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Abstract

Duality theory is discussed for fractional minimax programming problems. Two
dual problems are proposed for the minimax fractional problem: minimize
maxy£y f(x,y)/h(x,y), subject to g(x) < 0. For each dual problem a duality
theorm is established. Mainly these are generalisations of the results of Tanimoto
[14] for minimax fractional programming problems. It is noteworthy here that
these problems are intimately related to a class of nondifferentiable fractional pro-
gramming problems.

1. Introduction

Duality Theory for convex differentiable programs has drawn considerable
attention from the workers in the field of mathematical programming so far.
A comprehensive account of the relevant results in this area can be found
in Craven [2]. In particular the reference [2] also gives a useful account of
the treatment of Lagrangian and Wolfe duals for differentiable programs and
further in the cited reference some applications of the Lagrangian theory are
also given. Another duality concept known as apex dual which is different
from that of the Lagrangian Dual has been developed by Duffin [3] and Duf-
fin, Karney and Prisman [4] in the case of primal constraints. B. Mond [7]
has treated nondifferentiable mathematical programming problem in detail
and further Tanimoto [14] develped a duality theory for each class of prob-
lems. In the present work our primary objective is to develop a duality theory
for fractional min-max programming which eventually is more general than
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ordinary fractional programming. Although our results basically extend the
results of Tanimoto, at the same time they also extend the dual theorems such
as those obtained for min-max objective function involving basic functions
of the type ft/gt, 1 < i < p in the work of Jagannathan and Schaible [5],
where the functions fi and £, were nondifferentiable.

In fact in [13] Singh has established necessary and sufficient optimality
conditions for min-max type of Fractional programming as treated in the
present paper but duality theory for such problems do not appear in his
treatment. Our results also differ essentially from the duality results obtained
in S. Chandra, B. D. Craven and B. Mond [1] in their generality. In the
current literature there are dual theorems for Multi-objective programming
problems involving a vector minimization of n-tuple of functions which are
either differentiable or subdifferentiable. For a preliminary account of such
results one can refer to the work of Sawaragi, Nakayama and Tanino [10].
Our contention is that the dual theorems of the type developed in the present
work can be extended to the setting of vector optimization problem where
each entry of the n-tuple of functions involves a min-max type of objective
function separately.

A point to be made with regard to the essential feature of the subject is
that the duality theory for convex programs is based on a concept of the
'adjoint' of a convex bifunction (see Rockafellar [9]). the adjoint operation
for bifunctions may be regarded as a generalization of the adjoint operation
for linear transformations. Also one can build a convex algebra parallel to
linear algebra in the gamut of the Duality theory.

Our objective function treated here is as follows

where Y is a compact subset of Rm, f(.,.): R" x Rm -+ R is a differentiable
function on R" x Rm and h(.,.): R" x Rm -> R is also a differentiate function
onR"xRm. Throughout this paper we assume that h(x,y) > Oforeach (x,y)
in X x Y, where X is a set of feasible solutions of the problem. Also we assume
that / ( . , y ) and -h(.,y) are convex functions of x for each y. Notice that
although / and h are differentiable functions F{.) may not be differentiable.
Also F(.) need not be a convex function.

The primal problem is as follows:

Problem (P) Minimize F(x)

Subject toxeX = {XGR"\g(x) < 0},

where F is the function denned by (1) and g(.): R" —> R" is a convex and
differentiable function. We assume that X is nonempty. In this paper our
aim is to formulate two dual problems to primal problem (P) and then to
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establish duality relationship. We obtain a duality theorem for each dual
problem and converse duality is also discussed.

Throughout the paper, it is assumed that / ( . ,y) and -h(. ,y) are convex
functions of* for each y. Vxf, -Vxh and Vxg denote the gradient vectors
of / ( . , y ) , -h(.,y) and g(.), respectively. Given a real valued function F on
R", V2F denotes the n x n Hessian matrix.

In the development of the matter what follows in the ensuing paragraphs
we have adopted the essential techniques of [14] which are necessary to make
the treatment as coherent as possible.

2. Duality theorem

Let X, the set of feasible solution be a compact set. For each x e X, we
define,

I(x) = {i:gi(x) = 0},
Y(x) = {ye Y;f(x,y)/h(x,y) = Supz6r f(x,z)/h(x,z)},

AT=the set of triplets (s, t,y), where s ranges over the positive integers such
that 1 < s < n + 1; t = (ti,...,ts) an ^-dimensional vector with t > 0,
]£/=i fi• = 1; y = (y\,... ,ys) an /M5-dimensional vector with y, e K(x) (i =
l,...,s) for some x G R".

