BULLETIN 13 (1), 1970

A REMARK ON CONTRACTIVE MAPPINGS(1)

BY

KAI-WANG NG

Much current research is concerned with the fixed points of contractive mappings (mappings which shrink distance in some manner) from a metric space into itself. In this remark we shall point out that most mappings treated in the literature are very special in the sense that all these mappings satisfy a condition which is rather severe: every periodic point must necessarily be a fixed point.

We list some of these contractive conditions below.

(1) (Banach): There is a number α , $0 \le \alpha < 1$ such that $d(Tx, Ty) \le \alpha d(x, y)$, $x, y \in X$,

(2) (Rakotch [6]): There exists a decreasing function $\alpha(d(x, y))$ depending on the metric d(x, y), $0 \le \alpha(d(x, y)) < 1$, such that $d(Tx, Ty) \le \alpha(d(x, y))d(x, y)$, $x, y \in X$,

(3) (Boyd and Wong [7]): For $x \neq y$, $d(Tx, Ty) \leq \psi(d(x, y))$, where $\psi(d)$ is an upper semicontinuous function of the metric d and $\psi(d) < d$ for d > 0; furthermore $\lim \inf_{d \to \infty} \{d - \psi(d)\} > 0$,

(4) (Meir [5]): Given $\varepsilon > 0$, there exists $\lambda(\varepsilon) > 0$ such that $d(x, y) > \varepsilon$ implies $d(Tx, Ty) < d(x, y) - \lambda(\varepsilon)$,

(5) (Edelstein [3]): d(Tx, Ty) < d(x, y) for all $x \neq y$,

(6) (Bailey [1]): For all $x \neq y$, there exists n=n(x, y) such that $d(T^nx, T^ny) < d(x, y)$,

(7) (Belluce and Kirk [2], [4]): If $\delta(O(x)) > 0$ then $\lim_{n \to \infty} \delta(O(T^n x)) < \delta(O(x))$, where $O(x) = \{x, Tx, T^2x, \ldots, T^nx, \ldots\}$ and $\delta(A)$ is the diameter of a set A.

It is obvious that a mapping satisfying any one of (1), (2), (3), and (4) will satisfy (5) and in turn, condition (5) implies condition (6).

DEFINITION. A mapping $T: X \to X$ is called *non-periodic* if $x \neq Tx$ implies $x \neq T^n x$ for all $n=1, 2, \ldots$

We now show that a mapping satisfying any one of the conditions (1) to (7) is a nonperiodic mapping. It is sufficient to show this for mappings satisfying condition (6) and (7).

THEOREM 1. A mapping $T: X \to X$ is nonperiodic if it satisfies condition (6): for $x \neq y$ there exist n = n(x, y) such that

$$d(T^n x, T^n y) < d(x, y).$$

Received by the editors May 1, 1969.

⁽¹⁾ This is an extract from the author's M.Sc. thesis. The author gratefully acknowledges the help given by his supervisor, Professor T. D. Rogers.

KAI-WANG NG

Proof. Suppose $x \neq Tx$ and there exists some positive integer K which is the smallest such that $T^{K}x = x$.

By hypothesis we can choose $n_1(x)$ which is the least positive integer such that $d(x, Tx) > d(T^{n_1}x, T^{n_1+1}x)$. Observe that $n_1 < K$ and $d(T^{n_1}x, T^{n_1+1}x) > 0$. Indeed, if $n_1 \ge K$, then $n_1 = rK + q$ where r, q are positive integers, $0 \le q < K \le n_1$; consequently

$$d(x, Tx) > d(T^{n_1}x, T^{n_1+1}x) = d(T^qx, T^{q+1}x),$$

contradicting minimality of n_1 . Also, if $d(T^{n_1}x, T^{n_1+1}x)=0$, then $T^{n_1}x=T^{n_1+1}x$, hence $T^{n_1+(K-n_1)}x=T^{n_1+1+(K-n_1)}x$, i.e. x=Tx, contradicting our assumption on x.

Now since $d(T^{n_1}x, T^{n_1+1}x) > 0$, we can select $n_2(x)$ as the smallest positive integer such that

$$d(T^{n_1}x, T^{n_1+1}x) > d(T^{n_2}x, T^{n_2+1}x).$$

The same argument as above is used to deduce that $n_2 < K$ and $d(T^{n_2}x, T^{n_2+1}x) > 0$.

Proceeding in this manner, we can find a sequence $\{n_i\}$ of positive integers such that $n_i < K$ and

$$d(x, y) > d(T^{n_1}x, T^{n_1+1}x) > d(T^{n_2}x, T^{n_2+1}) > \dots$$

But then there must be two indices, say i>j such that $n_i=n_j$, since $n_i < K$, $i=1, 2, \ldots$. This is a contradiction, for then $d(T^{n_j}x, T^{n_j+1}x) = d(T^{n_i}x, T^{n_i+1}x)$.

THEOREM 2. A mapping $T: X \to X$ is nonperiodic if it satisfies condition (7): if $\delta(O(x)) > 0$ then

$$\lim_{n\to\infty} \delta(O(T^n x)) < \delta(O(x)).$$

Proof. We first note that $\delta(O(x)) > 0$ if and only if $x \neq Tx$. Also, by definition of O(x),

$$\delta(O(x)) \geq \delta(O(Tx)) \geq \cdots \geq \delta(O(T^n x)) \geq \cdots \geq \lim_{n \to \infty} \delta(O(T^n x)).$$

Suppose $x \neq Tx$, then by hypothesis we have

$$\delta(O(x)) > \lim_{n \to \infty} \delta(O(T^n x)).$$

Hence there is an N such that $\delta(O(x)) > \delta(O(T^N x))$, so we have $O(x) \neq O(T^N x)$. This implies that $x \notin O(T^N x)$, i.e. $x \neq T^N x$, $T^{N+1} x$,

Finally, it is impossible that $x = T^m x$ for m < N. For if so, let p > 0 be an integer such that *m* divides N+p, then $x = T^{N+p}x$, contradicting the argument in the previous paragraph.

References

1. D. F. Bailey, Some theorems on contractive mappings, J. London Math. Soc. 41 (1966), 101-106.

2. L. P. Belluce and W. A. Kirk, Fixed point theorems for certain class of non-expansive mappings (to appear in Proc. Amer. Math. Soc.).

3. M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.

4. W. A. Kirk, On mappings with diminishing orbital diameters, J. London Math. Soc. 44 (1969), 107-111.

5. A. Meir, A theorem on contractive mappings, (to appear).

6. E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459-465.

7. D. W. Boyd and J. S. W. Wong, On non-linear contractions (to appear).

University of Alberta, Edmonton, Alberta