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Abstract

We establish two-sided bounds for the complexity of two infinite series of closed orientable three-
dimensional hyperbolic manifolds, the Löbell manifolds and the Fibonacci manifolds. The manifolds
of the two series are indexed by an integer n and the corresponding complexity estimates are both linear
in n.
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1. Introduction

If M is a compact three-dimensional manifold, its complexity (introduced in
Matveev [14, 15]) is a nonnegative integer c(M) that formally translates the intuitive
notion of ‘how complicated’ M is. In particular, if M is closed and irreducible and
different from the 3-sphere S3, the projective 3-space RP3, and the lens space L(3, 1),
its complexity c(M) is equal to the minimum of the number of tetrahedra over all
‘singular’ triangulations of M . (A singular triangulation of M is a realization of M as
a union of tetrahedra with pairwise glued 2-faces.) The complexity function has many
natural properties, among which is additivity under connected sum.

The task of computing the complexity c(M) of a given manifold M is extremely
difficult. For closed M , the exact value is presently known only if M belongs to
the computer-generated tables of manifolds up to complexity 12 (see Matveev [17]).
Therefore the problem of finding ‘reasonably good’ two-sided bounds for c(M) is of
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primary importance. The first results of this kind were obtained in [18, 20], where
an estimate on c(M) was given in terms of certain properties of the homology groups
of M .

In the present paper we establish two-sided bounds on the complexity of two
infinite series of closed orientable three-dimensional hyperbolic manifolds, the
Löbell manifolds and the Fibonacci manifolds. The upper bounds are obtained
by constructing fundamental polytopes of these manifolds in hyperbolic space H3,
while the lower bounds (which are only proved in an ‘asymptotic’ fashion, see
below) are based on the calculation of their volumes. We mention here that the
Löbell manifolds are constructed from polytopes that generalize the right-angled
dodecahedron, and the Fibonacci manifolds are constructed from polytopes that
generalize the regular icosahedron.

Before turning to the statements and proofs of our estimates, we remark that, in the
class of compact 3-manifolds with nonempty boundary, exact values of complexity
are currently known for two infinite families. The first one consists of manifolds
whose interior finitely covers the complement of the figure-eight knot or its ‘sibling’
(a different manifold with the same volume) [2, 16]. The second family consists of
manifolds M such that ∂M consists of k > 0 tori and a surface of genus g > 2, and M
admits an ideal triangulation with g + k tetrahedra [7, 8].

The following results are proved in this paper.

THEOREM 1.1. If L(n) denotes the nth set of Löbell manifolds, defined below in
Section 2, then for any M ∈ L(n) the complexity of M satisfies the lower and upper
estimates

10n 6 c(M)6 47n − 92,

the former one being valid for sufficiently large n and the latter one for all n > 5.

THEOREM 1.2. If M(n) denotes the nth Fibonacci manifold, defined below in
Section 3, then its complexity satisfies the lower and upper estimates

2n 6 c(M(n))6 3n,

the former one being valid for sufficiently large n and the latter one for all n > 4.

2. Löbell manifolds

In this section we obtain upper and lower bounds on manifold complexity for a
certain infinite family of closed hyperbolic 3-manifolds that generalize the classical
Löbell manifold. Recall that in order to give a positive answer to the question of
the existence of ‘Clifford–Klein space forms’ (that is, closed manifolds) of constant
negative curvature, Löbell [13] constructed in 1931 the first example of a closed
orientable hyperbolic 3-manifold. The manifold was obtained by gluing together eight
copies of the right-angled 14-faced polytope (denoted by R(6) and shown in Figure 1)
with upper and lower bases both being regular hexagons, and a lateral surface given
by 12 pentagons, arranged similarly as in the dodecahedron.
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An algebraic approach to constructing hyperbolic 3-manifolds from eight copies
of a right-angled polytope was suggested in Vesnin [23], as we will now describe.
Let us fix in hyperbolic 3-space H3 a bounded polytope R, namely a compact and
convex set homeomorphic to the 3-disk, with boundary given by a finite union of
geodesic polygons, called the faces of R. The notions of vertex and edge of R are
defined in the obvious fashion. We further assume that R is right-angled, namely that
all the dihedral angles along the edges of R are π/2, which easily implies that all the
faces of R have at least five edges and all the vertices of R are trivalent. Note that,
according to Andreev’s theorem [1], these combinatorial conditions on an abstract
polytope are actually also sufficient for its realizability as a bounded right-angled
polytope in H3.

