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Abstract

Recent advances in machine learning (ML) promise far-reaching improvements across med-
ical care, not least within psychiatry. While to date no psychiatric application of ML consti-
tutes standard clinical practice, it seems crucial to get ahead of these developments and
address their ethical challenges early on. Following a short general introduction concerning
ML in psychiatry, we do so by focusing on schizophrenia as a paradigmatic case. Based on
recent research employing ML to further the diagnosis, treatment, and prediction of schizo-
phrenia, we discuss three hypothetical case studies of ML applications with view to their eth-
ical dimensions. Throughout this discussion, we follow the principlist framework by Tom
Beauchamp and James Childress to analyse potential problems in detail. In particular, we
structure our analysis around their principles of beneficence, non-maleficence, respect for
autonomy, and justice. We conclude with a call for cautious optimism concerning the imple-
mentation of ML in psychiatry if close attention is paid to the particular intricacies of psychi-
atric disorders and its success evaluated based on tangible clinical benefit for patients.

Introduction

The quest for objective measures of mental disorders has been a long-standing ambition of
psychiatry (Kapur, Phillips, & Insel, 2012; Singh & Rose, 2009). Given the notorious difficulties
of classifying mental disorders and the challenge of establishing psychiatric biomarkers, many
recent advances put their hope in approaches using machine learning (ML) as a paradigm-
shifting way forward (Bzdok & Meyer-Lindenberg, 2018; Janssen, Mourao-Miranda, &
Schnack, 2018; Shatte, Hutchinson, & Teague, 2019). By applying ML on large-scale datasets,
it seems feasible to distinguish between healthy controls and patients diagnosed with major
depressive disorder or schizophrenia on an individual level – although reported diagnostic
accuracies differ largely across studies (Ebdrup et al., 2019; Gao, Calhoun, & Sui, 2018;
Kambeitz et al., 2015). Furthermore, ML techniques can differentiate successfully between sub-
groups within psychiatric categories (Drysdale et al., 2017; Dwyer et al., 2018) and predict the
success of specific psychopharmacological interventions for single subjects (Chekroud et al.,
2016; Webb et al., 2018). Of high clinical interest are ML applications that provide robust
probabilistic estimates regarding the future onset of psychosis (Borgwardt et al., 2013;
Chung et al., 2018; Koutsouleris et al., 2018) or the risk of suicide (Franklin et al., 2017;
Just et al., 2017; Walsh, Ribeiro, & Franklin, 2017). However, to allow translation to current
clinical practice, further multicenter imaging studies, integrating clinical measures and multi-
variate imaging data, are needed to replicate promising initial findings (Giordano &
Borgwardt, 2019).

Currently, there is no established ML application in psychiatric clinical practice. The drastic
increase of FDA approvals for medical applications of artificial intelligence (AI) in the past 2
years (Topol, 2019) suggests that some ML programs could soon be integrated into standard
clinical care, improving prediction and early detection, diagnostic certainty, and individual
treatment outcome in the sense of personalized psychiatry (Perna, Grassi, Caldirola, &
Nemeroff, 2018). Unfortunately, the majority of ML applications in psychiatry still lack
in-depth ethical analysis. With few exceptions discussing specific case studies
(Martinez-Martin, Dunn, & Roberts, 2018), ethical concerns are often voiced in a general
form (Char, Shah, & Magnus, 2018; Topol, 2019; Vayena, Blasimme, & Cohen, 2018), thus
necessarily neglecting the particular intricacies of potential psychiatric applications.

ML is an extremely broad term, covering many distinct computational approaches for even
more heterogeneous real-world problems. We aim to demonstrate that any categorical rejec-
tion of the use of ML in psychiatry would be ethically wrong given its potential benefits
but that careful evaluation is needed whether a particular procedure improves clinical care
or merely constitutes a nifty computational exercise. Using schizophrenia as a paradigmatic
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case, we will first sketch some fundamental distinctions of differ-
ent ML methods, before turning to three (hypothetical) case stud-
ies. To support our main claim, we will discuss these cases
following the principlist framework of Beauchamp and
Childress (2013), which has recently been embraced as providing
suitable principles for the ethical use of AI as well (AI HLEG,
2019; Floridi et al., 2018).

