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Abstract

Suppose that a system consists of n independent and identically distributed components
and that the life lengths of the n components are Xi, i = 1, . . . , n. For k ∈ {1, . . . , n−1},
let X

(k)
1 , . . . , X

(k)
n−k be the residual life lengths of the live components following the kth

failure in the system. In this paper we extend various stochastic ordering results presented
in Bairamov and Arnold (2008) on the residual life lengths of the live components in an
(n − k + 1)-out-of-n system, and also present a new result concerning the multivariate
stochastic ordering of live components in the two-sample situation. Finally, we also
characterize exponential distributions under a weaker condition than those introduced in
Bairamov and Arnold (2008) and show that some special ageing properties of the original
residual life lengths get preserved by residual life lengths.
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1. Introduction

Consider a system with n components, and suppose that this system fails if and only if at least
k components fail. Such a system is said to be an (n − k + 1)-out-of-n system. Evidently, the
lifetime of an (n − k + 1)-out-of-n system is equal in distribution to the kth order statistic from
a sample of size n. So, by using the theory of order statistics, many properties of (n − k + 1)-
out-of-n systems have been established in the literature. Specifically, some well-known ageing
properties and stochastic ordering results have been developed.

The stochastic comparison of order statistics was initiated in Pledger and Proschan (1971)
and since then the theory has attracted the attention of numerous researchers. Interested readers
are referred to Proschan and Sethuraman (1976), Boland et al. (1994), Boland et al. (1998),
Khaledi and Kochar (2000b), Paltanea (2008), Zhao et al. (2009), and Zhao and Balakrishnan
(2009). In an (n − k + 1)-out-of-n system, just after the kth failure has been observed, there
will be n− k components still alive in the system. Thus, we have two sets of random variables,
the first consisting of the original lifetimes and the second consisting of the residual life lengths
of the live components. In this regard, Bairamov and Arnold (2008) studied distributional
properties of the residual life lengths of live units and obtained their joint distribution. They also
characterized exponential distributions under some conditions and showed that, under some
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well-known ageing properties of the original component lifetime distribution, one can compare
residual life lengths of the live components with the original lifetimes in terms of the usual
stochastic ordering. We extend their results here, and also establish a multivariate stochastic
ordering result.

The rest of this paper proceeds as follows. In Section 2 we review the concepts of some
specific stochastic orderings and ageing properties. In Section 3 we present some extensions
of the results of Bairamov and Arnold (2008) from the usual stochastic ordering to the mean
residual life order, hazard rate order, dispersive order, and likelihood ratio order. In Section 4
we characterize exponential distributions under a weaker condition than those introduced in
Bairamov and Arnold (2008), and show that if the residual life lengths are uncorrelated, then
the original component lifetime distribution is exponential. In Section 5 we study some ageing
properties of the residual life lengths. Finally, in Section 6 we present a new result about the
multivariate stochastic ordering of the residual lifetimes of live components in the two-sample
situation. Throughout this paper, we assume that the failure of one component does not affect
the functioning of the remaining components in the system. If this assumption is not true then
models involving the so-called sequential order statistics (see Kamps (1995) and Cramer and
Kamps (1996)) need to be considered. We do not consider this set-up here, and we shall reserve
it for a future study. We assume that all of the distributions under study are absolutely continuous
with common support (0, ∞), and also adopt the phrasing increasing for nondecreasing and
decreasing for nonincreasing.

2. Definitions and notation

In this section we recall the definitions of some well-known ageing properties and stochastic
orderings that are pertinent to the developments in this paper.

Definition 1. Suppose that the distribution function F is absolutely continuous with density
function f such that f (x) = 0 for x < 0.

(i) We say that F is new better than used (NBU) if

F̄ (x + t) ≤ F̄ (x)F̄ (t) for all t, x ≥ 0, (1)

where F̄ := 1 −F . If inequality (1) is reversed then F is said to be new worse than used
(NWU).