We will denote henceforth by G the subgroup of Isom(H3), the isometry group
of hyperbolic 3-space, generated by the reflections in the planes containing the faces
of R. The following is an easy consequence of Poincaré’s polyhedron theorem [6, 21].

LEMMA 2.1. The polytope R is a fundamental domain for G, and a presentation of
G is given by:

(1) a generator for each face of R; and
(2) the relation ρ2 for each generator ρ and the relation [ρ1, ρ2] for each pair of

generators ρ1, ρ2 associated to faces sharing an edge.

This result implies that G is a discrete subgroup of isometries of H3. In particular,
a subgroup K of G will act freely on H3 if and only if it is torsion-free. Moreover for
each vertex v of R the stabilizer StabG(v) of v in G is isomorphic to the Abelian group
Z2 ⊕ Z2 ⊕ Z2 = (Z2)

3 of order 8, which we will view as a vector space over the field
Z2. We next quote two lemmas proved in Vesnin [23] and derive an easy consequence.

LEMMA 2.2. If ϕ : G→ (Z2)
3 is an epimorphism, the following are equivalent:

(1) Ker(ϕ) is torsion-free; and
(2) for each vertex of R, if ρ1, ρ2, ρ3 are the reflections in the faces of R incident to

the vertex, ϕ(ρ1), ϕ(ρ2), ϕ(ρ3) are linearly independent over Z2.

We consider now in (Z2)
3 the vectors α = (1, 0, 0), β = (0, 1, 0), γ = (0, 0, 1)

and δ = α + β + γ = (1, 1, 1), and we note that any three of them are linearly
independent.

LEMMA 2.3. Let ϕ : G→ (Z2)
3 be an epimorphism that maps each of the generating

reflections of G to one of the elements α, β, γ , δ. Then Ker(ϕ) is a subgroup of
Isom+(H3), the group of orientation-preserving isometries of hyperbolic 3-space.

PROPOSITION 2.4. If an epimorphism ϕ : G→ (Z2)
3 satisfies condition (2) of

Lemma 2.2 and the hypothesis of Lemma 2.3, then the quotient M =H3/Ker(ϕ) is
a closed orientable hyperbolic 3-manifold.

PROOF. Lemma 2.2 implies that Ker(ϕ) is torsion-free, so the quotient is a hyperbolic
3-manifold M without boundary, and Lemma 2.3 implies that M is orientable. Since
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FIGURE 1. The polytope R(6) and a coloring of its faces.

Ker(ϕ) has index 8 in G and R is a fundamental domain for G, a fundamental
domain for Ker(ϕ) is given by

⋃8
i=1 gi (R) where {gi | 1 6 i 6 8} is a set of

representatives of G/Ker(ϕ). Such a fundamental domain is compact, so M is
compact, whence closed. 2

If we now describe a homomorphism of G by labeling each face of R by the image
of the reflection in the plane containing that face, a map ϕ as in Proposition 2.4 gives
an {α, β, γ, δ} coloring of the faces of R with the usual condition that adjacent faces
should have different colors. On the other hand, Lemma 2.1 implies the converse,
namely that any such coloring gives a map ϕ as in Proposition 2.4, and hence a closed
orientable hyperbolic manifold. As an example, the classical Löbell manifold [13] is
obtained from the polytope R(6) described above and shown on the left of Figure 1
using the coloring shown on the right in the same figure.

