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ABSTRACT. The length of time T M over which a glacier 
responds to a prior change in climate is investigated with 
reference to the linearized theory of kinematic waves and to 
results from numerical models. We show the following: T M 

may in general be estimated by a volume time-scale 
describing the time required for a step change in mass 
balance to supply the volume difference between the initial 
and final steady states. The factor 1 in the classical estimate 
of T M = Ill u, where I is glacier length and u is terminus 
velocity, has a simple geometrical interpretation . It is the 
ratio of thickness change averaged over the full length I to 
the change at the terminus. Although both u and 1 relate to 
dynamic processes local to the terminus zone, the ratio I l u 
and, therefore , T M are insensitive to details of the terminus 
dynamics , in contrast to conclusions derived from some 
simplified kinematic wave models. A more robust estimate 
of T M independent of terminus dynamics is given by T M = 

hl (-b) where h is a thickness scale for the glacier and -b is 
the mass-balance rate (negative) at the terminus. We 
suggest that T M for mountain glaciers can be substantially 
less than the 10 2-103 years commonly considered to be 
theoretically expected. 

I. INTRODUCTION 

Glaciers advance and retreat in response to changes in 
mass balance induced by climate . Thus the reconstruction of 
past varIatIOns of glaciers from geological evidence or 
historical observations is an important tool for deductions 
about past climate, and indeed the major climate variations 
identified in the past have been named in terms of ice 
extent as "Ice Ages", "Neoglaciation", and "The Little Ice 
Age" (Porter and Denton, 1967; Flint, 1971; Lamb, 1977). 
Similarly, current trends of advance and retreat and the 
potential for future changes are of interest with regard to 
engineering activities locally near the margins of present 
glaciers (Untersteiner and Nye, 1968; Fisher and Jones, 
1971; Bindschadler, 1980; Reeh , 1983) and on a global scale 
with regard to changes in sea-level (Meier, 1984). 

The quantitative relationship between the histories of 
glacier terminI fluctuations and climate change is 
complicated by a time lag between climate change and 
glacier response. The time lag occurs because a climate 
signal appears as a mass-balance perturbation over the full 
length of a glacier. Information about it is transmitted 
down-glacier to the terminus at finite velocities over a 
range of distances from head to terminus and, therefore, 
arrives at the terminus spread out in time. Consequently, 
the position of a glacier terminus represents a weighted 
average over past climate extending back over a time 
interval sufficiently long that there is no memory of prior 
climate. This paper is about the length of the memory , 
which we denote by T M and define to be the time constant 
in an exponential asymptotic approach to a final steady 
state after a sudden change in climate to a new constant 
climate. The size of T M is important with regard to both 
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interpretation of glacier fluctuations in terms of climate and 
prediction of future changes in glacier areas. 

Observational information has not clearly established 
typical sizes for T M . During the first part of this century 
most glaciers experienced prolonged retreats. Syntheses of 
data by Porter (1986) and Reynaud (1978, 1983) indicate 
that between 1950 and 1970 many of these glaciers 
experienced nearly synchronous reversals of their retreats. 
This observation implies that each glacier is dominated by 
short-term climate effects, perhaps on the order of a few 
decades. This view has been expressed by Lliboutry (1971) 
and J6hannesson (1986) . 

A number of computer-based numerical models are 
now capable of predicting the time-dependent response of a 
glacier to an imposed history of mass balance (e.g. Budd 
and Jenssen, 1975; Mahaffy, 1976; Bindschadler, 1982; 
Waddington, unpublished). Because all essential physics can 
in principle be incorporated in such models, they have the 
potential for accurate prediction and are important 
computational tools for specific applications. 

On the other hand, the broad understanding of glacier 
response and simple semi-quantitative methods for estimating 
T M has depended primarily on the analytical theory built up 
by Nye (1960, 1963a, b, 1965a, b) and reviewed by 
Lliboutry (1971), Paterson (1981), and Hutter (1983). This 
theory is based on a linearized treatment of ice motion and 
describes the adjustment of glaciers to changes in mass 
balance in terms of propagation and diffusion of kinematic 
waves. In simplest terms, this theory predicts that T M is 
related to the glacier length I and the terminus velocity u(l) 
by 

T M - Ill u(l) ( la) 

where the factor 1 is commonly assumed to be about ~ 
(Paterson, 1981, p. 258). For typical glaciers (I - 1-20 km, 
u(l) - 1-10 m a-I), TM is then predicted to be on the order 
of 102-103 years. This is the theoretical, long time-scale 
commonly thought · to be representative of typical glaciers 
(Paterson, 1981), but it appears to be longer than available 
observations would indicate. 

J6hannesson and others (1989) have used a simple 
argument to find 

T M - h/ [-b(l)] (I b) 

where h is the thickness scale for the glacier and b(l) is the 
balance rate (negative) at the terminus. For typical glaciers 
(h - 100-500 m, -b(l) - 1-IOma-1), TM is predicted to be 
on the order of 101-102 years. This calls into question the 
theoretical long time-scale, and appears to be more 
consistent with observation. 

Both of these estimates for T M are consistent with the 
notion that T M = TV' where Tv is a volume time-scale that 
gives the time needed for a changed mass balance to 
produce the volume change between the corresponding initial 
and final steady states. The two estimates for T M differ in 
how the volume change is estimated . 

In this paper our goals are as follows. We use results 
from linearized kinematic wave theory and time-dependent 
numerical models to show that T M = Tv can be regarded as 
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generally applicable with the consequence that T M may be 
estimated from continuity considerations applied to steady
state profiles without recourse to time-dependent 
calculations. We review the linearized kinematic wave theory 
to find a simple geometrical interpretation of the factor / 
in Equation (I a). The determination of T M from Equation 
(la) appears to be sensitive to details of ice dynamics at 
the terminus, because this equation includes terminus 
velocity. Equation (la) will give valid results only when 
proper attention is given to the factor /; we show / itself 
depends on details at the terminus. We provide a broader 
derivation and justification for the estimate of T M given by 
J6hannesson and others (1989) expressed in Equation (I b) to 
show that it is free of details of the terminus motion and 
provides a theoretically more robust and simpler estimate of 
T M than does Equation (la). 

II. BACKGROUND 

In Nature, the evolution of a glacier occurs as its 
upper surface is displaced by the combined effects of ice 
motion and surface mass exchange.' As a computational 
problem, one must solve conservation equations of mass, 
momentum, and energy in the volume of the glacier, 
subject to boundary conditions describing the transports to 
the external surfaces, and constitutive statements describing 
the mechanical and thermal behavior of the glacier material. 
The problem in its full potential complexity has many 
ramifications, some of which have been discussed by Fowler 
and Larson (1980) and Hutter (1983). 

We will assume a temperate valley glacier with 
atmospheric pressure on its upper surface, a time-
independent ice-flow law, and a specified sliding 
distribution. Because of these assumptions, energy 
conservation need not be considered to calculate the ice 
motion. These assumptions eliminate many potentially 
realistic behaviors of glaciers such as could occur as a result 
of changes in temperature, of changes in water conditions 
in the ice or at the bed, of changes in the ice structure 
induced by strain, or of changes in bed structure by 
erosional or depositional processes. Any of these could 
affect the ice dynamics through the ice flow or basal slip 
laws, and it is well known that some of these processes can 
cause variations unrelated to mass-balance changes, for 
example, spectacular glacier surges. 

Let x represent distance along the glacier running from 
zero at the head to I(t) at the terminus (Fig. I). A suitable 
description of the geometry of a valley glacier is provided 
by the distributions along the valley length of bed elevation 
Yb(x), ice thickness h(x,t) and width of the ice surface 
depending on ice thickness w(x,h). The thickness hand 
length I may change with time t. From these quantities, one 
may derive the tangent of the bed slope Sex) = -dYb(x) / dx 
and the tangent of the surface slope 

y 

/atmosPheriC pressure 

~------------------------------~--------~ x 
o .£ ( t) 

Fig. 1. De/inition 0/ geometrical parameters and boundary 
conditions in longitudillal and trails verse cross-sectiolls. 
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ah(x,t) 
a(x,t) = Sex) - ---a;-. (2) 

The balance rate in terms of ice volume per unit area and 
time is described by b(x,t) and represents an average over 
the glacier width. 

With these notations the flow may be described by the 
ice volume-flux distribution Q(x,1) subject to a one
dimensional continuity'equation 

I aQ ah 
--+ -
wax at 

b (3) 

and a flux-geometry relationship 

Q = Q(geometry). (4a) 

Equation (3) describes mass conservation integrated over the 
area of cross-sections assuming a unique density for ice 
(Paterson, 1981). 

Equation (4a) must be evaluated to approximate 
momentum conservation subject to atmospheric pressure on 
the upper surface, the specified sliding distribution at the 
bed, and the ice-flow law. For small slopes (a « I), 
constant density p, and no sliding, it is standard to take 

Q(h,a) 
(4b) q -

IV 

where K = 2A(pg)n/ (1/ + 2), r = n, s = Il + 2 depend on Il 

and A of the flow law t = ATn. This often-used equation 
exactly satisfies momentum conservation and boundary 
conditions for a parallel-sided slab. Effects of lateral 
variations associated with real cross-sections of a valley can 
be taken into account by introducing shape factors, which 
affect the values of K and the power of h (Nye, 1965c; 
Bindschadler, 1982; Echelmeyer, unpublished). To account 
for longitudinal vanatlOns requires a more complete 
description of the geometry than is afforded by the local 
thickness and slope. Such a description would involve higher 
longitudinal derivatives such as aa/ax, etc. (Hutter, 1983), 
longitudinal averaging (Kamb and Echelmeyer, 1986), or 
explicit calculation of momentum conservation using the 
complete longitudinal profile (Budd and Jenssen, 1975; 
Langdon and Raymond, 1978; Hutter, 1983). In this paper 
we shall not be concerned with the potential failings of 
Equation (4b), but rather with what can be properly 
concluded from it assuming it is valid. However, we will 
argue that errors in Equation (4b) will not significantly 
affect our conclusions about memory length T M . 