Machine learning in psychiatry

The meaning of the term ‘machine learning’ is often ambiguous.
In the present paper, we use ML to describe learning algorithms
which improve their performance in a certain task based on prior
computation (Iniesta, Stahl, & McGuffin, 2016; Mitchell, 1997).
ML in this sense comprises a narrower field than AI, which
includes generalized AI and incidentally describes ‘whatever
hasn’t been done yet’ (Hofstadter, 1980, p. 601). At the same
time, ML itself entails many specific computational approaches,
from deep learning (DL) using artificial neural networks to algo-
rithms relying on support vector machines. Across the many dif-
ferent methods of ML, a common distinction is drawn between
three types: supervised, unsupervised, and reinforced learning.

Typical tasks performed by supervised learning are problems
of discriminative classification where the ML algorithm assigns
a probability of belonging to a certain category Y based on feature
X. To do so, supervised learning requires labeled training data,
matching the training instances to labels such as ‘diseased’–
‘healthy’, ‘developed psychosis’–‘did not develop psychosis’, or
‘positive treatment outcome’–‘negative treatment outcome’.
After training, the ML algorithm can then assign these labels cor-
rectly to new data. Unsupervised learning, on the other hand,
does not require labeled training data. Instead, it can make use
of often more readily available, unlabeled data, such as whole-
genome sequences or cell phone metadata, to find clusters within
these data points. In real-life settings, applications may fall
between these two approaches and are described as ‘semi-
supervised’ or, as recently suggested by LeCun, as ‘self-supervised’
(LeCun, 2018), complementing labeled training data with large
bits of unlabeled data (Chapelle, Schölkopf, & Zien, 2010).
Finally, reinforcement learning denotes ML programs that opti-
mize their interaction with an environment by trying to maximize
reward over time (Mnih et al., 2015). While this approach,
inspired by neuroscientific accounts of learning, does not require
fully labeled data, it needs some formalization of rewards, e.g.
winning an ATARI game.

The schematic distinction of these three general ML types can
also be instructive for ethical debate of applied ML in psychiatry.
For as we will show, differences in methodology do not only have
a big impact on feasibility since labelling of data often requires
cost- and labor-intensive efforts but may also account for import-
ant ethical implications (Table 1).

Before turning to the potential of ML techniques to improve
clinical care, some methodological limitations of psychiatric ML

need to be mentioned, recently stressed by Vieira et al. (2020).
Some of these concerns, such as small sample size or publication
bias, are pervasive across different research areas and neuroscien-
tific research in particular (Button et al., 2013; Kellmeyer, 2017;
Schnack & Kahn, 2016). Other methodological issues arise with
specific regard to ML, e.g. regarding failure to rigorously employ
nested cross-validation, testing the predictions of an ML program
on a fully independent sample (Stahl & Pickles, 2018). In add-
ition, psychiatry’s high-dimensional and often noisy data demand
particular consideration and may hinder adopting computational
strategies popular in other medical areas. While DL is frequently
considered the method of choice for medical image analysis
(Shen, Wu, & Suk, 2017), some recent results suggest that for
imaging-based predictions of cognitive and behavioral measures,
classical kernel regression is at least as successful as DL
(He et al., 2020; Mihalik et al., 2019), rendering a linear and
more interpretable approach (Heinrichs & Eickhoff, 2020) poten-
tially preferable. These methodological challenges may partially
account for inconsistent results across different studies, e.g. report-
ing largely variable accuracies for potential biomarkers of schizo-
phrenia based on ML and neuroimaging (Kambeitz et al., 2015).

The potentially deepest challenge for implementing ML in
psychiatry lies in its long-embattled nosology though (Kendler,
2016; Kendler, Zachar, & Craver, 2011; Zachar, 2015), calling
into question the choice of appropriate data for training. Given
that psychiatry arguably still lacks a successful diagnostic scheme
that is valid and reliable (Barron, 2019), establishing psychiatric
ML programs relies on a shaky ground truth. This problem is exa-
cerbated by fundamental concerns whether a reductionist frame-
work, considering psychiatric disorders as mere brain diseases to
be investigated with neuroimaging and genetics, is convincing
(Borsboom, Cramer, & Kalis, 2019). While we largely focus on
neuroimaging studies in our examples for the sake of simplicity,
research should thus be careful to not restrain their input a priori
to biological data but also include social and idiosyncratic infor-
mation on individual patients. Using natural language processing
on narrative electronic health records could provide a starting
point for such an endeavor (Rumshisky et al., 2016).