(ii) We say that the distribution F (with finite mean) has a decreasing mean residual life (F
is DMRL) if

mF (t) = 1

F̄ (t)

∫ ∞

t

F̄ (x) dx is decreasing in t ≥ 0.

Similarly, F has an increasing mean residual life (F is IMRL) if mF (t) is increasing in
t ≥ 0.

(iii) We say that the distribution F has an increasing (decreasing) hazard rate, written F is
IHR (DHR), if F̄ (x + t)/F̄ (t) is decreasing (increasing) as a function of t for all x ≥ 0.
Equivalently, F is IHR (DHR) if its hazard rate function is increasing (decreasing).

(iv) We say that F has a log-concave (log-convex) density, written f is log-concave (log-
convex), if f (x + t)/f (t) is decreasing (increasing) as a function of t for all x ≥ 0. In
other words, f is log-concave (log-convex) if log f is concave (convex).
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The following implications between all these ageing properties are well known:

log-concave density �⇒ IHR �⇒ DMRL �⇒ NBU,

log-convex density �⇒ DHR �⇒ IMRL �⇒ NWU.

For comprehensive discussions on ageing properties and relations between them, we refer the
reader to Barlow and Proschan (1981), Marshall and Olkin (2007), and Lai and Xie (2006).
Now, we briefly describe some notion for univariate and multivariate stochastic orderings which
is most pertinent to the results established in the subsequent sections.

Definition 2. For two random variables X and Y with densities f and g, distribution functions
F and G, and right-continuous inverses (quantile functions) F−1 and G−1, respectively, let
F̄ = 1 − F and Ḡ = 1 − G denote the corresponding survival functions. With the ratios in the
statements below being well defined.

(i) X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤lr Y ) if
g(x)/f (x) is increasing in x.

(ii) X is said to be smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if Ḡ(x)/F̄ (x)

is increasing in x. If rX(rY ) denotes the hazard rate function of X(Y), then X ≤hr Y if
and only if rY (x) ≤ rX(x).

(iii) X is said to be smaller than Y in the usual stochastic order (denoted by X ≤st Y )
if F̄ (x) ≤ Ḡ(x). For all increasing functions φ : R → R, X ≤st Y if and only if
E(φ(X)) ≤ E(φ(Y )) when the expectations exist.

(iv) X is said to be smaller than Y in the dispersive order (denoted by X ≤disp Y ) if

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α) for 0 ≤ α < β ≤ 1.

(v) X is said to be smaller than Y in the mean residual life order (denoted by X ≤mrl Y ) if,
for all t ≥ 0, ∫ ∞

t
F̄ (u) du

F̄ (t)
≤

∫ ∞
t

Ḡ(u) du

Ḡ(t)
.

The following implications between these orderings are well known:

X ≤lr Y �⇒ X ≤hr Y �⇒ X ≤mrl Y and X ≤st Y.

Note that if X ≤disp Y and X and Y have finite equal left-end support points, then X ≤st Y .
When X and Y have finite equal right-end support points, then X ≤disp Y implies that Y ≤st X.

Definition 3. We say that the random vector X = (X1, . . . , Xn) is smaller than the random
vector Y = (Y1, . . . , Yn) in the multivariate stochastic order (denoted by X ≤st Y ) if

E(φ(X)) ≤ E(φ(Y )),

for all increasing functions φ : R
n → R for which the expectations exist.