Ill. MEMORY LENGTH IN RELATION TO LINEARIZED 
THEORY 

Linearized equations 
Nye (1960, 1963a, b) formulated Equations (3) and (4) 

assuming small changes from a datum state. This enabled 
him to linearize the equations and to analyze several simple 
model glaciers. The procedures and some of the results have 
been nicely summarized by Paterson (1981, chapter 12) and 
extended by L1iboutry (1971) and Hutter (1983, chapter 6). 

Following these authors, the linearized equations are set 
down as follows. A datum glacier described by 10 , ho(x), 
Qo(x), and associated quantIties wo(x) = w(x,ho) and 
ao(x) = Sex) - dho(x) / dx is set up, so that it is in steady 
state with a balance-rate distribution bo(x); in other words, 
these quantities satisfy Equations (3) and (4) without time 
derivatives. Small deviations from this datum condition are 
described by 11(1), hl(x,t), Q/x,t), wl(x,t) = hI [aw/ ah] 0 and 
al(x) = -ahl(x) / dx. To first order in the changes, Equations 
(4) become 

(5) 

where 

(6a) 
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I [aQ ] rQo 
D (x) == - - = -- = ru h / Uo o w aa wa 00 

o 0 0 0 

(6b) 

when Q and a are eliminated using Equations (2), (5), and 
(6). To find Equation (7), it is also necessary to assume 
that width \V is independent of x and h. Also , the specific 
flux relationship Equation (4b) used to evaluate change of 
flux with h and a on the far right of Equations (6) 
neglects effects from the valley cross-section. While 
important effects come from changes in width with 
thickness and along the glacier length, these are not 
essential to the considerations developed here and are 
omitted for simplicity. In this case u defined above is the 
mean velocity over depth. (More generally it would be 
proportional to the mean velocity in a cross-section.) 

Special considerations must apply near the terminus. If 
ice cliffs and calving termini are excluded, hand q both go 
to zero. However, at the terminus of a temperate glacier u 
does not generally go to zero. Nye (1963a) argued that near 
a terminus u must become independent of h, so that 
Q/ w = uh. In effect this is sliding motion of a rigid wedge 
shoved from behind. It implies 

I [aQ ] - - ~ u (x) 
w aa 0 

o 0 

for x ~ 10 . (8a) 

Similarly, slope a cannot affect Q where h goes to zero, 
and consequently 

I [aQ
] D (x) = - - - 0 

o \Vo aa 
o 

for x - 10 . (8b) 

The arguments leading to Equations (8a) and (8b) are 
crucial to the development in the next sections. From 
Equations (5) and (8), it is predicted that 

(9) 

Change in length and volume caused by a step change in 
climate 

If there is a step change in balance rate from bo(x) to 
bo(x) + bl(x), eventually a new steady state is reached. We 
are especially interested in the volume change because, as 
we shall see, it is intimately related to the time-scale 
needed to complete the length change. We shall utilize 
features of the new steady state that can be found from 
continuity considerations applied to the original datum 
length 10 of the glacier. In the following we will frequently 
be concerned with averages over the length x = 0 to 
x = 10 and these will be denoted by < >. 

In the final steady state the flux past the original 
terminus position x = 10 must be 

10 

J b1(x)dx = 10 <b1 > 
o 

(10) 

(For discussion purposes, we will think of <b1> and ql(lO) 
to be positive.) The change in thickness hI at the original 
terminus position 10 must reach a value sufficient to 
transport the new steady-state flux. Then Equations (9) and 
(10) predict 

(11 ) 

which is equivalent to Nye (l963a, equation 11). We shall 

return to this equation frequently. Note that it predicts hI 
at 10 is affected by the flow dynamics only through uo(lo)' 
i.e. the original sliding velocity at the original terminus. 
This result is forced by the linearization and the arguments 
leading to Equations (8). The change in length is also easily 
calculated, since the ablation in the area between 10 and 
10 + /1 must melt the flux past 10 given by Equation (10) . 
This gives 

<b1> 
---I 

bo(lo) 0 

to first order in the changes (Nye, 1960, equation 40). 

(12) 

To calculate the change in volume, the distribution of 
thickness change over the full length of the glacier must be 
known. For the purpose of discussion we describe the 
essential aspects by 

This defines a time-dependent factor f 
average thickness change in proportion 
change at the original terminus. Later we 
I - "" this factor becomes the factor 
Equation (I a). 

(13) 

which gives the 
to the thickness 
will show that as 
f appearing in 

In Equation (13), f cannot be determined from 
continuity alone, but dynamics are required . In the 
linearized theory, it is necessary to solve Equation (7) 
employing the full distributions of Co' Do. and b1 along the 
length of the glacier, and we may think of f as a 
functional of Co. Do. and b l . In these terms the volume 
change per unit width above the original terminus is 

(l4a) 

or by substitution of Equation (11) 

(14b) 

To first order, VIis also the change in total volume. 

Kinematic waves and natural time-scales 
Equation (7) describes the combined propagation and 

diffusion of thickness changes (Nye, 1963a). We may 
identify two relevant time-scales: 

10 10 
TC --

<Co > s· <uo> ' 
(15a) 

12 
0 10 

TD = 

T/
2<Do > T/2r' <uo> 

(l5b) 

These represent approximately the respective times to 
propagate or diffuse a disturbance over the full length of 
the glacier. The expressions on the far right relate these 
times to the time required for ice to traverse the length of 
the glacier at the speed <uo >. In Equation (15a) the 
parameter s' must be given by s· = <Co >/ <uo >. which 
from Equation (6a) would be evaluated approximately as 

s' (l6a) 

In Equation (15b) the parameter r' must be given by r' 
<Do >/(la <uo », which from Equati on (6b) would be crudely 
expressed as 

" 
<Do > 

---'" 
10 <uo > 

<ha > <ho > 
3---"'3--

lo <ao> Llys 
(l6b) 

where Llys is the elevation difference between the head and 
the terminus. For low bed slopes <ho > - Llys and r' - 3. 
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In this case Te and TD are approximately equal to 1/ 5 and 
1/ 30 of the transit time for the ice, respectively. For high 
bed slopes T e has the same evaluation, but T D becomes 
longer. 

A third time-scale related to the source term b1(x,l) 
may be defined with a reference to a step change in 
balance rate from bo(x) to bo + b1(x,t) . An obvious choice 
is <h1(x, "'P/ <b1(x) >, which when combined with Equation 
(14a) gives 

<h1(x,"') > 
<b1 (x) > (17a) 

T v is therefore the ratio of the ultimate volume change 
V ("') to the total rate of volume addition by the new 
bilance rate acting over the full original length 10 of the 
glacier. We refer to it as the volume time-scale, since it 
describes the time required to accumulate the new 
steady-state volume by the changed mass balance neglecting 
any ice flow past the original terminus. Note that T y can 
be evaluated from Equation (l7a) without regard to any 
linearization assumptions. Equations (l7a) and (l4b) and the 
linearization expressed in Equation (11) give T y as 

(17b) 

It shows T y is scaled to the time needed for ice to traverse 
the complete glacier length, if it were to move the complete 
distance at the speed of the terminus. This is much longer 
than the time scaling of T e and T D which is based on the 
average speed (Equations (15)). If f is similar to 1/ s ' 
and/ or 1/ (112

,), then it appears 

(18) 

It is also clear that the time-scale T M for the glacier to 
reach a final steady state cannot be shorter than T y (i.e. 
T y :;; T M). In this simple way we can understand the 
appearance of distinct short and long time-scales described 
by Nye (1963a). 

Approximate long time-scale response of a glacier terminus 
An approximate time-scale for complete adjustment of 

a glacier terminus can be derived based on the supposition 
that perturbations in ice thickness are spread out rather 
quickly over the glacier length by propagation and diffusion 
in comparison to the full adjustment time-scale, as 
suggested by Equation (18). An order-of -magnitude analysis 
of Equation (7) using Equation (18) shows that, after a step 
change in mass balance, the shape of the thickness profile 
h1(x,t) is essentially constant for times 1 greater than T e . or 
TD of Equations (15). Therefore, we make the tentat~ve 
hypothesis that f(l) '" f("') in Equation (13). Note EquatIOn 
(7) shows that for t = 0, Bh1(x,t)/ Bt = b1(x,I). Therefore, as 
1 .... 0, f{t) .... b1(l0)/ <b1 >. which for uniform b1 implies 
f(O) = I. Later we expect f(l) to decrease, and only after 
some elapsed time (I > T e or T D) can f(l) '" f("') be true. 
Therefore, the following analysis is restricted to the late 
phase of the adjustment. 

The total rate of volume change above the terminus 
can be calculated from the total extra accumulation rate 
<b1(x) >/0 minus the extra ice flux q1(l0,t) past 10 as given 
by Equation (9). Together with Equation (14a) and the 
assumption f(l) = f("') , this gives 

The solution in terms of h1(l0,t) is 

(20) 
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where T y is defined as in Equation (17b). Therefore h1(l0,t) 
and the corresponding change in glacier length 11(/) 
approach their asymptotic steady-state values (Equation (11)) 
with an exponential time constant Tv (Equation (17)) . In 
this simple way, one may expect T y to correspond to the 
memory length T M' so 

(21 ) 

Together, Equations (l7b) and (21) imply Equation (la), 
when f in Equation (I a) is identified with f("') appearing in 
Equation (l7b). From Equation (13), f("') = <h1(x,"') > 
/ h1(l0''''). We therefore discover that the factor f in 
Equation (la) has a simple geometrical interpretation as the 
ratio of thickness change averaged over the full length of 
the glacier to the change at the terminus. This is an 
important observation as we will see in the following 
sections. 

