A NOTE ON LOWER RADICAL CONSTRUCTIONS
FOR ASSOCIATIVE RINGS

A.G. Heinicke1

(received July 28. 1967)

1. Introduction. In [2], a construction for the lower
radical class Ro('q) with respect to a class n of rings was

given as the union of an inductively defined ascending transfinite
chain of classes of rings. It was shown there that this
construction terminates, for associative rings, at  , the

o

first infinite ordinal, in the sense that if {n : o an ordinal}
o
is the chain, then Ro(n) =n, - Also, examples of classes n
o

for which Ro(n) =myp My My were given.

The purpose of this note is to give an example which shows
that w is the best lower bound that can be obtained. We

describe a class of rings m for which Ro(q) = N, but for

which Ro(n) #nk for any finite ordinal k. °

As a preliminary to establishing this result, we also show
that, for any finite ordinal k, there are classes rn for which
Ro(n) an. The problem of showing whether or not, for a given

finite ordinal k, there is a class n for which Ro(n) =My

is still open.
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2. Notation and Preliminary Lemmas. A 'ring" in this

note will mean an associative ring (not necessarily possessing
a unity), and an "ideal'" will always mean a two sided ideal.

The situation in which A is an ideal of B will be denoted
A< B.

If A and B are subrings of a ring K, and if A C B,
the smallest ideal of B containing A will be denoted by <A>B.
It is easily seen that <A>B = A+BA +AB + BAB.

For the definitions and properties of 'radical properties"
for associative rings we refer the reader to [1]. A class R
of rings will be a radical class if and only if it is the class of
X -radical rings for some radical propertyé‘[ .

Given any class rn of associate rings, the lower radical
class R (n) is the smallest radical class containing .
— o

Using the notation of [2], (see also [1], footnote, p.12),
Ro(n) = Mo where ny is the class of all homomorphic images

of members in n, and m (aan ordinal > 1) is defined
o
transfinitely as in [2]. Each m is homomorphically closed,
o

and, if o and B are ordinals, and «< B, then na_f_‘n .

p

Finally, we say that a subring B of a ring K is
accessible to K by a chain of length k if there is a chain

B = A 4 QA ...49A =K.
(1) 1 AZ 3 k

LEMMA 2.1. If B 1is a subring of K, if B 1is accessible

to K by a chain of length k, and if B is in ny then <B>A
i

is in m, r for 1 =2,3,...k. (The A's are the rings in

i- i
equation (1)).

Proof. The proof of the lemma, essentially an induction
on i, 1is contained in the proof of Lemma 2 of [2].

LEMMA 2.2 Given any class m, and a finite ordinal
k>0, aring K isin um if and only if. for any non-zero

homomorphic image K' of K, there is a chain
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ro= 0
(2) K LeL > 1, #

where I,1 is in ny-

Proof. i) "Only if". This is clearly true when k =1,
since uh is homomorphically closed. Assume that it is true

for all s <k, and let K bein Ny If K'# 0 is a homomorphic
image of K, then K' has a non-zero ideal J in e for some
n< k, and hence J is in Mg By our inductive assumption,

this gives a chain

K! = R N | 0
> J Jk_1l> 1#

where J1 is in ny- This is clearly a chain of the desired

form. Hence the result is true for -

ii) "If" Suppose we have K' a non-zero homomorphic
image of K, and a chain satisfying equation (2). Define

S = <11>K" By Lemma 2.1, S is in Mg Thus any non-zero

homomorphic image of K has a non-zero ideal in M4

whence K is in nk'

3. The First Example. In this section, we give examples
to show that, given an integer n > 2, there is a class n of

rings for which Ro(n) # LR

Let R be the field GF(p) of p elements, where p is a
prime, and let F = R[x, t], the ring of polynomials over R in
two (commuting) indeterminates. For any n> 0, let Gn be
the subring of F consisting of all elements of the form
xp(x) + =M tlxnr,(x), where p(x) and the r (x) are

i=1 ! !
arbitrary polynomials in x, and m is an arbitrary integer
> 1. Thus, for example, G is the set of polynomials with
- o

zero constant term. Also, whenever a power of t appears in

Gn’ it must be multiplied by x . Itis easily verified that
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we have

q .
Gn<1 Gn-1<1Gn-2<1 G1 GO

Also, any ideal of GO is an ideal of F. In particular

G'1 <4 F. Infact, we have G1 =< G > To see this, it
n

P

suffices to show G, ©< G > since G DG and G <« F
1= n 1= n 1

Fy

together imply G12< Gn > However, since any element of

P

m
G1 is of the form =xp(x) + Zi— t'x ri(x), and since xp(x) and

1

m
xr (x) arein G , we have that xp(x) +Z, ' x r(x)eG +
i n i=1 1 n

FG C <G >_ . This proves the assertion.
n— n F

Let ny be the class of homomorphic images of Gn.

< e =< .

Then Gn Gn_1<1 < G1<1F, and G1 Gn>F

By Lemma 2.1, we have G1 €n_ . The proof of the example

n

will be complete if we can show Cv1 > g

Suppose, to the contrary, that G1 is in U
By Lemma 2.2, there must exist a chain

where Z is a member of ny that is, a homomorphic image

of G . We show that this leads to a contradiction.
n

LEMMA 3.1. If ¢ is a non-zero homomorphism of Gn

into F, then there is a unique way of extending ¢ to an
endomorphism of F.