Applications of ML for schizophrenia

Future ML applications for patients with schizophrenia may differ
largely. For research purposes, using unsupervised learning to
identify altered brain structures in patients with schizophrenia
is common. In some of these possible approaches, which have
been described as data- or discovery-oriented (Huys, Maia, &
Frank, 2016; Krystal et al., 2017), the algorithm is provided
with neuroimaging data of patients with schizophrenia and left
to find clusters (Dwyer et al., 2018; Schnack, 2019). Hence,
apart from sample choice, little human labeling determines the
data. Instead, the algorithm is left to find clusters that may or
may not map onto a given hypothesis and can, in some cases, cor-
relate with clinical data. Indeed, given the manifold disputes over

Table 1. Supervised, unsupervised, and reinforced ML

ML type Required data Typical problem Exemplary application in schizophrenia

Unsupervised Unlabeled training data Clustering Refine diagnostic criteria (case 1)

Supervised Labeled training data Classification and regression Improve diagnostic accuracy (case 2)

Reinforced Labeled and unlabeled data Dynamic decision-making Suggest optimal treatment regime (case 3)
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psychiatric categorizations, some authors hope that embracing
such a data-driven ML approach may provide new insights into
neurobiological mechanisms of psychiatric diseases (Adams,
Huys, & Roiser, 2016; Huys et al., 2016; Madsen, Krohne, Cai,
Wang, & Chan, 2018; Skatun et al., 2017). A recent study that
associated neuroanatomically distinct subtypes of schizophrenia
with different illness duration and degrees of negative symptoms
may serve as an example for this aspiration (Dwyer et al., 2018).

Also for diagnostic purposes, ML presents new opportunities
for psychiatry. Based on specific changes in brain volume, several
groups have shown that ML can distinguish non-medicated, first-
episode patients with schizophrenia from healthy controls using
volumetric MRI data (Chin, You, Meng, Zhou, & Sim, 2018;
Gould et al., 2014; Haijma et al., 2013; Lee et al., 2018; Rozycki
et al., 2018; Xiao et al., 2019). As noted, findings so far have
been rather inconsistent and one should avoid overoptimistic
interpretations of these results (Kambeitz et al., 2015; Vieira
et al., 2020). Still, it seems reasonable to assume that in the future
some ML techniques could assist physicians in their diagnostic
process. Such applications could provide probabilistic estimates
regarding one or several diagnostic labels such as schizophrenia,
based on overlap with previously diagnosed patients. Arguably,
most such methods would fall under the label of supervised learn-
ing since the training data need to be labelled, consisting of a vec-
tor of individual data such as brain data assigned to a category of
‘diseased’ vs. ‘healthy’, respectively.

Finally, recent psychiatric advances employing ML have seen a
turn toward predicting certain quantifiable events beyond diag-
nostic labels, e.g. providing probabilities for the likelihood of an
onset of psychosis (Koutsouleris et al., 2015, 2018) or for the
treatment success of one certain drug (Chekroud et al., 2016;
Webb et al., 2018). While the majority of these approaches
draw on supervised or unsupervised ML, some also use reinforce-
ment learning to derive recommendations for optimal dynamic
treatment regimes, using e.g. longitudinal data from so-called
Sequential Multiple Assignment Randomized Trials (SMARTs).
For example, by considering the treatment success of specific anti-
psychotics from the CATIE study (Stroup et al., 2003), Ertefaie,
Shortreed, and Chakraborty (2016) have constructed a Q-learning
approach which optimizes treatment outcome based on a patient’s
characteristics. Even more to the point, Koutsouleris et al. (2016)
have shown that a cross-validated ML tool trained on diverse

data from 334 patients could identify individuals which were
more likely to benefit from treatment with amisulpride or olanza-
pine than with haloperidol, quetiapine, or ziprasidone. Such studies
should be taken with a grain of salt though, given that there is no
agreement what constitutes useful measures of treatment outcomes
in psychiatry (Zimmerman & Mattia, 1999; Zimmerman, Morgan,
& Stanton, 2018) – a conundrum the introduction of ML seems
unlikely to solve.

To highlight the dissimilarities between different usages, we
provide three schematic cases that fall within the range of possible
applications, from research to diagnosis and choice of treatment
(Table 2). All three cases, we hold it, touch upon important
ethical concerns that can be discussed in accordance with the
four principles put forth by Beauchamp and Childress: benefi-
cence, non-maleficence, respect for autonomy, and justice
(Beauchamp & Childress, 2013).

Beneficence

The principle of beneficence expresses an aspiration to further the
welfare and interests of others, potentially implying particular obli-
gations of acting (Beauchamp & Childress, 2013, p. 165–176). As
our previous points and cases indicate, patients may benefit from
applied ML in many different ways, both directly and indirectly.