Discussion 
Paterson (1981, p.257 and 258) showed that a simple 

theoretical linear model of glacier adjustment developed by 
Nye (I963a) had the property that response time (here 
referred to as T M) was the time required for the volume 
change (here referred to as T v). Similarly, response times 
obtained from kinematic wave theory applied to real glacier 
profiles (Nye, 1963a, b, 1965a; Reeh , 1983) have this 
property. Although these authors do not state it explicitly, it 
may be inferred by examining their figures and tables. The 
foregoing analysis explains these results in a simple way. We 
may expect that within the linearized kinematic wave theory 
Equation (21) is generally valid, of course subject to the 
validity of the underlying assumption about shape similarity 
of elevation-change profiles described by f(l) = f("') for T e 
or T D < 1 < "'. This assumption will be tested. in sectio.n 
IV where we will also examine whether EquatIon (21) IS 

vaiid for large climate changes requiring a fully non-linear 
model. 

[n this section we have not been concerned with the 
actual values of f(I), which will depend on the particular 
distributions of Co' Do' and b1 within the linearized theory, 
or on other dynamic parameters in more complex non-linear 
models. This question will be considered in subsequent 
sections . However, we point out here that the results from 
the linearized theory for adjustment time coming from 
Equations (15), (17), and (21), and encapsulated in Equation 
(la) require very explicit, detailed treatment of the terminus 
dynamics; u(lo) must be known and f certainly must also be 
sensitive to the details . This is unfortunate, since there is 
little glaciological understanding of terminus dynamics. 
Furthermore, it seems intuitively unnecessary; it seems 
unrealistic that terminus sliding velocity should have such 
strong direct influence on the response time of a glacier. 
We might anticipate that, although u(lo) and fare 
individually sensitive to terminus dynamics , in combination 
in Equation (I a) they are not . This idea has not been 
previously enunciated , and we shall return to it. 

IV. TIME-DEPENDENT NUMERICAL ANALYSIS OF A 
MODEL GLACIER 

In section Ill , we introduced the following concepts: a 
surface-elevation change profile factor f (Equation (13)) that 
relates elevation change at the terminus h1(l0,t) to the total 
volume change above the terminus V1(1) (Equation (I4a)); 
similarity of elevation-change profile shapes (f( I) = f("') for 
1 large enough); a volume time-scale T y (Equation (17a)) , 
and the relationship of memory length T M to T y (Equation 
(21 )). When these are introduced into the linearized theory, 
one finds Equations (I4b), (I7b), and (la). However, these 
are general concepts that can be discussed without regard to 
the linearized theory. In this section we examine their 
broader validity in the context of both a fully non-linear 
glacier-flow model and a linearization of it corresponding to 
the kinematic wave theory . We focus on two crucial 
questions: (i) f(l) !j, f("') , (ii) T M !j, T y . 

Description of the model 
The model consists of Equations (3) and (4) with s = 3 

and r = 5. The width w is assumed to be independent of x 
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and h. In Equation (4b), ex is calculated from Equation (2). 
In order to introduce a small amount of sliding at the 
terminus 10, Equation (4b) is modified by addition of a 
second right-hand side term to become 

q(x,h,ex) K [£3 - ah]3 h5 + Eg(x)h, g(x) 
ax 

(22) 

Note that g(lo) = I and g(x) decreases monotonically to zero 
up-glacier from the terminus . Equation (22) and the first 
part of Equation (6a) indicate that uo(lo) = Co(lo) = E, 

which is consistent with Equation (8a). Since E = uo(lo) is 
small in comparison to the velocity in the interior of the 
glacier and g(x) approaches 0 near the glacier head, the 
extra term on the right will be negligible except close to 
the terminus . Throughout this paper, we will call this model 
the E model. 

The basal topography is chosen to be an inclined plane 
with slope t3 (Fig . 2) and the datum mass balance is chosen 

y 

x 
o 1 
Fig. 2. Geometry of model glacier. 

bo(x) = a (constant) for 0 < x < 10/ 2 and bo(x) = -a 
(constant) for 10/ 2 < x. We assume that the head of the 
glacier is a flow divide where ice thickness is non-zero. 
(For £3 = 0, this model may also be interpreted as a model 
of a two-dimensional symmetric ice sheet on a flat bed.) 
The side conditions consist of an initial condition specifying 
h(x,t = 0) , the boundary condition q(x = 0,1) = 0, and a 
moving boundary condition at the time-dependent position 
I(l) of the terminus: h(l(l),l) = 0 , dl / dt = [(aq/ ax - b)/ 
(ah / ax )lx = ~. 

By introducing a length scale 10, a thickness scale H = 

(a / K)I /81~/ 2, and a time-scale T = H / a, Equations (3) and 
(22) , in non-dimensional form, become 

ah aq 
- + b, 
al ax 

(23a) 

q(x ,h,ex) = [£3 - ahf h5 

ax 
+ Exh. (23b) 

The steady-state thickness in the interior of the glacier is 
of the order of I and the maximum flux is ~. An order
of-magnitude estimate of the ratio of the velocity at the 
terminus to the maximum velocity in the interior for real 
glaciers is uo(lO)/ uOmax - 1/ 10 (Nye, 1963a). The 
corresponding value of E is E = uo(lo) = eo(lo) = 0.05 for 
the model glacier considered here. 

Equations (23) were solved numerically for E = 0.05 , 
0.1, and 0.2 with the finite-difference model described by 
Waddington (unpublished) and with a numerical model based 

on the control-volume concept (Patankar, 1980). In this 
section we will concentrate on the results for E = 0.2 , 
because they are easier to display graphically. Our 
conclusions apply equally well to the lower values of E . The 
effect from variation of E is examined in more detail in 
the next section . 

Initial growth to steady state 
In order to investigate perturbations from a steady state 

and the associated adjustment time, the steady state itself 
must be found. Figure 3 shows growth of the model glacier 

1.5 
I 

;;= 
x 

1.0 ::c 

~0'51 •• ~~ ~ 
i= 0.0 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 
DISTANCE Ix/lol 

Fig. 3. Growth of model glacier ( EqUal ions ( 23}) from 
near-zero mass to near-steady-state at t = 4.0 for the 
steady mass-balance distribution of bo = 1.0 for 
x / lo < 0.5 and bo = -1 .0 for x / lo > 0.5 . Model 
parameter E = 0.2 . Curves are spaced in time by 0.1 time 
units. Dashed curve shows final steady state at t = co. 

on a flat bed (£3 = 0) from near-zero ice thickness towards 
steady state. The time-scale to grow to steady state is 
shown in Figure 4, where the volume of the glacier, 

I 
V(t) f h(x,l)dx 

o 

is shown as a function of time. For comparison, an 
exponential approach with time-scale T = I is shown. It is 
clear that the growth time-scale is close to I time unit 
(=H/ a). 

I . OI-------------=;;;:::;;_;:::;-;::;:::;::;;;::::;;;;-~ 
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Fig . 4 . Time variation of volume of model glacier growing 
to steady state ( Fig . 3) . Solid curve V( t} / V("'}. Dashed 
curve [I - exp( t/ T} ) with T = 1.0 time unit ( H/ a) . 

Growth after a mass-balance perturbation 
Starting with the steady-state profile ho(x) in Figure 3, 

a mass-balance perturbation bl = 0.0 I was added at t = O. 
Figure 5 shows the thickness perturbation hl(x,t) = 

h(x,t) - ho(x) at times t = 0, 0.2, 0.4, ". time units. After 
t '" 0.4, the shapes of the profiles hl(x,t) are similar to the 
shape of hl(x,"'), which supports the supposition f(t) '" f(co) 
that lies behind the derivation of Equation (19) and 
Equation (21). This supposition is confirmed more 
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Fig. S. Response of the steady-state glacier shown in Figure 
3 10 a step change in climate bI = 0.01. Curves show 
change in thickness h/ x,t) / H versus x for times spaced 
0.2 time units starting at the time of the step change in 
climate. The final curve, for t = 4.0 time units is 
indistinguishable from the final steady state hlx,oo) / H. 
Curves derived from full model and from linearized 
kinematic wave treatment are also indistinguishable. 

quantitatively in Figure 6 where f(t) is shown. Note that 
after t '" 0.4 f{t) approaches an asymptotic value, which for 
bI = 0.01 is approximately equal to E = 0.2. (The curves 
for the larger values of bI will be discussed later in the 
text.) Furthermore, Figure 7 shows that the model results 
for 

10 

VI(t) f hI(x,t)dx 
o 

and hI(lo,t) are both well approximated by exponential time 
variation with time constant T y = VI(oo)/ lob I '" 1.06 time 
units (H / a) evaluated from Equation (l7a). Therefore, 
Equation (21) holds. 

In order to test the validity of the linearized kinematic 
wave theory for this problem, the model was run in "linear 
mode", which solves the linear perturbation equations for 
qI(X,t) (Equations (5), (6), and (7», instead of the non-linear 
equations for h = ho + hI' The kinematic wave velocity 
Co = (aq / ah)o and the diffusion coefficient Do = (aq / aa)o 
were calculated from Equation (23b), and their distributions 
are shown in Figure 8. The calculated elevation-change 
profiles are almost identical to the results of the non-linear 
calculations (see Figs 5-7). Therefore, linearized kinematic 
wave theory yields results which are consistent with the 
non-linear equations, which is expected since bI was chosen 
to be small. The corresponding time constants T c and T D 

given by Equations (15) are 0.75 and 0.17, respectively. 

