

The proof of Theorem 1 when n > 1J follows from an idea in the book by Mirsky [see 1,
426, example 37]. We assume throughout this section that

d e t 4 r > 0 (r = 1, 2) (3.1)

i.e. that both At and A2 are p.d.
Define the matrix T by

T = VIn -A?B~\ , In = [SrJ (1 < r, « < n).
Lo /. J

t The factors on the right-hand side of (1.3) are real valued and non-negative. Cf. § 6.
t With this restriction (2.1) can be applied where necessary.
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Clearly det T = 1, and it is at once verified that

T*AT = VAX 0 1 (3.2)0 1
-B*A^BJ

From this it follows that if A is p.d. or p.s-d. then A2-B*A{1B is p.d. or p.s-d. respectively.
Also B*A{1B is p.d. or p.s-d. according to whether B is non-singular or otherwise.

Writing
A2 = A2-B*AilB+B*Ai1B,

we now have, from (2.1),

det A2^ det (A2-B*Ai1B)+det B*Ai1B; (3.3)

hence det^2 > det B+A^B, (3.4)

i.e. det idet-B* < det ^ det .42 (3.5)

If now A is p.d., then A2 -B*A^1B is p.d. and, whether B is singular or otherwise, there
is strict inequality in (3.4) and hence in (3.5).

If on the other hand A is p.s-d. and B is singular)" then, from (3.1) there is strict inequality
in (3.5). Alternatively, if 4̂ is p.s-d. and B is non-singular, then B*A±1B is p.d. and, from
(2.1), there is equality in (3.3) and hence in (3.5), if and only if A2 -B*A^1B is the null matrix.

4. Contrary to (3.1), we suppose in this section that

= 0 (4.1)
Define the matrix A' by

A' B A +?Itn (ix > 0).

Clearly A' is p.d., so that (3.5) holds for this matrix. Letting y. ->• 0, we obtain

det B = 0,

so that there is equality in (1.2) if (4.1) holds. This completes the proof of Theorem 1.

5. It seems worth mentioning that a sharper result than (1.2) holds.J If (3.1) is
satisfied, then, from (3.2), we have

det A = det Ax det (A2 -B*A{1B),

and using (3.3) we obtain the inequality

det^. + | d e t £ | 2 < d e t A1detA2 (5.1)

It is clear that this result also holds when (4.1) is satisfied.
If n = 1, equality always holds in (5.1). Suppose then that n > 1. If 4̂ is p.s-d., then

(5.1) reduces to (1.2), and the same conditions for equality hold. If A is p.d., then
A2 -B*A{1B is p.d., from (3.2), and there is equality in (5.1) if and only if there is equality
in (3.3), i.e. if and only if B*A^B is null; that is, if and only if B is null.

t With (3.1) satisfied this case is impossible for n = 1 but can occur if n > 1.
| The author is greatly indebted to a referee for this section and several other constructive comments.
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6. To prove Theorem 2 we notice that if fltf%, ... , /„ all belong to the vector space V,
and if ocr (1 < r < n) are n arbitrary complex numbers, then

, = ( r «,/„ E a s / s ) > 0 (6.1)E E (
r - l « = 1

by the well known properties of the inner product. Moreover there is equality in (6.1),
for a non-trivial set {<xr}, if and only if EarfT = 0, i.e. if and only if the set {/r} is linearly
dependent.

Clearly then the hermitian matrix [(/r,/s)] (1 < r, s < n) is either p.d. or p.s-d. accord-
ing as to whether the set {/r} is linearly independent or not.

With the hypothesis of Theorem 2 define the augmented set {Fr; 1 < r < 2n} by

Fr = / „ Fr+n = gr (1 < r < n).

The matrix [(Fr, Fs)] (1 < r, s < 2n) then clearly satisfies all the conditions of Theorem 1,
and (1.3) now follows by application of (1.2) to this matrix. If the set {Fr} is linearly
independent it also follows that there is strict inequality in (1.3).

7. I t seems difficult to find a straightforward condition on t h e / r and gr of Theorem 2
which is both necessary and sufficient for strict inequality. That the condition given is not
necessary, for vector spaces of both finite and infinite dimensions, is discussed in the following
examples.

(a) Let V be the Hilbert space of L2 functions over a measurable linear set E with the
usual inner product.f For example, let n = 2 with E = [0, 1] and

fi(x) = 1, fs(z) = x, g^x) = 1, g2(x) = a;2.

It may then be verified that strict inequality holds in (1.3), and yet the augmented set {Fr}
is clearly linearly dependent over E.

(b) Let V be a finite dimensional vector space of dimension d. I t can be verified that the
following results hold : (i) If n > d, both sides of (1.3) are zero, (ii) If n = d, then, whether
the sets {/r} and {gr} are linearly dependent or not, there is equality in (1.3). (iii) If n < d,
it is possible to have the augmented set {Fr} linearly dependent and obtain strict inequality
in (1.3). For example, if n = 2 and d = 3, put fx = (1, 0, 0), f2 = (0,1, 0), gx = (1, 0, 0)
and g2 = (0, 0, 1).

t In this case the inequality (1.3) is an extension of the Cauchy inequality for integrals.
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