Direct
Firstly, ML-supported diagnostic tools aim at improving diagnos-
tic certainty. Techniques such as in the case of D (case 2) may
serve as an automated second opinion, confirm a psychiatrist’s
judgement, and help with unclear cases. In fact, if the algorithm
is trained on data of the highest quality, which are, e.g. labeled
independently by several internationally leading and experienced
psychiatrists, it could provide patients with a reliable diagnosis.
Considering the difficulty of establishing whether schizophrenia
is accurately diagnosed and given the considerable inter-rater dis-
agreement among experts (Mokros, Habermeyer, & Kuchenhoff,
2018), a diagnostic algorithm supporting psychiatrists in their
decision-making could increase the likelihood of patients receiv-
ing a correct diagnosis and hence of receiving an adequate treat-
ment. By providing prognostic estimates concerning the future
course of a disorder, such as the occurrence of psychotic episodes,
or the success of specific treatments, ML applications may also

Table 2. Case vignettes

Three potential applications for ML in schizophrenia

Case 1: R is presenting with newly developed negative and positive symptoms at a university psychiatry department. Based on a clinical interview, R is
diagnosed with schizophrenia by a psychiatrist. As part of a research program that aims to distinguish amongst schizophrenia subtypes, Z undergoes structural
cranial magnetic resonance imaging (MRI) scanning which is analyzed by an ML algorithm trained to find commonalities and differences of brain volume in
specific cortical areas across all brain scans acquired from first-episode patients with schizophrenia presenting to the university hospital. Based on his brain
scan, R is assigned to a subtype of schizophrenia with a typical pattern of superior-temporal grey matter loss.

Case 2: D is presenting at a psychiatric day-clinic with mild psychotic symptoms and is diagnosed with schizophrenia after a clinical interview. Given her
markedly depressed mood and further reported symptoms such as insomnia, psychomotor retardation, and strong headache, the attending psychiatrist also
considers differential diagnoses such as a major depressive episode or a space-consuming intracerebral process. To exclude the latter, the attending
psychiatrist refers her antipsychotic-naïve patient to a neuroradiologist to obtain a structural MRI. After segmentation of white and grey matter, the radiological
data are fed to a machine learning algorithm which, based on previous training data in a comparable population, classifies the patient as suffering from
schizophrenia with a probability of 70%. The psychiatrist sees her diagnosis confirmed and commences psychopharmacological treatment.

Case 3: T is diagnosed with a first episode of schizophrenia based on a clinical interview. To choose the most effective drug for his individual situation, his
psychiatrist recommends a newly approved routine employing functional MRI during a reward-learning task. Based on T’s brain activity and a plethora of other
available information, from demographic data to his clinical records, the ML algorithm suggests one specific anti-psychotic drug as ideal for T’s specific
situation. Following the automated recommendation, the psychiatrist prescribes the drug to her patient.
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help to reduce extraneous psychopharmacological interventions
(Martinez-Martin et al., 2018) and track the progression of the
disorder. This is the case for T (case 3), who may be spared an
arduous trial-and-error regime of medication by an algorithm
suggesting one potentially ideal medication early on. Of course,
the benefits of a correct diagnosis might be infringed dramatically
by additional risks, to which we turn later, if these diagnostic or
predictive processes were to be left unchecked. However, at least
for now, such a development seems rather unlikely, both technic-
ally and socially, in most medical specialties (Topol, 2019).

Indirect
Beyond these immediate clinical uses, patients may also benefit
from research projects similar to our first case, leading to more
accurate diagnostic categories. After all, most current psychiatric
diagnoses as enshrined in the DSM or ICD are purely descriptive,
optimized primarily for validity and inter-rater reliability, not for
underlying pathophysiology – but this lack of concern for etiological
underpinnings has long been of concern to many in the field
(Hyman, 2011). In contrast, computational approaches based on
ML aspire ‘to automatically segregate brain disorders into natural
kinds’ (Bzdok & Meyer-Lindenberg, 2018, p. 223).
Notwithstanding conceptual questions regarding the nature of psy-
chiatric disorders (Kendler, 2016; Zachar, 2015), ML may be emi-
nently suited to develop biologically more plausible diagnostic
categories, allowing for more specific treatment options. After all,
concerns of insufficiently grasping psychiatric complexity have
long accompanied the development of psychiatric biomarkers
(Singh & Rose, 2009). ML drawing on rich data, from detailed bio-
logical information such as (f)MRI scans or whole-genome
sequences to demographic data and electronic health records,
could arguably accommodate such complexity. Still, the concern
remains that ML applications drawing onMLmay overtly reify diag-
nostic categories designed as heuristic constructs (Hyman, 2010) –
and thus end up harming patients.