We generalize this example by considering for each n > 5 the right-angled polytope
R(n) in H3 with (2n + 2) faces, two of which (viewed as the upper and lower bases)
are regular n-gons, while the lateral surface is given by 2n pentagons, arranged as one
easily imagines. Note that R(5) is the right-angled dodecahedron. As in Figure 1 for
R(6), we number the faces of R(n) so that:

(i) the upper and lower bases have numbers 2n + 1 and 2n + 2, respectively;
(ii) the pentagons adjacent to the upper base are cyclically numbered 1, . . . , n; and
(iii) the pentagons adjacent to the lower base are cyclically numbered n + 1, . . . , 2n

in the same sense as the previous ones, with pentagon n + 1 adjacent to
pentagons 1 and n.

Now define gi ∈ Isom(H3) as the reflection in the plane containing the i th face
of R(n), and G(n) as the group generated by {gi }

2n+2
i=1 . According to Lemma 2.1 a

presentation of G(n) is obtained by adding the relations:
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g2
i , i = 1, . . . , 2n + 2;
[g2n+1, gi ], i = 1, . . . , n;
[g2n+2, gn+i ], i = 1, . . . , n;
[gi , gi+1], i = 1, . . . , 2n − 1;
[g1, gn],

[gi , gn+i ], i = 1, . . . , n;
[gn+1, g2n],

[gi , gn+1+i ], i = 1, . . . , n − 1.

We now define the class of Löbell manifolds of order n as follows:

L(n) =
{
H3/Ker(ϕ) | ϕ : G(n)→ (Z2)

3 epimorphism,

Ker(ϕ) < Isom+(H3), Ker(ϕ) is torsion-free
}
.

Each element of L(n) is a closed orientable hyperbolic 3-manifold with volume equal
to eight times the volume of R(n). According to the above discussion (and the
four-color theorem [3]) the set L(n) is nonempty for all n > 5. The classical Löbell
manifold constructed in [13] and described above belongs to L(6). We now provide
an upper bound for the complexity of the elements of L(n).

PROPOSITION 2.5. For all n > 5 and M ∈ L(n), we have

c(M)6 47n − 92.

PROOF. Let M be defined by a homomorphism ϕ : G(n)→ (Z2)
3. By our

construction M is built by gluing together in pairs the faces of eight copies of R(n).
More precisely, let us pick a vertex v of R(n) at the corner of three faces A, B, C , and
let us denote by a, b, c the reflections in A, B, C . Then S = 〈a, b, c〉 is the stabilizer
of v in G(n). It is an Abelian group isomorphic to (Z2)

3, it is a set of representatives
of G(n)/Ker(ϕ), and

Q(n)=
⋃
s∈S

s(R(n))

is a fundamental domain for the action of Ker(ϕ) on H3 giving M as a quotient.
Up to isometry R(n) has two inequivalent types of vertices (unless n = 5).

Therefore, to analyze the structure of Q(n) we must make a definite choice of v.
We select v as a vertex of one of the n-gons and redraw R(n) as the prism shown
in Figure 2 (which refers to the case n = 8). Hence Q(n) is obtained by taking the
images of this prism under the reflections in the faces containing v. In particular,
from a combinatorial viewpoint, Q(n) has 16(n − 1) faces that are pentagons and
eight faces that are n-gons. The geometric picture is different, however, because some
adjacent pentagons are coplanar and hence give rise to faces of Q(n) having more than
five edges. More precisely, the following happens:
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FIGURE 2. The polytope R(n) for n = 8.

(1) the pentagon X of the prism together with three reflected copies of X gives rise
to a ‘horizontal’ octagon;

(2) the pentagon Y of the prism together with one reflected copy of Y gives rise to a
‘horizontal’ hexagon;

(3) the pentagon W of the prism together with three reflected copies of W gives rise
to a ‘vertical’ octagon; and

(4) the pentagon Z of the prism together with one reflected copy of Z gives rise to a
‘vertical’ hexagon.

The number of times these phenomena (1), (2), (3) and (4) globally happen on ∂Q(n)
is respectively 2, 4, 8 and 4(n − 4). Therefore Q(n) has the following number of faces:

(i) n-gons, 8;
(ii) octagons, 2+ 4= 6;
(iii) hexagons, 8+ 4(n − 4)= 4(n − 2); and
(iv) pentagons, 16(n − 1)− 4× 6− 2× 4(n − 2)= 8(n − 3).