It is easy to see that multivariate stochastic ordering implies componentwise usual stochas-
tic ordering. Interested readers are referred to Müller and Stoyan (2002) and Shaked and
Shanthikumar (2007) for comprehensive discussions on univariate and multivariate stochastic
orderings.
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3. Residual life lengths of live components in the one-sample situation

Let us consider an (n − k + 1)-out-of-n system in which the lifetimes X1, . . . , Xn of the n

components in the system are i.i.d. with common absolutely continuous distribution function
F and corresponding density function f . When the kth failure has been observed, at which
time the (n − k + 1)-out-of-n system fails, there are n − k components still alive. Suppose that
X

(k)
1 , . . . , X

(k)
n−k denote the residual life lengths of these n−k live components when the system

fails. Bairamov and Arnold (2008) showed that the joint survival function of the residual life
lengths is given by

H̄ (k)(x1, . . . , xn−k) = P(X
(k)
1 > x1, . . . , X

(k)
n−k > xn−k) =

∫ ∞

0

n−k∏
j=1

F̄ (xj + t)

F̄ (t)
fk:n(t) dt, (2)

where fk:n(t) is the probability density function of the kth order statistic Xk:n; see Arnold et al.
(1992) and David and Nagaraja (2003) for details on distributional properties and applications
of order statistics. From (2), it is easy to see that the residual life lengths X

(k)
1 , . . . , X

(k)
n−k

are exchangeable and, consequently, they have the same marginal and joint distributions. The
common marginal survival function of X

(k)
i is readily seen from (3) to be

H̄ (x) =
∫ ∞

0

F̄ (x + t)

F̄ (t)
fk:n(t) dt, (3)

and the corresponding marginal density function of X
(k)
i is

h(x) =
∫ ∞

0

f (x + t)

F̄ (t)
fk:n(t) dt. (4)

Note that, in general, the residual life lengths of the live components are not independent, but
conditionally independent given the time of the kth failure. Suppose that, for i = 1, . . . , n− k,
X

(k)
i:n−k denotes the ith order statistic of the residual life lengths. Then, we have

X
(k)
i:n−k = Xi+k:n − Xk:n, i = 1, . . . , n − k. (5)

It is reasonable to expect that when components get better with the passing of time, the
residual life lengths of live components become stochastically larger than the original lifetimes.
Bairamov and Arnold (2008) have in fact proved this property in the form of the following
proposition.

Proposition 1. If F is NWU (NBU) then X1 ≤st (≥st)X
(k)
1 .

Continuing in the same way, under some well-known ageing properties of the original
lifetime distribution, we prove in the following theorem some other stochastic orderings between
original lifetimes and residual life lengths of live components.

Theorem 1. We have the following ordering results.

(i) If F is IMRL (DMRL) then X1 ≤mrl (≥mrl)X
(k)
1 .

(ii) If F is DHR (IHR) then X1 ≤hr (≥hr)X
(k)
1 .

(iii) If F is DHR then X1 ≤disp X
(k)
1 .

(iv) If f is log-convex (log-concave) then X1 ≤lr (≥lr)X
(k)
1 .
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Proof. (i) Let mH (u) and mF (u) denote the mean residual life functions of X
(k)
1 and X1,

respectively. The mean residual life function of X
(k)
1 can be derived as

mH (u) =
∫ ∞

u

H̄ (x)

H̄ (u)
dx

=
∫ ∞

u

∫ ∞

0

F̄ (x + t)

H̄ (u)F̄ (t)
fk:n(t) dt dx

=
∫ ∞

0

[∫ ∞

u

F̄ (x + t)

F̄ (u + t)
dx

]
F̄ (u + t)

F̄ (t)H̄ (u)
fk:n(t) dt

=
∫ ∞

0

mF (u + t)F̄ (u + t)

F̄ (t)H̄ (u)
fk:n(t) dt.

Now, if F is IMRL then, for all t ≥ 0, mF (u + t) ≥ mF (u), and so

mH (u) ≥
∫ ∞

0
mF (u)

F̄ (u + t)

F̄ (t)H̄ (u)
fk:n(t) dt

= mF (u)

(∫ ∞

0

F̄ (u + t)

F̄ (t)
fk:n(t) dt

)/
H̄ (u)

= mF (u),

which reveals that X1 ≤mrl X
(k)
1 . When F is DMRL, the above inequality gets reversed and

the required result follows immediately.
(ii) Let us assume that F is DHR. Then F̄ (x + t)/F̄ (x) is increasing with respect to x for

all t ≥ 0. So, for every y ≥ z ≥ 0 and all t ≥ 0, we have

F̄ (y + t)

F̄ (y)
≥ F̄ (z + t)

F̄ (z)
,

and, consequently,
∫ ∞

0

F̄ (y + t)

F̄ (y)F̄ (t)
fk:n(t) dt ≥

∫ ∞

0

F̄ (z + t)

F̄ (z)F̄ (t)
fk:n(t) dt,

or, equivalently,
H̄ (y)

F̄ (y)
≥ H̄ (z)

F̄ (z)
.