Discussion 
The time-dependent analysis shows that f{t) '" f(oo) for 

> O.4T y (Fig. 6) and T M '" T y (Fig. 7), supporting the 
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Fig . 6. Time dependence of I(t) for response 10 step change 
in climate for bI = 0.01, O.OS, 0.10, and 0.20. 
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Fig. 7. Time variation of terminus thickness h/lo,t) and 
volume change VI(t) induced by a step change in climate 
for the model glacier examined in Figures 3 and S. Solid 
curves are given by the full model. Short-dashed curves 
are derived from the linearized kinematic wave theory, 
where results are distinguishable from the solid curves. 
Long-dashed curve is [J - exp(I/Ty )] with Ty = 

V/oo) / lobI = 1.06 time units. 
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Co and Do for the E ,S model of Nye ( 1963a) . 

general validity of Equation (21). It also gives numerical 
values for the factor /(00) (Equation (13)) approximately 
equal to E. Thickness change is concentrated near the 
terminus and the profiles are distinctly concave (Fig. 5), so 
f is considerably smaller than \2 (Fig. 6), the value 
commonly assumed to be typical. The time-scales T c' T D' 
and Ty given by Equations (l5a), (l5b), and (17b) do not 
strictly satisfy Equation (18) since T c - T y '" I . 
Nevertheless, similarity of the elevation-change profile 
shapes as described by /(t) = f(oo) does hold, probabl y 
because T D is short enough that diffusion provides the 
needed short time-scale smoothing of thickness perturbations. 

It is interesting to note that the time-scale for growth 
from near zero volume to a steady state (Figs 3 and 4) is 
essentially the same as that needed to reach a new steady 
state after a small change in mass balance (Fig. 7). This 
equivalence apparently exists because in each case the 
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change in volume that must occur is scaled to the mass 
balance that is driving the change. It suggests that 
non-linearity coming from the flow dynamics in the model 
described by Equation (23) does not introduce any 
modification of the conclusions presented above, when the 
mass-balance perturbation b I is large and the linearized 
equations cease to be valid. 

We have verified directly that T M '" TV is independent 
of the size of bI by calculating the model with step 
changes in mass balance of b I equal to 0.05a, O.la, and 
0.2a in addition to 0.0 I a discussed in detail above. The 
normalized volume responses VI(t) / VI("') for all of these 
values of b I are nearly coincident with the curve in 
Figure 7. The normalized terminus thickness responses 
hI(lo,t) / hI(lo'''') are similarly independent of bI for large 
times. However, over the short time-scale I < I, the pattern 
of hI(lo,t) / hI(lo'''') does depend on the size of bp such that 
larger val ues of bI cause more rapid initial response of the 
terminus. 

The dependence of response on bI can be visualized 
from Figure 6, where f(l) is plotted for the different values 
of bI . The more rapid initial response for larger 
perturbations arises because non-linear effects speed the 
redistribution of mass from the interior of the glacier to 
the terminus region. From Figure 6, one also observes that 
the asymptotic value of I as I ~ '" becomes larger than 
£ = 0.2 as b I is increased. This effect arises because 
increasing b I causes the location of the initial terminus at 10 
to end up farther into the interior of the final steady-state 
length. 

It is important to recognize that our conclusions could 
be significantly modified if non-linearity caused by strong 
feed-back between glacier-geometry change and mass 
balance were to occur, for example, when balance rate 
depends on altitude. These circumstances could have 
significant consequences for the final steady-state geometry 
or even cause there to be no final steady state (Bodvarsson, 
1955). The simple mass-balance distribution assumed in our 
model excludes such unstable behavior; that is probably 
realistic for most mountain glaciers of interest to us. Mass 
balance-elevation feed-back will in general lead to 
lengthening of the response time of glaciers. This 
lengthening of the response time is probably significant for 
many if not most glaciers, but will not be further discussed 
in this paper. 

V. CALCULA T[ON OF THE VOLUME CHANGE FROM 
STEADY-STATE MODELS 

Based on sections III and [V, we assume that 

10 

V(O)l/ f bldX. (24) 

o 

This assumption provides a simplification in the analysis of 
the adjustment time of glaciers, since T M can be estimated 
from steady-state solutions without the need for 
time-dependent solution. 

Steady-state model 
Integration of the non-dimensionalized £ model, 

Equation (23), with respect to x assuming steady state 
(Bh / BI = 0) and using the boundary condition q(O) = 0 
gives 

x 

q - r -:: r h' • .xh J b(~)d~, o < x < I. (25) 

o 

We let ho refer to the solution of this equation with 
balance-rate distribution bo(x) = +a (constant), for x < )2 
and bo(x) = -a (constant) for x > )2. Similarly, we let h", 
refer to the sol ution corresponding to b = bo(x) + bI . [n the 
following we will deduce the volume perturbation, 

I", 

VI '" V", - Vo J h",,(x)dx 

o 

j" h,(x)dx. 

for different mass-balance perturbations b
l 

and for a 
number of values of £ and B. The purpose is to find the 
most important variables that determine VI and thereby the 
memory length of the glacier. (As discussed in section [V , 
results from the non-dimensional equations can be 
dimension~lized using length scale 10 , thickness scale H = 

(a/ K)1 /8 10 ' and time-scale T = H / a.) 

Effect of the size of mass-balance change 
We examine the case of a glacier on a flat bed 

(B = 0) with no sliding even at the terminus (£ = 0). For a 
balance-rate distribution b(x) = c for 0 < x < I and 
b(x) = -a for le < x < I, results from Weertman (1961) and 
Paterson (1972, 1980) show that Equation (25) has the 
analytical solution 

(26a) 

(26b) 

where 

h(O) 
[ ]

1/8 
8ac 1)2 . 

(a + c) 
(26c) 

This profile is well behaved except that the slope goes to 
infinity as the terminus x = / is approached . The volume 
per unit width of the profile given by Equat ions (26) can 
be found by numerical integration of the thickness. 

The result for c = a = I, I = I, and le = t, which 
correspond to our assumptions, is shown in the first column 
of Table J together with the maximum thickness. The next 
three columns of Table I show the volumes V"'" and the 
volume perturbations VI with respect to the initial profile 
for three perturbed profiles associated with spatially uniform 
mass-balance perturbations bl = 0.1, 0.025 , and 0.01. It is 
seen that V I is nearly proportional to bl . Furthermore, 
Table I shows that the ratio V I / (ho m.xbl) is close to I. 

TABLE I. E 0, /3 0, VARIABLE bl' ho m.x 1.189 

0.0 
0.846 
0.0 

Effect of terminus sliding 

0.1 
0.983 
0.137 
1.15 

0.025 
0.878 
0.0312 
1.05 

0.01 
0.859 
0.123 
1.03 

Equation (14b) predicts a volume perturbation VI which 
is inversely proportional to the sliding at the terminus. 
Therefore, we might expect a (1 / £) dependence in VI 
determined from the solution of Equation (25). However, in 
the foregoing section, the condition E = 0 did not seem to 
cause any problems. This result suggests that sliding velocity 
at the terminus is not an important variable in the 
determination of the volume perturbation. [n order to 
investigate the effect of £, the steady-state Equation (25) 
was solved numerically for /3 = 0 with £ = 0.05, 0.1, and 
0.2 with bI = 0 and 0.01. 

Table II gives Vo' V"" V!, and ho max for these cases 
and Figure 9 shows the profiles of hl(x) = h",(x) - ho(x). 
When compared to the case E = 0, the profiles of ho and 
h"" for £ f. 0 are slight ly lowered and the square-root shape 
at the terminus is replaced by a steep wedge with slope of 

TABLE 11. /3 0, bl 0.01, VARIABLE E 

E 0.0 0.05 0.10 0.20 
Vo 0.846 0.832 0.817 0.786 

V"" 0.859 0.844 0.829 0.796 
VI 0.0123 0.0119 0.0115 0.0106 

ho max 1.189 1.177 1.163 1.137 
I 0.095 0.11 0.13 0.21 

V/ho m.xbl 1.03 1.01 0.99 0.93 
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Fig . 9. Change in thickness h/x,t ) versus x at t = 00 caused 
by a step change in climate bl = 0 .01 [or various values 
o[ terminus sliding velocity E. 

I l E. For any of the three values of E , ho and hoo are 
lowered by approximately the same amount with respect to 
the corresponding profiles with E = 0, and therefore the 
volume perturbations for E = 0, 0.05, 0.1, and 0.2 are not 
very different. The limit of VI as E - 0 seems to be finite. 
The ratio V/(ho maxbl) is shown at the bottom of Table 11. 
It is close to I independent of E . 

The question now arises why E does not have a 
noticeable effect on V I in spite of the arguments leading to 
Equation (!4b), which seems to predict that VI should vary 
as I l uo(lo) or in dimensionless terms as l i E. As seen in 
Figure 9 , the thickness perturbation at the datum terminus 
hl (/o) increases nearly as l i E as E decreases.* However, this 
relation of hi to E is restricted to a narrow zone close to 
the terminus; away from the terminus the thickness 
pe rturbation is independent of E. The factor [ defined in 
Equation (13) and appearing in Equation (14b) must 
therefore be approximately proportional to E. This is 
indicated by results for [ tabula ted in Table n.t Evidentl y, 
the f actor [ and the sliding velocity at the terminus are 
intimately related in a way leading to a near cancella tion in 
Equation (l4b) and to a volume change VI that is 
insensitive to the specific value of sliding at the te rminus. 
The corresponding memory length T M = Tv would show a 
s imila r independence. 