Non-maleficence

Abstaining from harm is a bedrock of clinical practice (Smith,
2005). How does ML in psychiatry fare with regard to this crucial
principle? Firstly, privacy concerns may come to mind here
(Vayena et al., 2018). How is sensitive medical information dis-
closed to an algorithm and how can data created by the algorithm
be protected appropriately? These are essential questions but only
concern ML techniques indirectly, via the data used and produced
by its applications. Since privacy issues of big data have been
addressed extensively elsewhere (Price & Cohen, 2019), we will
leave them aside here to focus on harm potentially caused by
ML in psychiatry. As in the case of benefits, there are both direct
and indirect ways in which its use may harm patients.

Direct
First, using an algorithm may bring about harm directly, e.g.
when the diagnosis or predictions made by the ML application
are erroneous. Previous shortcomings of health-related ML can
be instructive here. IBM’s ML-based computer system Watson,
advertised as a revolutionary tool for cancer care, has been
shown to recommend unsafe treatments endangering patients’
safety and health (Ross & Swetlitz, 2018). Such errors are particu-
larly worrying if recommendations of algorithms are readily
accepted by medical staff, as in T’s case, or if the process would
become fully automated. Although an erroneous algorithm is

likely to affect more patients compared to an individual mistake
made by a physician, errors are far from exclusive to algorithms
(McLennan et al., 2013), and these concerns could be tackled
by a model of shared responsibility in which competent human
agents check the ML-based suggestions (Topol, 2019). However,
as opposed to human physicians, a trained ML algorithm may
not be flexible enough to account for contextual changes such
as the swift rise of smartphone usage or altered eating habits.
Given the dependency of psychiatric conditions on contingent
societal contexts, even a tested and approved program may thus
require regular overhauling and retraining to avoid systematic
misjudgments.

Indirect
The more intricate questions seem to arise from indirect effects of
using ML in patients with schizophrenia. By potentially modify-
ing the expectations of doctors, the result of a computationally
assigned risk-category will most likely influence downstream
diagnostic and therapeutic decision-making. For example, in
mammography screening, risk stratification affects the detection
performance of radiologists: a known BRCA mutation strongly
decreases the number of missed visible breast cancer lesions in
MRI scans (Vreemann et al., 2018). Timing the disclosure of
ML-based computations to the physician is thus crucial: should
she have to decide on one diagnosis first before being confronted
with the results of ML diagnostics? Furthermore, the impact of
incorporating ML in the clinical setting will require additional
scrutiny regarding its effects on the therapeutic relationship.
How do patients perceive the use of ML by their physicians to
arrive at diagnostic judgements or prognostic estimates? Does it
impair their trust in health care professionals and if so, could it
harm their compliance and the therapeutic outcome? These ques-
tions are of particular importance in the case of psychiatric patients
who are particularly vulnerable to so-called ‘diagnostic oversha-
dowing’, i.e. health care professionals falsely attributing somatic
symptoms to known mental health issues (Callard, Bracken,
David, & Sartorius, 2013; Jones, Howard, & Thornicroft, 2008;
Shefer, Henderson, Howard, Murray, & Thornicroft, 2014).
These challenges merit ongoing attention and require accompany-
ing efforts of clinical ML implementation with corresponding
empirical bioethical research to explore the potential negative
impact.