This means that X1 ≤hr X
(k)
1 . For the IHR case, the proof is similar and therefore omitted for

the sake of brevity.
(iii) Assume that F is DHR. Then, by using the results in part (ii) and Bagai and Kochar

(1986) (also see Theorem 3.B.20 of Shaked and Shanthikumar (2007)), the result follows.
(iv) Suppose that f is log-convex. Then f (x + t)/f (x) is increasing with respect to x for

all t ≥ 0. So, for y ≥ z ≥ 0 and all t ≥ 0, we have

f (y + t)

f (y)
≥ f (z + t)

f (z)

and, consequently, ∫ ∞

0

f (y + t)

f (y)F̄ (t)
fk:n(t) dt ≥

∫ ∞

0

f (z + t)

f (z)F̄ (t)
fk:n(t) dt,
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or, equivalently,
h(y)

f (y)
≥ h(z)

f (z)
.

This means that X1 ≤lr X
(k)
1 . A similar proof may be presented for the case of the log-concavity

of f .

4. Characterizations

Suppose that the distribution function F of the original lifetimes is exponential. From (2),
it is easy to see that

(X1, . . . , Xn−k)
st= (X

(k)
1 , . . . , X

(k)
n−k), (6)

and that X
(k)
1 , . . . , X

(k)
n−k are independent. Bairamov and Arnold (2008) showed that the

converse of (6) is also true, that is, if two vectors (X1, . . . , Xn−k) and (X
(k)
1 , . . . , X

(k)
n−k)

have the same distribution, then the distribution function F of the original lifetimes is an
exponential distribution (see Theorem 1 of Bairamov andArnold (2008)). They also established
the following theorem characterizing the exponential distribution based on the independence
of X

(k)
1 and X

(k)
2 , and some well-known ageing properties of the distribution F .

Theorem 2. If X
(k)
1 and X

(k)
2 are independent, and

(i) F̄ (x) is strictly decreasing on (0, ∞), and

(ii) F is either IHR or DHR,

then F is an exponential distribution.

In what follows, we characterize the exponential distribution of the original lifetimes based
on the condition that X

(k)
1 and X

(k)
2 are uncorrelated and in this case the two conditions in

Theorem 2 can be dropped for this characterization. This result would thus form a natural
extension of the result in Theorem 2. To this end, we first establish the following theorem
which provides a relationship between the covariance of X

(k)
1 and X

(k)
2 and the mean residual

life function of the component lifetime distribution F (mF ).

Theorem 3. For k = 1, . . . , n − 1, we have cov(X
(k)
1 , X

(k)
2 ) = var(mF (Xk:n)).

Proof. First we derive the product moment E(X
(k)
1 X

(k)
2 ) as follows:

E(X
(k)
1 X

(k)
2 ) =

∫ ∞

0

∫ ∞

0
P(X

(k)
1 > x, X

(k)
2 > y) dx dy

=
∫ ∞

0

∫ ∞

0

∫ ∞

0

F̄ (x + t)

F̄ (t)

F̄ (y + t)

F̄ (t)
fk:n(t) dt dx dy

=
∫ ∞

0

(∫ ∞

0

∫ ∞

0

F̄ (x + t)

F̄ (t)

F̄ (y + t)

F̄ (t)
dx dy

)
fk:n(t) dt

=
∫ ∞

0

(∫ ∞

0

F̄ (x + t)