Effect of bed slope 
The steady-s tate Equation (25) was solved numerically 

with E = 0 for bl = 0 and 0.01 for five slopes B = 0, ~, 
I, 2, and 4. For a glac ier with thickness to length ratio 
hi 10 '" 0.02, this corresponds to scaled slopes of 0 , 0.0 I , 
0 .02, 0.04 , and 0.08 . The profiles of ho(x ) for bl = 0 are 
shown in F igure 10. Table III shows Vo ' V oo, VI ' hOrn•x ' 

and the ratio V l /(ho rnaxbl ) for the profiles. The thickness 
and the volume decrease with increasing basal slope as 
expected . The volume perturbation VI also decreases as B 
increases. The ratio V / (ho rn.xbl)' however , is close to 
independent of B. 

Effect of spatial variation of balance rate 
From the preceding calculations, it appears that the size 

of th e mass- balance perturbation and the ma ximum 
thickness of the glac ier determine the volume perturbation. 

* Because bl = 0.0 I is finite in size, hi (10 ) is lower than 
b l l E predicted by the linearized analysis (Equation (11 ». 
For still smaller bp hl(lo) becomes relatively closer to 
bil E. 

t Exact equality holds only in the limit bl - 0 fo r which 
the linearization holds as is visible in Figure 6. For any 
fixed bp the linearization breaks down for E small 
enough , which explains why in Table 11 [ does not 
approach 0 as E goes to O. 

362 

J: 
.......... 

0 

.c 

UJ 
UJ 
W 
Z 
~ 
U 
H 
J: 
I-

1.0-.-------------------------------, 

0 . 0 

1.0 

0. 0 

1. 0 

p- 4 . 0 
0 . 0 

1. 0 p- 2 . 0 

P-1. 0 

0 . 0 

1. 0 p- 0 . 5 

O . O -+--~_.--_.--._~--~--._~--._~ p- O.O 

0 .0 0. 2 0.4 

DISTANCE 
0. 6 0 . 8 

(x / l o ) 

1. 0 
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( Equation ( 25)) with terminus sliding velocity E = 0 and 
various bed slopes B. 

TABLE Ill. E = 0, b
l 

0.01 , VARIABLE B 

B 0.0 0 .5 1.0 2 .0 4.0 
V o 0.846 0 .716 0.609 0.459 0.313 
V oo 0.859 0 .726 0.6 17 0.464 0.31 7 
VI 0.01 23 0 .0098 0.0079 0 .0057 0.0038 

ho max 1.189 0.923 0.744 0 .545 0.373 

V/ho maxbl 1.03 1.06 1.06 1.04 1.02 

However, the effect of the spatial varIatIOn of bl has not 
been addressed . On real glaciers , we may expect in some 
cases that bl is far from spatially uniform (Braithwaite, 
1980; Reeh, 1983). The effects of spatial variation in b l 
may be examined using the linearized theory. When flux per 
unit width q is linearized by Equation (5) , the perturbed 
form of Equation (25) becomes 

X 

COhl - Dodhl/ dx = Jbl(~)d ~ . 
o 

This equation can a lso be deduced by integration of the 
steady-state form of Equation (7). It has the unique regular 
solution 

with 

This expression can 
perturbation 

~ 

+ A(x» _ I - J bl(n)dnd~ (27) 
Dom 

o 

be integrated to yield the volume 
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By changing the order of integration and manipulating the 
resulting expression one finds 

where 

K{X) 

10 

J K{x)b I{X )dx. 

o 

10 ~ 

(28a) 

J
-_

I 
- JeXP{-A(O + A{1]))d1]d~. (28b) 

Dom x 0 

The function K(X) represents the effect on VI of a 
mass- balance perturbation concentrated at a point x on the 
glacier. Figure II shows the distribution of K{X) evaluated 
using Co and Do for the model described by Equation (25) 
with 13 = 0 and E = 0.05. K{X) has a flat shape over most 
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Fig . 11 . Spatial weighting function K( x) for mass-balance 
distribution as defined by Equation ( 28). 

of the glacier, implying that the spatial variation of bl is 
not important for the determination of VI. It is within 15% 
of its average value over nearly 90% of the length of the 
glacier. We conclude that it is the integrated mass-balance 
perturbation 8 1 = 10 <bl > which determines the volume 
perturbation. 

Summary of results from time-independent modeIing 
The important results are: 

(a) The volume perturbation VI of a glacier, caused by a 
small mass-balance perturbation bl{x) is proportional to the 
integrated mass-balance perturbation, 8 1 = lo<bl >, and is 
insensitive to the spatial distribution of bl(x). 

(b) The volume perturbation is not sensitive to the amount 
of sliding at the terminus. 

(c) The volume perturbation increases proportional to the 
maximum thickness of the glacier. 

(d) The effect of basal slope on the volume perturbation is 
limited to its effect on the maximum thickness. 

In non-dimensional form, these results are embodied in the 
fact that V/rho maxbl) - I independent of bl' E, and 13. 
When this is dimensionalized, the corresponding expression is 
V/rho maxbl) - lo/ bo· Thus, the volume perturbation VI and 
therefore the memory length TM of a glacier appear to be 
related in a simple way to the geometry of the datum 
glacier without any explicit dependence on the sliding 
velocity at the terminus. The next section explores this 
possi bility. 

VI. GEOMETRICAL ESTIMA TE OF THE MEMORY 
LENGTH OF A GLACIER 

The results fr€lm section V support the validity of a 
simplified geometrical analysis presented by J6hannesson and 
others (1989). We summarize that analysis here. Figure 12 
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Fig. 12. Steady-state profiles calculated from the E flow 
model (Equat ion ( 25)) for zero terminus sliding ( E = 0) 
and horizontal bed ( 13 = 0) for bl = 0 (solid - ho) and 
bl = 0.1 (long-dashed - h",). Short-dashed curve shows 
the profile for bl = 0 shifted so its terminus coincides 
with the profile for bl = 0.1 . 

shows the initial steady-state profile ho of a hypothetical 
(two-dimensional) glacier (full curve) and the final 
steady-state profile h", (long-dashed curve), after a small 
mass-balance perturbation bl . If bl is sufficiently small, the 
two profiles will have essentially the same shape. The 
volume (per unit width) of the initial glacier and of the 
final glacier are then approximately given by Vo = gho ma)O 
and V'" = gh", max(lo + 11) where g is a geometrical factor 
which is the same for both cases because of the similarity 
of the profiles. Then 

to first order in II and t.hmax = h", max - ho max. Perfect 
plasticity thewy for a glacier on a flat bed predicts h = 

hmax{ I - x / I) (Nye, 1951), which gives g = 2/ 3. This 
value of g is also fairly close to those values for any of 
the profiles found from Equations (26) or calculated 
numerically in this paper. We will take g = 2/ 3 as a 
representative estimate of g. Equation (12) gives the length 
change 11 as -/0 <bl >/bo(lo). The change in maximum 
thickness may be estimated as llhmax = ('iz)(l / 'o)ho max whic~ 
follows directly from the theoretical result h - (I) 
found from either p·erfect plasticity theory (Nye, mi95 I ) or 
the flux relationship (Equation (4b» used here to find 
Equations (26). When these evaluations of g, 'I' and t.hmax 
are introduced into Equation (29), VI is found to be 

(3D) 

This is the result found in section V, when one accounts 
for the fact bo(lo) is negative. 

It is also possible to make a simple pictorial argument 
for Equation (30). Refer to Figure 12 and let the profile ho 
be shifted to the right (short-dashed curve) so that the two 
termini coincide. Then the difference in the volume of the 
two profiles is to first approximation the shaded region to 
the left end of the figure. This volume is VI = ho maxi 1 = -'0 <bl >hO max/bo(lO) which gives Equation (30) in a simp le 
direct way. When this argument is applied to a glacier on a 
sloping bed or a valley glacier with zero thickness at the 
head , a cut is made through the glacier at the point of 
maximum thickness. The profile ho down-stream from the 
cut is shifted by 'I to the right as before, and it will then 
nearly coincide with h",. The cut opens by 
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II = -/0 <b l >/bo(/o) and this again leads to Equation (30). 
This method was used by J6hannsson (unpublished) to 
estimate the response time of the Grlmsvotn depression in 
Vatnajokull, Iceland, to a change in the geothermal heat 
flux which maintains the depression (Bj6rnsson, 1974). 

From the above discussion and Equation (30), we see 
that the change in the length of the glacier is the most 
important factor determining the volume change. This is 
related to our analysis (section V) of the effect that spatial 
variation in the balance rate bl(x) exerts on the volume 
change. The response function K(X) in Equation (28a) has a 
flat shape over most of the glacier (Fig. 11). This means, to 
a first approximation, that it does not matter where a 
mass-balance change takes place on the glacier. We are now 
able to see this as a consequence of the fact that the 
change in length is a function of the integrated mass
balance perturbation, and does not depend on the spatial 
distribution of bl (x). 