For x e X, (J,/.JO € #,>>,• e y(jc), u = f(x,yt)/h(x,yi).

Also we define

H(s,t,y) = {(x,p) ER"x RP\X and fi satisfying {yi,...,ys} C r ( x )

and
p

Now we define a dual problem as follows:

Problem (D) Maximize Sup(x / / ) e / / ( ,>a )F(x) + £Htgi(x) .

If for a triplet (s, t, y) in K, the set H(s, t, y) is empty we define the supremum
over it to be -oo. Under the convexity condition imposed on the functions
/ , -h and g, the next theorem state a duality relationship between problem
(P) and (D).

https://doi.org/10.1017/S0334270000006809 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006809


[4] Duality for fractional minimax problems 487

THEOREM 2.1. Let x* e X be an optimal solution of the problem (P) and
Vgi{x*) (i € I(x*)) be linearly independent. Then there exist (s*,t*,y*) in
K and n* e R", n" > 0, with (x*,n*) e H{s*,t*,y*) such that {s*,t',y*) and
(x*,/i*) give an optimal solution to problem (D). Also, the two problems (P)
and (D) have the same extremal values.

PROOF. Since x* is an optimal solution of (P) and Vgi(x*) (i e I(*x*)) are
linearly independent, therefore by Schmitendorfs Theorem 1 [12] and its
corollary, there exist a positive integer s*, 1 < s* < n + 1, t° = (t^,...,/°)
w i t h * ? > 0 ( i = l , . . . , s * ) , T = ( y ; , . . . , y ; ) w i t h y * e Y(x*) (i = l,...,s)
and n° = (ftf,...,n°) with fif > 0 (i = 1,...,p) such that

s'

Yiiti/Hx'.y'WxXx'.y?)) - (t?/h(x*,y;)2)(f(x*,y*)Vxh(x*,y*))
1=1

or

YtflKx'rtDWxKx'rt) - v*Vxh{x*,y*)) + ^2^Vgi(x*) = 0,
1=1 /=i

nhi(x*) = o, i=\,...P.

Let a = Yf=l f°, then (s'.a-1*0) belongs to K and (x*,a~ln°) belongs to
His^a-it0,?*). Put t* = a~lt9 and n* = a~ln°. We first show that (x*,/t*)
attains the maximum of the following problem:

p
Maximize F(x)

Subject to {x,n) e H(s*, t*,y*).

For any (x,/i) e H(s*,t*,y*), using {y*,...,y*.} c Y(x) and the convexity
of / , -h, g and remarking n*gt(x*) = 0 (/ = 1,. . . ,p), we have

P

(continues)

https://doi.org/10.1017/S0334270000006809 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006809


48» Shri Ram Yadav and R. N. Mukherjee [5]

> E(/;/AU,y;))(Vx/(A:,y?) - Wxh(x,yt)){x* - x) - 2>/ f l(x)
1=1 1=1

k 1=1 1=1

p

x ix* — x) —
1=1

In the last inequality, (*,/*) e H(s*,t*,y*) and £,(x*) < 0 (/ = l , . . . ,p ) are
used. Hence we obtain

p P

Fix*) = Fix*)

for all ix,n) G His*,t*,y*). Further, to complete the proof, we must show
that for any is, t, y) in K,

p

x) + J2ngiix) < Fix*). (3)
i=i

We may assume that His,t,y) is nonempty. Take any ix,fi) from His,t,y).
By using

7=1

1=1

and
p

we have

t,{f(x,yi)/h(x,y,))

(continues)
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{x,yi) - Wxh{x,yi))

x (JC* - JC) = 0.

£>V#(x) 1

Since (x,n) belongs to H{x, t,y). Thus (3) is proved from which follows the
first assertion of this theorem and (2) implies the second assertion, because
F(x*) is the extremal value of Problem (P).

3. Alternative duality theorem

As the special case of the programming problems considered, we let here,

f(x,y)/h(x,y) = k(x)/q(x) + x'y,

where t denote the transpose and k(), -q{) are convex and differentiate
functions defined on R". Putting h(x,y) = 1 and q{x) = 1, we can obtain
the problem studied in [11, 13]. Notice that in this case the set K can be
represented by the set of elements to in Y such that x'co = Sup z e r x'z for
some x of X.