LEMMA 2.6. Ker(ϕ) acts on Q(n) by gluing together in pairs the faces just described.

PROOF. The pentagonal faces of Q(n), before being merged into hexagons and
octagons, have the form s(F), where s varies in S and F varies in the faces of
R(n) different from A, B, C . Given such s and F , there exist unique s′ ∈ S and
k ∈ Ker(ϕ) such that s′ = k · s · ρF , where ρF is the reflection in the plane containing
F ; and under these assumptions the pentagon to which s(F) is glued is s′(F) with
gluing map k : s(F)→ s′(F).
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Now suppose that s1(F1) and s2(F2) are pentagons lying in the same plane, whence
merged into some hexagonal or octagonal face of Q(n). This means that F1 = F2 =: F
and s2 = s1 · s with s · ρF = ρF · s. Let s′1, s′2 ∈ S and k1, k2 ∈ Ker(ϕ) be such that

s′1 = k1 · s1 · ρF , s′2 = k2 · s2 · ρF .

Now
k1 · s2 · ρF = k1 · s1 · s · ρF = k1 · s1 · ρF · s = s′1 · s,

and this element belongs to S. Therefore k2 = k1 =: k and s′2 = s1 · s, which means
that the same element k of Ker(ϕ) glues s1(F) to s′1(F) and s2(F) to s′2(F). In
particular, s′1(F) and s′2(F) are coplanar as s1(F) and s2(F) are, so they belong to
the same merged face of Q(n), which implies the conclusion. 2

To finish with the proof of Proposition 2.5, we pick a vertex x of Q(n) at the
corner of an n-gon, a hexagon and an octagon. Note that no two of these faces are
paired together by the action of Ker(ϕ): this is obvious for n 6= 6, 8, and for n = 6, 8
it follows from the fact that the pairing of hexagons and octagons is induced by a
pairing of the pentagons they are the merging of. Therefore we can subdivide the
n-gon, octagon and hexagon incident to x by taking diagonals from x , and we can
extend this subdivision to a triangulation of ∂Q(n) that is coherent under the action
of Ker(ϕ). This implies that by taking cones from x we can subdivide Q(n) into as
many tetrahedra as there are triangles not containing x , getting a singular triangulation
of M in the quotient. We are only left to compute the number of triangles on ∂Q(n)
not incident to x :

(8− 1)(n − 2)+ (6− 1)(8− 2)+ (4(n − 2)− 1)(6− 2)+ 8(n − 3)(5− 2)

= 47n − 92.

The proposition is proved. 2

To give lower complexity estimates, both for Löbell manifolds and for the Fibonacci
manifolds considered in Section 3, we will employ the hyperbolic volume. As a
matter of fact, there is a general inequality, basically due to Thurston [22], between
complexity and volume. We include a proof for the sake of completeness (see also
Remark 2.8). Here and very often in the sequel we will denote by v3 = 1.014 . . . the
volume of the regular ideal tetrahedron in H3 (see [4, 22]).

PROPOSITION 2.7. If M is a closed orientable hyperbolic manifold then

c(M) >
vol(M)
v3

.

PROOF. Denote c(M) by k. Since M is irreducible and not one of the exceptional
manifolds S3, RP3, and L(3, 1), there exists a realization of M as a gluing of k
tetrahedra. Denoting by1 the abstract tetrahedron, this realization induces continuous
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maps σi :1→ M for i = 1, . . . , k describing how the tetrahedra appear in M after
the gluing. Note that each σi is injective on the interior of 1 but perhaps not on the
boundary. Since the gluings used to pair the faces of the tetrahedra in the construction
of M are simplicial, we see that

∑k
i=1 σi is a singular 3-cycle, which of course

represents the fundamental class [M] ∈ H3(M; Z).
Let us now consider the universal covering H3