In order to relate Equation (30) to Equations (13) and 
(14) using the same picture, we may calculate 1 = 
<hi >/ hl(lo) by reference to the stippled area in Figure 12 
(which of course is approximately equal to the shaded area). 
The shifted initial profile nearly coincides with the final 
profile, which means that hl(x) = -/IBho/ Bx. Integration of 
hl(x) over length then gives <hi > = Ilho max/ IO' Equations 
(11) and (12) give hl(lo) = -/lbo(/o) / uo(lo)' This last result 
for hl(lo) is simply a statement that Bho(lo) / Bx, i.e. the 
slope of the terminus (hl(lo) / II) is the ratio of the ablation 
rate to the forward velocity and is consistent with the 
inverse relationship between slope of the terminus and 
terminus sliding velocity found in the numerical calculations 
in sections IV and V. The ratio <hi > to hlUo) can be 
calculated from these two results to find 1 = <hi >/ hl(/o) = 
-uo(lo)ho max/ IObO(/o)' The geometrical similarity then implies 
1 is proportional to the sliding rate at the terminus. When 
this result is substituted into Equation (l4b), Equation (30) 
is obtained . 

It may seem unexpected that V I depends only on 
ho max and bo(lo)' The steady-state ha> is reached when the 
geometry of the glacier has changed such that the flow of 
the glacier can support the additional flux required by the 
mass-balance perturbation . Then one might expect that some 
dynamical properties of the glacier would enter into the 
expression for VI (for example, the parameters in the flow 
law). However, these are described by the initial profile ho' 
It is only necessary that the same dynamical properties 
determine the final profile, then it will be similar in shape. 
With regard to the terminus region, we do not need to 
know the details of the processes, but only that they remain 
the same as the glacier advances or retreats. It is therefore 
natural that the only variables determining the volume 
perturbation are the size of the initial profile and the 
relative size of the changes that occurred. 

The volume perturbation given by Equation (30) is 
consistent with the conclusions (a) to (d) in section V, 
which were based on numerical modeling of Equations (3) 
and (4b). However, the above derivation of Equation (30) 
does not depend on the validity of Equations (3) and (4b) . 
From the simplicity of the assumptions involved in the 
derivation of Equation (30), we may expect it to be valid 
even if some of the assumptions (for example, the neglect 
of longitudinal stress gradients) leading to Equations (3) and 
(4b) are unrealistic. 

Equation (30) together with Equations (17a) and (21) 
lead to the estimate of the memory length T M of a glacier 
given by Equation (lb). Equation (Ib) is not as fundamental 
as Equation (30), since it is based on additional assumptions 
inherent in Equations (19), (20), and (21). Nevertheless, the 
time-scale given by Equation (I b) is of fundamental 
importance for the adjustment of glaciers to climatic 
variations, since in any case it must represent a lower limit 
for the memory length . 

VII . DISCUSSION 

In the introduction we pointed out that Equations (la) 
and (I b) seem to give very different estimates for the 
memory length T M of a glacier. Both of these estimates of 
T M arise from the recognition that T M is equal to a volume 
time-scale TM = Tv = V/lo<b l > (Equations (17a) and (21)). 
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They differ in the way the volume change V I is obtained 
(Equation (14b)) in the case of Equation (la) and Equation 
(30) in the case of Equation (I b)). The appearance of 
disagreement therefore concerns disagreement about VI ' For 
a given length change II and corresponding thickness change 
at the terminus hl(/o)' the question then hinges on how 
thickness change is spread up-glacier from the terminus. 
This is described by the geometrical factor 1 of Equation 
( 13). 

The flow models analyzed in sections IV and V, 
whether linearized or not, predict changes in thickness hi 
that are highly concentrated near the terminus. The factor 1 
is small. In section V we showed that over most of the 
length of the model glaciers hi is not sensitive to changes 
in terminus sliding velocity ' u(lo)' The effect of u(lo) is 
localized near the terminus, and the value of 1 is 
approximately proportional to u(lo)' When these values of 1 
are used, Equations (la) and (I b) agree. 

The identification of 1 - ~ as a reasonable theoretical 
value for glaciers originated from an idealized model glacier 
invented by Nye (1963a, fig. 2) for illustrative calculations. 
It has been extensively reviewed by Paterson (1981, chapter 
12, p. 255-60) and Hutter (1983, chapter 6, p.353-69). This 
model is described by distributions of kinematic wave 
velocity Co and diffusion coefficient Do as 

x x 
a (I - l/ and Do(x) 

Ex2 x 
-(I - 5 --) 

a L 

with D « I and 0 ~ x ~ 10 = L(I - D). The parameter E 
controls the amount of diffusion; 5 is scaled to terminus 
sliding vleocity; L is a length scale; and a is a time-scale. 
We refer to this model as the E,D model. Nye argued that 
these distributions of Co and Do are representative of 
distributions in real glaciers when D '" 10-2

, a '" 101 years, 
and E '" I . The corresponding distributions of Co and Do 
are shown in Figure 8 for comparison with those associated 
with the E model developed in sections IV and V. With 
E = I the thickness change hi after a step change in mass 
balance approaches a linear variation between the glacier 
head and terminus, i.e. a triangular distribution that 
corresponds to 1 = 12 (Nye, 1963a, fig. 3). The shape of the 
predicted hi profile depends on the parameter E, but a 
nearly triangular distribution is maintained for values of E 
between 0.6 and 2, which includes the range of E expected 
to represent realistic diffusion. In physical terms, the 
thickness change at the terminus imposed by Equation (11) 
is spread long distances up-glacier by the effects of 
diffusion. 

If the E,5 model and the parameter values are actually 
representative of real glaciers, it would be reasonable to 
expect ~ to be a representative value of f. The 
corresponding memory lengths T M predicted by Equation 
(I a) would then be in the range of hundreds of years; this 
is the origin of the long time-scale that is commonly 
accepted as a valid theoretical prediction. However, we 
believe that the E,D model is not appropriate for this 
purpose. 

In the Appendix we show that the relationship between 
the change in volume VI and terminus velocity uo(/o) 
predicted from kinematic wave theory is highly sensitive to 
the details of the distributions of Co and Do' especially near 
the terminus. This difficulty arises in part because the 
terminus is a singular point of Equation (7), and Equation 
(11) is not a boundary condition in the usual sense. Rather, 
it arises from a regularity condition (Nye, 1963a, p.437-40). 
By example, it is shown that if Co and Do are deduced 
from a flux relationship q = q(h,a), the steady-state profile 
ho corresponding to q(h,a) and a datum mass-balance 
distribution bo (in other words, if q(h,a), ho, Co' and Do 
are internally consistent through Equations (4), (5), and (6)), 
then V I and T M are nearly independent of uo(lo)' The 
linearization of our E model examined in section IV has 
this consistency. The E,5 model is based on ad hoc 
independent assumptions about the distributions of Co and 
Do and lacks this consistency. That situation leads to a 
value of 1 in Equation (I a) that is apparently independent 
of uo(lo)' and leads to an unrealistic prediction of a I/ uo(lo) 
dependence for VI in Equation (l4b) and the corresponding 
memory length TM '" Tv' Other seemingly realistic 
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distributions of Co and Do can give quite different 
dependencies of VI and TM on uo(lo)' 

Distributions of Co and Do derived for real glaciers 
from a realistic flux relationship may be internally 
consistent in the above sense. In this case, linearized 
kinematic wave theory will yield valid predictions, just as it 
does for our E model, when we use Co and Do derived 
from a datum steady state (see section IV). This is probably 
the reason why the response times of South Cascade 
Glacier, Washington, U.S.A., and Storglaciaren, Kebnekaise, 
Sweden, predicted by kinematic wave theory (Nye, 1963b, 
1965a, b), are not as long as would be expected by analogy 
with the E,S model. One must bear in mind, however, that 
quite unrealistic predictions may result from inconsistencies 
in the derived distributions, especially near the terminus. 

The analysis in this paper has been carried out with 
highly simplified geometry in comparison to reality. If a 
glacier advances or retreats over a terminal zone with large 
changes in bed slope (e .g. over cliffs) or bed structure (bed 
roughness or deformability) , the assumption of longitudinal 
profile shape similarity could break down. Most glaciers 
have significant longitudinal variations of thickness . If these 
are large, for example with deep subglacial basins, the 
thickness ho m.x in Equation (30) must be replaced with a 
thickness scale based on an appropriate longitudinal average. 
Similarly diverging or converging flow caused by width 
variations exists on all glaciers and also in ice caps and ice 
sheets. J6hannesson and others (1989) have shown that 
Equation (30) would still hold, but in this case with only 
minor modification by a factor (A / V)dV / dA, which describes 
how glacier volume is related to area. It is clear that 
Equation (30) and Equation (Ib) are best regarded as 
approximate and useful for easy semi-quantitative estimates 
of the memory length of a glacier. 

The long time-scale relationship between mass balance 
and terminus-position variations is difficult to examine 
directly on actual glaciers because existing time series of 
mass-balance data cover only a few decades. The analysis 
we have presented illuminates an alternative approach to the 
question of glacier memory through investigation of the 
geometry changes that glaciers have experienced, in 
particular the assumption about similarity of profile shapes 
and the geometrical factor f. Opportunities to test these 
ideas are provided by changes in glacier geometry from 
Neoglacial to prese nt times. Repeated geodetic surveys of 
surface profiles extending over time intervals covering a 
significant fraction of the retreat from Neoglacial conditions 
have been made on some glaciers in the Alps and are 
especially valuable. Comparison of Neoglacial moraine crests 
and other morphological data with present ice surfaces could 
also be used in many mountain regions of the world . 

VIII. CONCLUSIONS 

Our theoretical conclusions reached in this paper are 
summarized as follows: 

The interval of time T M over which a glacier responds to 
prior climate can in general be described by a volume 
time-scale Tv' 

The volume time-scale TV can be computed from the 
volume differences between two steady-state profiles scaled 
to the causal mass- balance change. 

Both Equations (1 a) and (I b) are correct. 

Correct evaluation of Equation (la) 
theory involves difficult problems 
behavior at the terminus. 