In view of a dual problem [Problem (D)] introduced by Tanimoto [14,
Section 2], we are interested here also to introduce a less restrictive dual
problem as follows:

Problem (D*)

1=1 ;=1

Here K denotes the set of triplets (s,t,y), where s ranges over the integers
1 < s < n + 1, t = (tu...,ts), U > 0(i = l,...,s), with Y?M*I = l> ? =
0>i ys) with y, € Y for all / = l , . . . , s and we define

TT(s,t,y) = \(x,/i) <=Rnx * ' | £

p 1
-Wh{x,y)) + ^ mVgi{x) = 0,fi>0\.

Note that the condition, {yt,...ys}c Y(x) for some x e X, is droped in this
dual problem. Now our objective is to relate problem (P) to (D*) rather than
to (D).
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To do this we consider the following primal and dual problems for each
n = (s,t,y)eK:

s

Problem (P,) Maximize^ t,(f(x,y()/h{x,yi))
1=1

Subject to x G X = {x\g(x) < 0}
s P

Problem (A,) Minimize^ tj(f(x,yi)/h(x,y,)) +
i = I

Subject to (x,fi) e H*(s, t,y).

These are as usual (differentiable but not convex) fractional programming
problem and its dual problem. This can be also convexified by using the
Manas and Schaible transformation. Now we denote the extremal values of
Problems (P,) and (D,) by (Pe) and (De) respectively and those of Problems
(P), (D) and (D*) by min (P), max (D) and max (D*), respectively. The next
theorem given below relates Problems (P) to (D*).

THEOREM 3.1. If x* is optimal for (P) and Vgi(x*)(i € I(x*)) are linearly
independent, then there exist {s*,t*,y*) in K* and n* € Rp,n* > 0, with
(x*,n*) 6 H*(s*,t*,y*) such that {s*,t*,y*) and (x*,n*) give an optimal
solution to (D*). Furthermore the two problems (P) and (D*) have the same
extremal values.

The proof of Theorem 3.1 can be given on similar lines as that of Theorem
2.1.

4. Converse duality

In this section we assume our fractional function as follows:

{f{x,y)lh{x,y)) = k(x)/q(x) + y'(r{x)/q{x)).

Now using the usual Manas and Schaible transformation, the above function
can be expressed as follows:

y/(z0, z,y) = zok(z/z0)+ylzor(z/zo),

or

if/(z0, z,y) = a{z0, z) + y'0(zo, z),
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which is very similar to the function adopted in [14] Section 4. Here also
a(zo, z) and fi{zo, z) are convex and twice continuously differentiable func-
tions from R" and Rm respectively. The primal problem is as follows:

Problem (P) Minimize Fix) = max zok(z/zo) + y'zor(z/zo)
y€Y

Subject to g(z/z0) < 0,
where g is twice continuously differentiable. Let us define compact constraint
Y as follows:

Y = {yt=Rm\a>(y)<0},
where co{): Rm —• Rq is a convex and differentiable function. We assume
that Y c {y\y > 0}.

We shall say that following condition (*) is satisfied at y° £ Y if

c e R", V<o(y°)c = 0, c'(o(y°) = 0, c > 0 imply c = 0, ((*))

Since Y is convex, it is easily seen that in this case problem (D*) is:
Maximize zok(z/zo) +y'zor(z/zo)
Subject to V(zok(z/zo)) + y'V(zor(z/zo))

+ /t'Vg(z/zo) = O
fi>0, (o(y) > 0.

Now, to prove the converse duality theorem between (P) and its dual problem,
we state the following Lemma as a special case of Lemma 1 of Tanimoto [14].

LEMMA 1. Let (zj, Z*,y*',n*) be optimal for (DJ* and let the matrix
V2(z*ok(z'/zZ)) + V2y«{z*Qr{z*lz*Q)) + V V s ^ V ^ ) be nonsingular. Sup-
pose the condition (*) is satisfied at y*. Then y* belongs to Y{Z*/ZQ).

We omit the proof here, because this can be proved very easily following
the proof of Lemma 1 of [14].

THEOREM 4.1. (Converse duality) Let (zj), z*,y*,pf) be as in Lemma 1, then
(ZQ,Z*) is optimal for (P) and the two extremal values of Problem (P) and
(D)* are equal.

The above results can be proved in a similar manner as in the case of
Theorem 3 of [14].
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