F̄ (t)
dx

)2

fk:n(t) dt

=
∫ ∞

0
m2

F (t)fk:n(t) dt

= E(m2
F (Xk:n)).
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From Theorem 4 of Bairamov and Arnold (2008), we also know that E(X
(k)
1 ) = E(mF (Xk:n)),

and, therefore, we obtain, upon noting that X
(k)
1

st= X
(k)
2 for the second equality,

cov(X
(k)
1 , X

(k)
2 ) = E(X

(k)
1 X

(k)
2 ) − E(X

(k)
1 )E(X

(k)
2 )

= E(m2
F (Xk:n)) − E

2(mF (Xk:n))
= var(mF (Xk:n)),

as required.

Theorem 4. If X
(k)
1 and X

(k)
2 are uncorrelated, then F is an exponential distribution.

Proof. Suppose that cov(X
(k)
1 , X

(k)
2 ) = 0. Then, by Theorem 3, we have var(mF (Xk:n)) =

0, which means that, for every t ≥ 0, mF (t) = c, where c is a constant. Setting t = 0 we
get c = E(X1), and, for every t ≥ 0, we therefore have (see Shaked and Shanthikumar (2007,
Theorem 2.A.3))

F̄ (t) = E(X1)

mF (t)
exp

{
−

∫ t

0

1

mF (x)
dx

}
= exp

{
− t

c

}
,

as required.

5. Ageing properties of residual life lengths of live components

In this section we study some ageing properties of the residual life lengths of components
that are still alive after the kth failure. For the ensuing discussion, it is useful to briefly give
the definition and some properties of mixture distributions. Suppose that a random vector
(T1, . . . , Tn) has joint distribution function

F(t1, . . . , tn) =
∫

χ

n∏
i=1

Fi(ti | θ1, . . . , θr ) d�(θ1, . . . , θr ), (7)

where � is an r-dimensional probability distribution concentrated on χ ⊆ R
r and, for any

vector (θ1, . . . , θr ) ∈ χ , Fi(. | θ1, . . . , θr ), i = 1, . . . , n, are one-dimensional distribution
functions. This model is known as a multivariate mixture model. If Fi(. | θ1, . . . , θr ) denotes
the conditional distribution of Ti(θ) = (Ti | � = θ), and � denotes the distribution of �, then
the joint distribution of (T1(�), . . . , Tn(�)) is given by (7). If Fi(. | θ1, . . . , θr ), i = 1, . . . , n,
are absolutely continuous for each (θ1, . . . , θr ) ∈ χ , with corresponding density functions
fi(. | θ1, . . . , θr ), i = 1, . . . , n, then the distribution of (T1, . . . , Tn) is also absolutely contin-
uous, and its joint density function is given by

f (t1, . . . , tn) =
∫

χ

n∏
i=1

fi(ti | θ1, . . . , θr ) d�(θ1, . . . , θr ).

It is then easy to see that the distribution function of Ti is

FTi
(t) =

∫
χ

Fi(ti | θ1, . . . , θr ) d�(θ1, . . . , θr ),

and the corresponding density function of Ti (if it exists) is

fTi
(t) =

∫
χ

fi(ti | θ1, . . . , θr ) d�(θ1, . . . , θr ).
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Note that, when Fi(· | θ1, . . . , θr ) = F(· | θ1, . . . , θr ) for all i = 1, . . . , n, the random
vector (T1, . . . , Tn) is exchangeable. Mixture models play an important role in risk theory
and reliability analysis; see, e.g. Spizzichino (2001), Belzunce et al. (2009), and Misra and
Misra (2012). From (2), we readily see that the joint survival function of X

(k)
1 , . . . , X

(k)
n−k can

be considered as a multivariate mixture model. Let Xt = (X − t | X > t), that is, Xt denotes
the residual lifetime of a component at time t . Then, for x ≥ 0, the survival and density
functions of Xt are F̄t (x) = F̄ (x + t)/F̄ (t) and ft (x) = f (x + t)/F̄ (t), respectively. Hence,
(3) and (4) can be respectively written as