→ M . Since1 is simply connected,
we can lift σi to a map σ̃i :1→H3. We now denote by τ̃i :1→H3 the simplicial
map that agrees with σ̃i on the vertices, where geodesic convex combinations are used
in H3 to define the notion of ‘simplicial’. Let τi :1→ M be the composition of τ̃i
with the projection H3

→ M . One can easily see that
∑k

i=1 τi is again a singular 3-
cycle in M . Using this fact and taking convex combinations in H3 one can actually
see that the cycles

∑k
i=1 σi and

∑k
i=1 τi are homotopic. In particular, since the first

cycle represents [M], the latter also does, which implies that
⋃k

i=1 τi (1) is equal to
M , otherwise

∑k
i=1 τi would be homotopic to a map with two-dimensional image.

Let us now note that τ̃i (1) is a compact geodesic tetrahedron in H3, and therefore
its volume is less than v3 (see [4]). Moreover the volume of τi (1) is at most equal
to the volume of τ̃i (1), because the projection H3

→ M is a local isometry, and the
volume of M is at most the sum of the volumes of the τi (1), because we have shown
above that M is covered by the τi (1). This concludes the proof. 2

REMARK 2.8. The statement of [22, Corollary 6.1.7] would imply the nonstrict
inequality c(M)> vol(M)/v3, but our proof of the strict inequality closely mimics
the arguments given by Thurston therein.

Getting back to our Löbell manifolds, in order to apply Proposition 2.7 let us denote
by `n the common value of vol(M) as M varies in L(n), and recall the definition of
the Lobachevskii function [4, 21, 22],

3(x)=−
∫ x

0
log |2 sin(t)| dt.

The following theorem was established in Vesnin [24].

THEOREM 2.9. For all n > 5,

`n = 4n

(
23(θn)+3

(
θn +

π

n

)
+3

(
θn −

π

n

)
+3

(
π

2
− 2θn

))
,

where

θn =
π

2
− arccos

(
1

2 cos(π/n)

)
.

This theorem implies that the volume of the classical Löbell manifold is equal to
48.184 368 . . . . In addition, it allows us to determine the asymptotic behavior of `n
as n tends to infinity.
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PROPOSITION 2.10. The following inequalities hold for sufficiently large n:

10n −
68
n
<
`n

v3
< 10n.

PROOF. Setting

θ(t) =
π

2
− arccos

(
1

2 cos t

)
,

f (t) = 23(θ(t))+3(θ(t)+ t)+3(θ(t)− t)+3(π/2− 2θ(t)),

we see that `n = 4n · f (π/n). Now θ is a smooth function at 0 and θ(0)= π/6 and
θ ′(0)= 0, while 3 is a smooth function at π/6 and

3(π/6)= v3/2, 3′(π/6)= 0, 3′′(π/6)=−
√

3

(see [4, 22] for the first equality; the subsequent ones are obtained by direct
calculation). Using these facts it is very easy to show that

f (0)= 5
2v3, f ′(0)= 0, f ′′(0)=−2

√
3.

Taylor’s formula then implies that, for n� 0,

`n

v3
= 10n −

4
√

3 π2

v3

1
n
+ o(1/n),

and the coefficient of 1/n is computed as 67.43 . . . , which easily implies the
conclusion. 2

The right-hand estimate in Proposition 2.10 is not strictly necessary for our
purposes, but we thought it worth including it to show that no lower estimate for
`n/v3 better than 10n − 68/n can be given, at least as far as the coefficient of n is
concerned. In the same spirit, we will now show that the inequality holds for all n and
not only asymptotically.

PROPOSITION 2.11. For all n > 5, the following inequality holds:

`n

v3
< 10n.