Proof. Recall that every element of Gn is of the form
m
i=1

let ¢(x) = A, and <p(t1xn) = Bi. Then B.B. = (p(tlxn)q)(tjxn) = Bi+jA
1]

xp(x) + = £ xnr,(x). If ¢ is such a homomorphism,
i

n
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The ring F has no divisors of zero. Therefore, if A =0,

then Bi2 =B iAn = 0, and hence Bi =0, for all i. Thus

2
A =0 implies that ¢(w) = 0 for all w in Gn. Since we are

assuming that ¢ is a non-zero homomorphism, we have A # 0.

An extension of ¢ to all of F can be found if we can find
an element Q€ F such that Bi = QlAn for all i. If we have

such an element Q, setting $(x) = A and (t) = Q induces an
endomorphism ¢ of F which is clearly an extension of ¢.
Furthermore, such a Q. if it exists, must be unique, since F
is a unique factorization domain, and hence has no divisors of
zero.

In order to find such a Q, consider the relations
2 n n 2n k (k-1)n
= = = ... = A .
B'1 BZA s B1 BiBZA B3A , , B'1 Bk

By considering the prime factors of B1 and of An, we see

(k-1)

K
that [A"] divides B *, for all k> 1, implies A"

K (k-
divides B, . Suppose B, = QA". Then B, :BkA(k )n

(k-1)n

k k
gives Q A "-B A Since F has no divisors of zero,

k
k-1 k
we can cancel A( )n to get Bk =Q A" for all integers

k > 1. This completes the proof of the lemma.

= = q
We thus have Z Y1 q Y2<I q Yn—i (}/1 F,

and Z = ¢(G ) for some endomorphism f{ of F. We are
n

denoting ¢(x) by A and ¢(t) by Q.

There are two possible cases which can occur - either
Q and A are algebraically independent over R, or they are
not.

Case 1. Q and A are algebraically independent over R.
In this case, it follows (see [3], p.27) that the endomorphism
¢ of F will be one-to-one. Since Gi QF, and Ace Z,

QeF, wehave QA¢G,, QAzeYn 2,...,QA“‘15Y1:Z.
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Since Z = go(Gn), there isa ge Gn such that

o(g) = QA = p(tx ). Since ¢ is one-to-one, tx =ge Gn,

a contradiction.

Case2. Q and A are algebraically dependent over R.
In this case there must be an element Be¢ F which is
algebraically independent (over R) of A. For if A ¢ R, then
B = x willdo. If A 1is notin R, then either the degree of A
in x (degX A) 1is greater than or equal to 1, or degt(A) >1.

Suppose that deg (A) > 1. Then every non-zero W ¢ AF has
< Z
deg (W) > 1, and AF contains no elements which are polynomials
% zZ
over R in t alone. Then A and t are independent, for

otherwise we would have h (A)’cn + hi(A)tn_1 +.o. .+hn(A) =0,
o

where each h (A) is a polynomial in A with coefficients in R.
i

k
Any common factor A of all the h (A)'s may be cancelled,
i
and so we may assume that at least one hi(A) has a non-zero

constant term. Collecting the terms in t alone gives

0 = g(t) + Ar(x,t), where q(t) is a polynomial in t over R,
and r(x,t) is a polynomialin X and t over R. This gives
q(t) ¢ AF, a situation which cannot occur. Similarly, if
degt (A)>1, then A and x are independent over R.

Let B and A be independent. As in Case 1, we have
BAn_1 e Z. Since q;(Gn) = Z, and from the form of elements of

1

Gn, we see that we must have BA" = = Ap(A) + 2?_11 QAnri(A),

where A # 0.

If AeR (i.e. if A is invertible), then B 1is a polynomial
in Q over R. If A is notin R, since F is a UFD, it
follows that the polynomial in A, p(A), is divisible by An—Z'
and that we can write p(A) = An—zq(A) where g(A) is, in fact, a
polynomial in A. We then obtain B = q(A) + 221 QiAri(A)eR[A, Ql.
In either case R[A, Q] DR[A,B]DR[A].
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However, A and Q are dependent over R, which
implies R[A, Q] is algebraic over R[A]. On the other hand,
A and B are independent, which implies R[A, B] is
transcendental over R[A]. Again, in this case, we have a
contradiction.

h , G .
Thus we have Gﬂenn 1% LI

We have actually proved slightly more; namely
LEMMA 3.2. If we have

G, eY oY r>...l>Y1:}=O,
then Y1 cannot be a homomorphic image of Gn.

4. The Second Example. In this section we give an
example, based on the previous example, of a class n and a
ring K for which K is Ro(n) radical, but K 1is not in n,

for each finite ordinal n.

Let Py Pprooo be an enumeration of the prime numbers.
and let G (p ) be the example of the previous section, with
n n
R = GF(p ). We take UM to be the collection of all the
n

homomorphic images of the Gn(pn) for all n, and we set
0
K = ?_91 Gi(pi)’ the (weak direct sum) ring direct sum of the

Gi(pi)-

Since each Gi(pi) is in the radical class Ro(n),K is
lso in R .
also in O(r])

We claim that, for all finite n,k 1is not in . For,
since mn is homomorphically closed, if K is in m , then
n n
Gi(p.) is in n_ for all i. By Lemma 2.2, this implies that

i n

we have a chain, for each i,

(1) Gi(pi)D In-ibln_zb ...f>I1¢O
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and a homomorphism ¢ of Gt(pt) (for some t) onto I, .
Since every element of G (p.) is of characteristic p., we
n- i i

must have 1 = t.
In particular, for i =t =n+1, we have

G, (p

1 n+1)DI c...>1

n-1 1’

where I1 is a non-zero homomorphic image of Gn+'1(pn+1)'

Lemma 3.2 (with n replaced by n+1) shows this is
impossible.

This completes the proof.
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