H̄ (t) =
∫ ∞

0
F̄t (x)fk:n(t) dt (8)

and

h(t) =
∫ ∞

0
ft (x)fk:n(t) dt. (9)

Some ageing properties of the original lifetime distribution are known to be preserved by the
residual lifetime distribution. For example, if the distribution function F has a monotone hazard
rate then Ft has a monotone hazard rate for all t ≥ 0. Also, Ft preserves the DMRL (IMRL) and
log-convex (log-concave) properties of the original lifetime distribution F for all t ≥ 0. The
following theorem establishes that some ageing properties of the original lifetime distribution
are preserved by the residual life lengths of the live components after the kth failure.

Theorem 5. We have the following ageing properties.

(i) If F is IMRL, then H is IMRL.

(ii) If F is DHR, then H is DHR.

(iii) If f is log-convex, then h is log-convex.

Here H and h are the distribution and density functions of X
(k)
1 presented in (8) and (9).

Proof. (i) If F is IMRL then Ft is also IMRL. But, the class of distributions that are IMRL
is closed under mixtures (see Proposition D.5 of Marshall and Olkin (2007)), and the required
result then follows.

(ii) If F is DHR then Ft is also DHR. From the fact that the class of distributions that are
DHR is closed under mixtures (see Corollary D.4.a of Marshall and Olkin (2007)), the required
result then follows.

(iii) If f is log-convex then ft is also log-convex. So, from the closure property of log-
convex density under mixtures (see Section G of Chapter 5 of Marshall and Olkin (2007) and
An (1998)), the required result follows.

6. Multivariate stochastic ordering of residual life lengths of live components in the
two-sample situation

Suppose that we have two systems, say I and II. System I is an (n − k + 1)-out-of-n
system comprising n components with i.i.d. lifetimes X1, . . . , Xn from an absolutely continuous
distribution F . Similarly, system II is an (m − k′ + 1)-out-of-m system with the m lifetimes
Y1, . . . , Ym of the components of the system being i.i.d. with common absolutely continuous
distribution function G. Furthermore, let X

(k)
1 , . . . , X

(k)
n−k and Y

(k′)
1 , . . . , Y

(k′)
m−k′ be the residual

life lengths of the live components after the kth failure in system I and the k′th failure in system
II, with joint distribution functions H(k) and H ′(k′), respectively.
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In this section we establish the multivariate stochastic ordering between the vectors of
residual life lengths of live components of these two systems under some conditions. For
this purpose, we will use the following theorem.

Theorem 6. (Khaledi and Kochar (2000a).) Let X1, . . . , Xn be nonnegative independent
random variables with common absolutely continuous distribution F , and let Y1, . . . , Ym be
another set of nonnegative independent random variables with common absolutely continuous
distribution G. If X1 ≤hr Y1 and either F or G is DHR, then, for k ≤ k′ and n − k ≥ m − k′,
we have Xk:n ≤st Yk′:m.

Now, we present the main theorem of this section.

Theorem 7. Suppose that X
(k)
1 , . . . , X

(k)
n−k and Y

(k′)
1 , . . . , Y

(k′)
m−k′ are the residual life lengths of

the live components in systems I and II, respectively. If X1 ≤hr Y1 and either F or G is DHR,
then, for k ≤ k′ and n − k = m − k′,

(X
(k)
1 , . . . , X

(k)
n−k) ≤st (Y

(k′)
1 , . . . , Y

(k′)
m−k′).