PROOF. Proposition 2.10 implies that

lim
n→∞

`n

n
= 10v3,

so it will be sufficient to prove that n 7→ `n/n is an increasing function. Now
`n = 8 vol(R(n)) and one can see that R(n) decomposes into 2n copies of a
hexahedron P(n) as shown in Figure 3, with each dihedral angle equal to π/2 except
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FIGURE 3. The hexahedron P(n) and its position in R(n) for n = 6.

along AA′, where it is π/n, and along B ′D and C E , where it is π/4. (As a matter
of fact, this observation, together with previous work of Kellerhals [11], was precisely
the basis of the computation of `n in Vesnin [24]). Therefore `n/n = 16 vol(P(n)), so
it is sufficient to prove that n 7→ vol(P(n)) is an increasing function, which is a direct
consequence of Schläfli’s variation formula [12, p. 512], since in P(n) all dihedral
angles are independent of n, except for one that decreases as n increases. 2

We can now estimate the complexity of Löbell manifolds from the following result.

COROLLARY 2.12. For sufficiently large n and M ∈ L(n), we have c(M)> 10n.

PROOF. Propositions 2.7 and 2.10 imply that c(M) > 10n − (68/n) for n� 0.
However, c(M) is an integer, and the conclusion easily follows. 2

Theorem 1.1 of the Introduction is now a direct consequence of Proposition 2.5 and
Corollary 2.12.

3. Fibonacci manifolds

In this section we consider the compact orientable hyperbolic 3-manifolds whose
fundamental groups are the Fibonacci groups, introduced by Conway in [5]. There is
one such group F(2, n) for each n > 3, and a presentation of it is given by

F(2, n)= 〈x1, x2, . . . , xn : xi xi+1x−1
i+2, i = 1, . . . , n〉,

where indices are understood modulo n. It was shown in [9] that for each n > 4 the
group F(2, 2n) is isomorphic to a discrete cocompact subgroup of Isom+(H3), the
group of orientation-preserving isometries of hyperbolic 3-space. We will need below
to refer to several details of the construction of [9], so we recall it here.

We fix n > 4 and we first define the order-n antiprism A(n) as the polytope whose
boundary is constructed as follows:
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(i) take 2n triangles and two polygons with n edges;
(ii) attach a different triangle to each edge of each of the two n-polygons; and
(iii) glue together the objects thus obtained by matching the free edges of the

triangles (there are two circles consisting of 2n edges to glue together, so there
is essentially only one way to do so).

Now we define Y (n) as the polytope obtained from A(n) by attaching an n-pyramid
to each of the bases. In particular, Y (5) is the icosahedron. We remark that in general
Y (n) has 2n + 2 vertices, 6n edges, and 4n triangular faces, and we denote the vertices
by Q, R, P1, . . . , P2n and the faces by F1, . . . , Fn , and F∗1 , . . . , F∗n , as shown in
Figure 4 for n = 4.

We now define a face-pairing on Y (n) under which each face Fi is glued to the face
F∗i via a simplicial homeomorphism si : Fi −→ F∗i . We specify the action of si by
describing it on the vertices. Namely, for odd i we choose si so that

si : Q Pi+1 Pi+3 −→ Pi+2 Pi+3 Pi+4,

whereas for even i we choose it so that

si : R Pi+1 Pi+3 −→ Pi+2 Pi+3 Pi+4,

where all indices are taken modulo 2n. Note that if we choose an orientation
of Y (n) and orient the Fi and F∗i accordingly, all the si are orientation-
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reversing homeomorphisms. This implies that the quotient of Y (n) under the face-
pairing is a manifold except perhaps at the vertices, and that the projection restricted
to each open edge of Y (n) is injective. In particular, we can describe how the various
edges of Y (n) are cyclically arranged around an edge in the quotient. These cycles are
actually easy to describe: for odd i ,

Q Pi+1
si
−→ Pi+2 Pi+3

s−1
i−1
−→ Pi Pi+2

s−1
i−2
−→ Q Pi+1, (3.1)

and for even i ,

R Pi+1
si
−→ Pi+2 Pi+3

s−1
i−1
−→ Pi Pi+2

s−1
i−2
−→ R Pi+1. (3.2)