Equation (I b) is a s impler estimate. 

using kinematic wave 
concerning details of 

Commonl y assumed memory lengths of 102-103 years for 
typical glaciers are not theoretically valid as a general rule. 
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APPENDIX 

THREE LINEARIZED GLACIER MODELS; ASYMPTOTIC 
BEHA YIOUR IN THE LIMIT OF SMALL SLIDING AT 
THE TERMINUS 

In the following we will use perturbation methods to 
analyze three different linear steady-state models of the 
form of Equation (7), with the time derivative omitted and 
with a uniform mass-balance perturbation bl(x) = 1. Of 
special interest is the volume perturbation 

10 

VI=fhldX, 
o 

which determines the volume time-scale TV (Equation (17a» 
and therefore the adjustment time T M of the model glacier 
(Equation (21» . The principal question concerns the 
asymptotic behaviour of V I as sliding at the terminus goes 
to zero. Sliding at the terminus had little effect on the 
response of the numerical glacier models in section V. 
Equation (la), on the other hand, seems to predict that 
sliding at the terminus plays a key role in determining the 
response. Our goal is to explain in analytical terms the 
perhaps unexpected result of the numerical glacier models in 
section Y. 

Perturbation models (Cole, 1968; Kevorkian and Cole, 
1981) are often used to find approximate solutions to 
problems involving a small parameter 6. The solution of the 
problem is expanded as an asymptotic expansion in 6 (the 
"outer expansion"). Often this expansion fails to satisfy a 
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boundary or a regularity condition. In that case, a different 
asymptotic expansion (the "inner expansion") has to be used 
in a so-called boundary layer. In the following we will 
make frequent use of the "big 0 notation", i .e. f(x) = 

O(g(x» as x - 0 means that the limit of (f/g ) is finite as 
x - O. 

I. Nye's (I963a) E,6 model 
The model is described by the (non-dimensional) 

kinematic wave velocity Co = x(l - x) and d iffusion 
coefficient Do = £x2

( I - 6 - x) with 0 < 6 «I and 
o ~ x ~ 1o = I - 6 (see section VII for discussion). 
Integration of Equation (7) with respect to x (omitting the 
time derivative and putting bl(x) = I) leads to the 
differential equation 

dh l 
x(1 - x)h l - £x2(1 - 6 - x)- = x, 0 ~ x I - 6 , 

dx 

(Ala) 

for the steady-state change in thickness hl(x). By putting 
y = I - 6 - x, this equation is more conveniently 
expressed as 

dh l 
(6 + y )hl + £(1 - 6 - y)y 

dy 
I, 0 ~ y ~ 1-6 . 

(Alb) 

There is no boundary condition, but the solution is 
required to be regular at the singular point y = 0 of the 
differential equation (Nye, 1963a, p. 437-40). Obviously, 
hl(y = 0) = 1/ 6. This suggests the expansion hi = 
(1 / 6) (h\O) + 6h\ I) + 62h(2) + ... ). Substitution into Equation 
(A I b) and collection of terms with equa.1 powers of 6 leads 
to differential equations for each of hP). The equation for 
hID) is 

Then 

dh\O) 
yh \O) + £(1 - y)y-- = O. 

dy 

where K is a constant of integration. This solution is 
regular for all y, 0 ~ y ~ I - 6. 

The equation for h\ I ) is 

This equation has a regular solution at y = 0 if K = 1. 
Consequently , the constant of integration in hlO) can be 
determined from the equation for hl l ) . Similarly, a constant 
of integ ration in h\l) can be determined by requiring that 
h(2) be regular and in this way the expansion for hi ca n be 
built up to any order without the introduction of a 
boundary layer.* The lowest order, however, is sufficient 
for our purposes. It is given by 

Thus 

I 
-::(1 - y)I/£ + 0(1) 
6 

I f!x + 6)1/£ + 0(1) , as 6 - O. 

(A2) 

This approximation is very good for small 6. For 6 as 
small as 0.006, as used by Nye (1963a), and £ in the range 

* Note that in the special case E = I all higher-order terms 
are identically equal to zero and HI = 

(l - y)/ 6 = I + x/6. This is the well-known analytical 
solution found by Nye (l963a). 
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0.2 ~ E ~ 2.0, plots of hl(x) from Equation (A2) can 
hardly be distinguished by eye from plots of hl(x) based on 
exact solutions of Equation (Ala). For very small E, the 
approximation fails since it is implicitly assumed in the 
preceding analysis that E = 0(1). For E = 0(6), a different 
scaling of the variables is necessary to produce a consistent 
approximation. 

The volume perturbation V I deduced from Equation 
(A2) is 

1-6 

VI = J hl(x)dx 

o 

---+ 0(1). 
6 I + I / E 

(A3) 

The factor 1 = VI / (lohl(lo» in Equations (14) is evidently 
1 = 1/ (1 + I / E) + 0(6) if E = 0(1). 

The shape of h I is essentially unaffected as 6 - 0 and 
hi is inversely proportional to 6 over almost the entire 
length of the glacier. V I and therefore T y and T M go to 
infinity as 6 - O. This means that the amount of sliding at 
the terminus determines the response of the whole glacier. 
It is difficult to imagine a physical process that can bring 
about this result. Therefore, we will now analyze a slightly 
different model in order to find out whether the 1/ 6 
dependency of hi and VI only applies to this particular 
model or whether it is likely to be true in general for 
models of this kind. 

2. A slightly modified E,5 model 
The diffusion coefficient Do must go to zero at the 

terminus (see section III for discussion). Thus, the 
steady-state form of Equation (7) will in general have a 
singular point at the terminus. This is indeed the case for 
the E,6 model which has a singular point at x = I - 6. We 
may expect the steady-state solution to be sensitive to the 
form of Do' or more importantly to the form of the ratio 
Do/ Co, as the singular point at the terminus is approached. 
Assuming q = q(h,a) and using the cyclic rule of partial 
derivatives, we can write Do/ Co = (8q / 8a)h/ (aq / 8h)a = 

-( 8h/ 8a)q' The partial derivative (8h / 8a)q expresses how 
small changes in h and a at a fixed location must be 
related to each other for the flux to remain constant at that 
location. 

In the interior of the glacier, outside a zone near the 
terminus where special considerations must apply, we expect 
a flux relationship of the form of Equation (4b) to be 
valid. A flux relationship of this form predicts that 
Do/ Co = -(8h / aa)q = (r / s)ho/ ao' Since ho decreases towards 
the terminus and ao probably increases, Do must decrease 
faster than Co as the terminus zone is approached. This 
may be crudely quantified for a glacier on a flat bed by 
assuming that ho decreases as some power of the distance 
from the terminus 10 - x (a square-root shape is commonly 
assumed to be realistic). Then Do/ Co = (r / s)ho/ 
(-dho / dx) = 0(/0 - x). We see that in this case the ratio 
Do/ Co will decrease proportional to 10 - x. The distributions 
of Do and Co for the E model presented in this paper 
(Fig. 8) clearly show this behavior. So do published 
calculations of Do and Co based on real glacier profiles (e .g . 
Nye, 1965b, fig. 5; Reeh, 1983, p. 38-53; however, figure 7 
in Nye (1963b) does not show this as well). 

The above argument does not apply to the terminus 
zone, where a flux relationship of the form of Equation 
(4b) breaks down. However, it turns out to be crucial that 
the form of Co and Do is realistically modeled outside the 
terminus zone where we assume a flux relationship of this 
form to be valid. 

Both Do and Co in Equation (A la) decrease linearly as 
x - 1

0
, Based on the above discussion, this is not realistic 

and we replace Do = Ex2(1 - 6 - x) in Equation (A I a) 
with Do = Ex( I - 6 - x)2 in order to investigate the effect 
of the shape of Do near the terminus on the solution . In 
addition to replacing (I - 6 - x) with (I - 6 - X)2 to 
produce the required ratio of Do/ Co near the terminus, we 
have also replaced x 2 with x. This is done in order to 
simplify the analysis and does not change the nature of the 
problem. With this modification, Equation (A I a) becomes 

dh l 
x(1 - x)h l - Ex(l - 5 - x)2- = x, 0 ~ x ~ I - 5, 

dh 
(A4a) 

or defining as before y I - 6 - x 

dh l 
(6+ y )h l +Ev2- I, 0~ y ~I-5. 

. dy 
(A4b) 

One quickl y finds that the method used for Equation 
(A I b) does not work here. It is not possible to derive an 
outer expansion which is regular at y = O. This indicates 
the occurrence of a boundary layer at the terminus. 

A differential equation for the boundary layer is 
deduced by re-scaling both the dependent and the 
independent variables . In this case, the correct scaling is 
given by y * = y/ 6, hr = 5h l which leads to 

dhr 
(I + y*)hr + Ey*2-

dy* 
I. (A5) 

We see that the small parameter 6 has been scaled out of 
the problem. This is not unusual for perturbation problems 
and means that at least in the boundary layer the full 
equation has to be solved . The unique regular solution of 
Equation (A5) is readily found to be 

y* 

hi(y*) = ?*- I/Ee 1/ (EY*) J ~1/E-2e - I / (E~)d~ . 
o 

From this solution , both the nature of the boundary layer 
and the asymptotic behavior of the solution in the interior 
of the glacier can be derived. 