Proof. In order to prove the desired result, we use Theorem 3.1 of Belzunce et al. (2009)
which presents some sufficient conditions for the comparison of multivariate mixture models
in the sense of multivariate stochastic ordering. It is easy to see that the DHR property of F or
G is equivalent to Condition (i) in Theorem 3.1 of Belzunce et al. (2009) and that the condition
X1 ≤hr Y1 is equivalent to Condition (ii) of the mentioned theorem. Moreover, according
to Theorem 6 and in the light of the DHR property of F or G, we find that the assumption
X1 ≤hr Y1 implies that Xk:n ≤st Yk′:m for k ≤ k′ and n − k = m − k′. With this observation
and (2), Condition (iii) in Theorem 3.1 of Belzunce et al. (2009) is obtained, thus completing
the proof.

For a given positive integer i = 1, . . . , n − k + 1, k ≤ n, let

V
(i)
k:n = Xi+k−1:n − Xk−1:n and W

(i)
k:n = Yi+k−1:n − Yk−1:n

respectively denote the i-spacings of samples X1, . . . , Xn and Y1, . . . , Yn, with X0:n ≡
Y0:n ≡ 0. In particular, for i = 1, we have

Ṽ
(1)
k:n = (n − k + 1)(Xk:n − Xk−1:n) and W̃

(1)
k:n = (n − k + 1)(Yk:n − Yk−1:n)

as the corresponding normalized 1-spacings. In reliability theory, Xn−k+1:n represents the
lifetime of the k-out-of-n system, and V

(i)
k:n then gives the additional lifetime to be gained if the

(n−k − i +2)-out-of-n system is used rather than a (n−k +2)-out-of-n system. The reader is
referred to Kirmani (1996) and Hu and Zhuang (2006) for some additional details. In stochastic
auction theory, the mean of the sample spacing V

(1)
k:n gives the expected rent of the winner in

either a buyer’s k-auction or a reverse k-auction. For further details on auction theory, see Paul
and Gutierrez (2004) and Li (2005). By using the definition of the residual life lengths and (5),
we can interpret the i-spacing as follows. Suppose that we have an (n − k + 2)-out-of-n system.
After the (k − 1)th failure, n − k + 1 components are still alive. If we reuse these remaining
components in another (n−k−i+2)-out-of-(n−k+1) system then the i-spacing represents the
lifetime of this latter system. Recently, several authors have discussed stochastic comparisons of
i-spacings. Bartoszewicz (1986) proved that if X1 ≤disp Y1 then V

(1)
k:n ≤st W

(1)
k:n . Kochar (1999)

showed that if X1 ≤lr Y1 and either F or G is DHR, then V
(1)
k:n ≤hr W

(1)
k:n . Subsequently, Khaledi
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and Kochar (1999) proved that if X1 ≤hr Y1 and either F or G is DHR, then, for k ≤ k′ and
n−k ≥ m−k′, we have Ṽ

(1)
k:n ≤st W̃

(1)

k′:m. They also showed that if X1 ≤lr Y1 and either F or G

have log-convex density, then Ṽ
(1)
k:n ≤lr W̃

(1)

k′:m for k ≤ k′ and n− k = m− k′. Xu and Li (2006)
generalized this result and proved that if F or G have log-convex density, then V

(l)
k:n ≤lr W

(l)

k′:m for
k ≤ k′ and n−k ≥ m−k′. Hu and Wei (2001) established a more general result of the following
form: if X1 ≤hr Y1 and either F or G is DHR, then V

(q−k+1)
k:n ≤st W

(l−k′+1)

k′:m for l ≥ k − k′
and l − q ≥ k′ − k ≥ n − m. Using a discussion similar to that presented in Theorem 6.B.2 of
Shaked and Shanthikumar (2007), the following corollary can be obtained from Theorem 7.

Corollary 1. Let X1, . . . , Xn be a random sample of size n from an absolutely continuous
distribution F , and let Y1, . . . , Ym be a random sample of size m from another absolutely
continuous distribution G. If X1 ≤hr Y1 and either F or G is DHR, then, for k ≤ k′, n − k =
m − k′, and 1 ≤ i ≤ j ≤ n − k, we have V

(i)
k+1:n ≤st W

(j)

k′+1:m.

Note that Corollary 1 is a special case of the result of Hu and Wei (2001).
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