Patients’ autonomy and clinicians’ judgement

Respect for autonomy demands conveying sufficiently detailed
and understandable information to patients about planned med-
ical procedures and asking for their consent (Manson & O’Neill,
2007). Such disclosure may be particularly challenging in cases of
applied ML, used by medical practitioners who may themselves
not fully understand the mathematical underpinnings of an algo-
rithm. Does the, to some extent, unavoidable opacity of ML, com-
monly discussed as ‘black box’-problem, clash with the requirement
to appropriately inform patients? And should one ask patients for
their explicit consent when using (existing) data before providing it
to the algorithm at all? After all, obtaining informed consent for
the use of predictive analytics is not legally mandatory at the
moment (Cohen, Amarasingham, Shah, Xie, & Lo, 2014). One
could wonder whether discussing ML algorithms with a group as
vulnerable as patients at risk of psychosis or paranoid symptoms
might not exacerbate their situation and cause severe additional
psychological stress (Martinez-Martin et al., 2018).
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Questions of autonomy also stretch to the domain of medical
doctors’ discernment, and respecting clinicians’ judgement is vital
in the context of modern health care systems (Faden et al., 2013).
Much depends on the conceptualization of the relation between
human expert and ML algorithm. One analogy, recently proposed
by Topol (2019), suggests that we conceptualize the relation of clin-
ician and algorithm similarly to assisted driving and increasingly
autonomous cars. While the machine may take over some tasks,
the drivers or physicians need to remain in charge as a backup,
checking the machine’s output by comparing it to their own judge-
ments. This would facilitate attributing degrees of responsibility to
health care personnel, clarifying important issues of accountability
and liability. It implies that human agents need to remain able to
weigh ML recommendations and potentially decide against them.
Ideally, as a safeguard against bad judgements by single individuals,
one could envision provisions in which disagreements between
physicians and ML application lead to consultations with other
clinicians, e.g. during departmental meetings, providing an oppor-
tunity to sharpen the clinical skills of everyone involved.
Furthermore, an institutional framework may be needed to test
and approve ML applications in a similar fashion as pharmaceutical
products (Paulus, Huys, & Maia, 2016).

Fair allocation and systematic biases

Finally, using ML in psychiatry also raises important issues con-
cerning justice, from financial aspects to systematic biases. Does
increased diagnostic certainty justify the allocation of scarce
financial means to additional computational efforts and vindicate
even highly expensive exams such as (f)MRI? Integrating the data
from examinations such as MRI into psychiatric routines may
pose additional serious challenges for equal treatment if certain
patients cannot undergo scanning due to limited availability or
contraindications such as claustrophobia. Arguably, any new
technique needs to establish a measurable clinical benefit over a
conventional psychiatric assessment to vindicate its cost
(Iwabuchi, Liddle, & Palaniyappan, 2013), or show that it can
avoid costs elsewhere. With regard to discerning different diag-
nostic entities, research based on ML could also lead to issues
commonly known as salami slicing: even without understanding
the underlying pathophysiological mechanisms, lobbying by
pharmaceutical companies might have an interest to split psychi-
atric disorders into many distinct categories to gain advantages in
the approval of new drugs. On the other hand, we should not for-
get that in many countries, only a very limited amount of the
overall healthcare budget is allocated to mental health (World
Health Organization, 2018). More precise diagnoses and better
treatments might convince policymakers to overcome this health
disparity, ultimately empowering psychiatric patients.

Of further concern are systematic biases, easily induced by
poor training data and particularly worrisome in diagnostic con-
texts (Vayena et al., 2018). The example of schizophrenia is a case
in point, with its long-standing disproportionate number of diag-
noses in African-Americans and Latin-Americans, arguably influ-
enced by stereotypes, the clinician’s own ethnicity, or the
under-diagnosis of other psychiatric diseases (Schwartz &
Blankenship, 2014). ML trained on data with these or other biases
could further purport and reify misconceptions (Tandon &
Tandon, 2018). If training data are less than carefully curated,
ML applications might hence not constitute an independent diag-
nostic tool for enhancing diagnostic accuracy, undermining the
endeavor’s very aim. To avoid perpetuating pathophysiologically

misleading biases, developing appropriate supervision strategies
for the ML algorithm thus seems key to a successful clinical
implementation. Such supervision should (1) track which para-
meters are taken into account by the algorithm to arrive at its
recommendations and (2) compare the results of algorithms
trained on different databases. Such strategies would also help
to foster explicability which the initially mentioned AI4people ini-
tiative rightly suggests as a fifth principle for ethical AI use, enab-
ling the other four (Floridi et al., 2018). The implementation of
such safety measures will be critical for minimizing biases in
decision-making but it is not yet clear how ML algorithms will
nonetheless capitalize on existing biases in the data.

Conclusion

A plethora of context-specific ethical issues might arise in applied
ML in psychiatry and the treatment of schizophrenia. For now,
ML remains in the domain of research and should be accompan-
ied by exploring its ethical aspects as there is no standard rule to
determine when an application is ethically permissible given the
complexity of each singular case. Further, empowering psychiatric
patients can only happen with the help of important support sys-
tems such as family, peer, and community members. Still, if some
of the vast potential benefits of psychiatric ML can indeed lead to
tangible improvements for patients, we believe it is not only per-
missible but it may in fact be a moral obligation to pursue them
further and aim at their successful clinical implementation.
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