It was shown in [9] that Y (n) can be realized in a unique way (up to isometry) as a
compact polytope in hyperbolic space H3 so that:
(i) each of the faces of Y (n) is an equilateral triangle;
(ii) the sums of the dihedral angles corresponding to each of the cycles as in (3.1)

or (3.2) is 2π ; and
(iii) Y (n) has a cyclic symmetry of order n with axis Q R and an orientation-reversing

symmetry which permutes Q and R.
We will henceforth identify Y (n) with such a realization in H3. Since all the faces
of Y (n) are congruent, each face-pairing si can be realized in a unique fashion as an
orientation-preserving isometry of H3, and we will denote this isometry also by si .
The condition that the total dihedral angle around the edge cycles (3.1) and (3.2) is 2π
easily implies that

si si+1 = si+2, i = 1, . . . , 2n, (3.3)

where indices are understood modulo 2n. More precisely, Poincaré’s polyhedron
theorem [6, 21] implies that:
(i) the subgroup of Isom+(H3) generated by the si is isomorphic to F(2, 2n);
(ii) this group is discrete and torsion-free, and Y (n) is a fundamental domain for its

action on H3; and
(iii) the quotient of H3 under this action is a 3-manifold.
From now on we will denote by M(n) the closed hyperbolic 3-manifold thus obtained,
and call it the nth Fibonacci manifold. It was remarked in [10] that M(n) is the n-fold
cyclic covering of S3 branched over the figure-eight knot 41.

PROPOSITION 3.1. For n > 4, we have c(M(n))6 3n.

PROOF. For each triangular face of Y (n) not containing Q, we can construct the
tetrahedron with vertex at Q and basis at that face. This gives a decomposition of
Y (n) into 3n tetrahedra, namely a singular triangulation of M(n) with 3n tetrahedra,
whence the conclusion. 2

To estimate the complexity of M(n), we use the following formula for its volume
established in [19].
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THEOREM 3.2. For n > 4,

vol(M(n))= 2n(3(an + π/n)+3(an − π/n)),

where an = (1/2) arccos(cos(2π/n)− 1/2).

This result allows us to determine the asymptotic behavior of the volume of the
Fibonacci manifold M(n).

PROPOSITION 3.3. The following inequalities hold for sufficiently large n:

2n −
34
n
<

vol(M(n))
v3

< 2n.

PROOF. The proof is very similar to that of Proposition 2.10. Setting

a(t)= (1/2) arccos(cos(2t)− 1/2),

f (t)=3(a(t)+ t)+3(a(t)− t),

we see that vol(M(n))= 2n f (π/n). Again a(0)= π/6 and a′(0)= 0, whence, using
the values of 3, 3′, 3′′ at π/6, we get

f (0)= v3, f ′(0)= 0, f ′′(0)=−2
√

3.

Therefore

vol(M(n))
v3

= 2n −
2
√

3 π2

v3

1
n
+ o(1/n),

and the coefficient of 1/n is 33.71 . . . , which easily implies the conclusion. 2

Analogously to Proposition 2.11 we are able to show that the right-hand side
estimate in Proposition 3.3 is always true, not only asymptotically.

PROPOSITION 3.4. For all n ≥ 4, the following inequality holds:

vol(M(n))
v3

< 2n.

PROOF. Proposition 3.3 implies that

lim
n→∞

vol(M(n))
n

= 2v3,

so it is sufficient to prove that n 7→ vol(M(n))/n is an increasing function. To this
end we recall a result to be found in [10], namely that M(n) is the n-fold cyclic
covering of S3 branched over the figure-eight knot 41. Let now us denote by 41(n)
the orbifold with underlying space S3 and singular set 41 with cone angle π/n.
Since 41(n) is hyperbolic and vol(41(n))= vol(M(n))/n, it is then sufficient to
demonstrate that n 7→ vol(41(n)) is an increasing function. But this fact is a direct
consequence of Schläfli’s variation formula [12, p. 512], since the cone angle decreases
as n increases. 2
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Using again the fact that the complexity of a manifold is always an integer, as
in the proof of Corollary 2.12, this result together with Proposition 2.7 implies the
following result.

COROLLARY 3.5. For sufficiently large n, we have c(M(n))> 2n.

Theorem 1.2 of the Introduction is now a direct consequence of Proposition 3.1 and
Corollary 3.5.
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