The boundary layer is of width 0(5) and within it the 
solution is 0(1 / 6). Its contribution to VI is the refore 0(1). 
Away from the boundary layer, the asymptotic behavior of 
h1(y ) as 5 - 0 depends on the behavior of hr(y*) as y* = 

y/ 6 - 00 for a fixed value of y. Depending on the 
numerical value of E, we find that as y. - 00 

hj'(y*) 

[

r(1 I / E)E- 1/Ey*- I/ E + 0(y· - 1) if I < E < 00 

Iny* · y*-I + O(y* - I) if E = I 

(I - Er l y* - l + 0(y*-2) + O(y · - I/ E) 
if 0 < E < I , 

where r is the gamma function, r(x ) J t X - 1e -Idt , x > O. 

o 

Then hl(y ) = hj'(y/ 5) / 5 is given by 

['" - '/ElE·'IE,·"'IE,·'iE + 0(1) if I < E < 00 

hl(y ) -ln5. y-1 + 0(1) if E = I 

(1 - Er ly~ 1 + 0(5) + 0(6 1/ E- 1) if o < E < I 

(A6) 

as 6 - 0 for a fixed y, in the interior of the glacier 
outside the boundary layer at the terminus. 

The contribution to V I from hi outside the boundary 
layer can be found by integrating hl(y ) in the interior of 
the glacier (Equation (A6». This is the most important 
contribution to VIand we can derive the following 
order-of-magnitude estimate 

rW'HIE) if I < E < 00 

VI O(1n6)2 if E = I (A 7) 

0(-ln6) if o < E < I. 

The factor 1 = V/(/ohl(/o» in Equations (14) goes to ze ro 
as 6 - O. This arises because the thickness change is only 
partially spread up-glacier from the terminus where h1(/0) = 
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1/ 5. For £ in the range 0 < £ < I, hI is even independent 
of I; outside the boundary layer at the terminus. This is 
similar to what we found for the E model in section V 
(Fig. 9). 

Equation (A 7) predicts that VI and therefore r y and 
T M go to infinity as I; - 0 as was the case for the £, I; 
model. The dependency of hI and VI on 6 as 5 ~ 0 is, 
however, quite different from the £,6 model and this 
indicates that analytical models of this kind are highly 
sensitive to the details of the distributions of Do and Co' 
especially near the terminus. Therefore, it must be crucial 
that the distributions of Do and Co are realistic in models 
of this kind. Otherwise, almost any result may be obtained. 
In particular, the prediction of the £,5 model that the 
volume change VI is inversely proportional to sliding at the 
terminus, cannot be regarded as a valid theoretical 
prediction for real glaciers, since other seemingly more 
realistic distributions of Do and Co yield quite different 
predictions. 

3. A model derived from a steady-state profile 
In numerical models of glacier flow, the terminus has 

traditionally been treated in a very crude way (e.g. Budd 
and Jenssen, 1975; Bindschadler, 1982; Waddington, 
unpublished). The grid size of the models is usually so 
coarse that detailed modeling of the terminus is out of the 
question. Instead, it is assumed that the terminus plays no 
active role in the dynamics of the glacier as a whole. The 
position of the terminus is determined from simple 
continuity requirements, i.e. the shape of the terminus is 
assumed constant and the rate of change of its position is 
determined by the ice flow past the last grid node 
up-stream from the terminus. These models cannot produce 
any effect of the terminus on the glacier dynamics, since 
the expected passive behavior of the terminus is built into 
the models as an assumption. 

The assumption of a passive terminus is a physically 
appealing one. One would expect realistic analytical models 
to have a similar property, even if it is not included at the 
outset as an assumption. In this view, the crucial part of 
the model is the correct specification of the model 
parameters (i.e. Do and Co) in the interior of the glacier, 
where the proposed flux relationship is assumed valid. The 
region very close to the terminus, where the flux 
relationship breaks down, must be included in the model in 
some way, but from physical grounds one would expect this 
region to be isolated from the rest of the model. 
Mathematically, this could for example arise if an isolated 
boundary layer is located at the terminus. Needless to say, 
the behavior of VI in the limit of zero sliding at the 
terminus must be non-singular. Otherwise, the terminus 
region determines the response of the whole glacier. 

We will now derive a simple glacier model based on 
the flux relationship expressed by Equation (4b) and 
investigate whether consistent specification of Do and Co 
leads to the results discussed above. Both Do and Co are 
defined as partial derivatives of the same quantity 
(Equations (6». Therefore, they cannot be specified 
independently, but must be based on a specific flux 
relationship, datum mass balance, and the corresponding 
steady-state profile. We will investigate a two-dimensional 
ice sheet on a flat bed and take K = I, r = 3, and s = 5 
in the flux relationship (Equation (4b)). ho in the ablation 
area is then given by 

ha = 23 / 8(10 x)t, (A8) 

when bo is uniform bo(x) = -I in the ablation area 
(Paterson, 1980). The corresponding Do and Co (Equations 
(6» are 

Do r 3 / 86(1o - x)3/2 , 

C - r 3/ 85(1 - x)t + 6 o - 0 

where we have added the term 5 in the expression 
in order to provide a non-zero Co at the terminus 
We see that Do decreases faster than Co as x 
expected. 

Adding 5 to Co is admittedly an arbitrary 
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(A9) 

for Co 
x = 10, 
~ 10 as 

way of 

specifying the terminus dynamics. As discussed above, it is 
the consistency of ho, Do' and Co in the interior of the 
glacier which is of primary concern. Given consistency, the 
details of the terminus dynamics should not be important 
for the dynamics of the glacier as a whole. Therefore, this 
ad hoc way of specifying the terminus dynamics is adequate 
for our purpose. 

In the accumulation area, the expression for ho is 
different from Equation (A8) and consequently the 
corresponding expressions for Do and Co are different from 
Equations (A9). Arithmetic simplicity makes it worthwhile to 
analyze the ablation area without considering the 
accumulation area. This can be done if it is assumed that 
that mass-balance perturbation bI(x) is confined to the 
ablation area, since then the thickness change hI(x) in the 
ablation area will be independent of the accumulation area. 
Assuming an ablation area extending from x = 0 to X = I 
with a uniform mass-balance perturbation b1(x) = I, this 
model is expressed by the following equation 

x, (AIO) 

with Do and Co expressed by Equations (A9). The 
accumulation area is located to the left of x = 0 and is not 
considered. 

After a change of variables to y = 10 - x = I - x for 
convenience, the outer expansion to lowest order satisfies 
the equation 

b(l - y), a = 5/6, b 

The solution of this equation is 

b -~ b ~ 
Ky-a + a _ ~ .Y - a + ~ y . (All) 

This solution is singular at y = 0 for any value of the 
integration constant K. Therefore, a boundary layer at 
y = 0 is needed. The integration constant K must be 
determined by matching to the boundary layer (Kevorkian 
and Cole, 1981, p.24). 

The boundary-layer equation is deduced by re-scaling y 
and hI' The correct scaling is y* = y / 52, hr = 6h I. Using 
Equations (A9), Equation (A I 0) transforms to 

~ dhr 
(ay* + b)hr + y*3/2 - b(1 - 1;2y *) 

dy· 

and the equation determining the lowest-order term h;(O), in 
the inner expansion is 

dhr(O) 
(ay*~ + b)hr(O) + y*3/2 -- = b. 

dy* 

This equation has the unique non-singular solution 

y* 

by* -ae2b(y*)t J ~a-3/2e-2bmt d~ . 

o 

(AI2) 

In very simple terms, matching of Equations (A 11) and 
(AI2) is done by requiring that, when expressed in the 
same variables, the equations agree to highest order "just 
outside" the boundary layer. When y* ~ '" (by letting I; ~ 0 
for a fixed y), the lowest-order term in the boundary layer 
(Equation (A 12)) becomes 

Expressed in outer variables, this expression for the 
boundary layer becomes 
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b -!.2 + 0(62a-l) + 0(6) 
a - !.2y 

as 6 ~ 0 for a fixed y. This means that we must have 
K = 0 if the boundary layer (Equation (AI2)) is to merge 
smoothly with the outer solution (Equation (A 11)). Thus, 

b !.2 --y 
a + !.2 

(Al3) 

The boundary layer (Equation (AI2)) is of width 0(62
) and 

within it the solution is 0(1 / 6). Its contribution to VI is 
therefore 0(6) and goes to zero as 6 ~ O. The outer 
solution (Equation (A 13)) can be integrated without 
difficulty to find V I 

2b 

a-!.2 
2b 

lL) + 0(6) 
3(a + 12 

1.19 + 0(6), as 6 - 0 

(A 14) 

which is finite in the limit 6 = O. the factor [= 
V/(Ioh l (lo)) in Equations (14) is 0(6) as 6 ~ O. 

Equation (Al3) shows that, away from the terminus, hI 
is determined by the dynamics in the interior of the glacier 
and independent of the amount of sliding at the terminus. 
Equation (AI4) shows that VI and therefore Tv and TM are 
also determined by the dynamics in the interior of the 
glacier, and finite in the limit 6 ~ O. This is what we 
expected to find for an analytical model with consistent 
specification of ho, Do' and Co' We expect other models 
with carefully specified Do and Co (for example, based on a 
flux relationship expressed by Equation (4b) with other 
values of I' and s than used here, or models with different 
formulation of Co near the terminus), to exhibit the same 
properties as the model presented here. In section VI, we 
found that geometrical similarity of steady-state glacier 
profiles leads to the conclusion that I is proportional to the 
sliding rate at the terminus. This is the case here since [ = 
0(6). Therefore, the ratio I/u(l) = 1/6 in Equation (la) is 
approximately constant for small 6, and Equation (la) is 
consistent with Equation (I b) . This model agrees with the 
numerical results of the paper, which are derived from a 
more complete formulation, which does not permit an 
analytical analysis . 

We conclude that consistent specification of ho, Do' and 
Co' based on a specific flux relationship and datum mass 
balance, is essential for successful analytical models. 
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