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Covering Discs in Minkowski Planes

Dedicated to Ted Bisztriczky, on his sixtieth birthday.

Horst Martini and Margarita Spirova

Abstract. We investigate the following version of the circle covering problem in strictly convex

(normed or) Minkowski planes: to cover a circle of largest possible diameter by k unit circles. In

particular, we study the cases k = 3, k = 4, and k = 7. For k = 3 and k = 4, the diameters under con-

sideration are described in terms of side-lengths and circumradii of certain inscribed regular triangles

or quadrangles. This yields also simple explanations of geometric meanings that the corresponding

homothety ratios have. It turns out that basic notions from Minkowski geometry play an essential role

in our proofs, namely Minkowskian bisectors, d-segments, and the monotonicity lemma.

1 Introduction

The problem of covering the unit circle with k congruent circles of minimum diam-

eter is called the circle covering problem (see [5,6,10]). This problem was investigated

by many authors, and the smallest diameter has been found for all k ≤ 10, see also

[2,3,7]. In the present paper we investigate the extension of this problem to (normed

or) Minkowski planes. The methods developed for our approach (e.g., the use of bi-

sectors which can have a complicated geometric structure in normed planes) demand

restricting ourselves to strictly convex Minkowski planes, and we consider the circle

covering problem in the other direction: to cover a circle of largest possible diame-

ter by k unit circles. We obtain results for the cases k ∈ {3, 4, 7}. In the Euclidean

plane, these three cases are usually considered to be trivial. As we shall see, this is

not the case in strictly convex Minkowski planes. Due to the large variety of possible

circle shapes in normed planes, the radii of the circles to be covered for k = 3 and

k = 4 are described in terms of circumradii of inscribed regular triangles and quad-

rangles, respectively, which have special side-lengths (and regularity is meant in the

Minkowskian sense). This yields simple geometric descriptions of the correspond-

ingly occurring homothety ratios. The case k = 7 yields, in contrast to k ∈ {3; 4}, a

situation completely analogous to that in the Euclidean plane. To prove our results,

we also use typical tools and notions from Minkowski geometry (i.e., the geometry

of finite dimensional real Banach spaces, see [4, 15, 17, 18]), such as Minkowskian

bisectors, d-segments, and the monotonicity lemma.

By a (normed or) Minkowski plane (X, ‖ · ‖) with origin 0 we mean a two-dimen-

sional real linear space X with norm ‖ · ‖. As usual, the unit disc and the unit circle of

Received by the editors October 8, 2008.
The second author’s research was supported by Deutsche Forschungsgemeinschaft.
AMS subject classification: Primary: 46B20; secondary: 52A21, 52C15.
Keywords: affine regular polygon, bisector, circle covering problem, circumradius, d-segment,

Minkowski plane, (strictly convex) normed plane.
c©Canadian Mathematical Society 2009.

424

https://doi.org/10.4153/CMB-2009-046-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-046-2


Covering Discs in Minkowski Planes 425

(X, ‖ · ‖) are defined by

D := {x ∈ X : ‖x‖ ≤ 1} and C := {x ∈ X : ‖x‖ = 1},

respectively. The set {x ∈ X : ‖x− p‖ ≤ λ}, where λ ∈ R
+, is called the (Minkowski)

disc with center p and radius λ and denoted by D(p, λ). The boundary of D(p, λ) is

then a (Minkowski) circle and denoted by C(p, λ). We denote the segment between

x, y ∈ X by [xy], the line through x and y by 〈xy〉, the ray with origin x and passing

through y by [xy〉, the triangle with vertices x, y, z ∈ X by △xyz, and the circular

arc with the endpoints x, y by x̂y. As usual, we denote the convex hull of a two-

dimensional set K by conv K , its interior by int K and, if K is closed, the boundary of

K by ∂K .

A Minkowski plane (X, ‖ · ‖) is called strictly convex if ‖x + y‖ = ‖x‖+‖y‖ implies

that x and y are linearly dependent or, equivalently, if the unit circle does not contain

a non-denegerate line segment. Any two circles in a strictly convex Minkowski plane

intersect in at most two points; see [17, §3.2]. If x1, x2 are two different points in a

strictly convex normed plane, and y1, y2 ∈ C(x1, λ) ∩C(x2, λ) with y1 6= y2, then

(1.1) x1 + x2 = y1 + y2;

see [1].

The bisector of two points p and q is defined by

B(p, q) := {x ∈ X : ‖x − p‖ = ‖x − q‖}.

It is known that bisectors in every strictly convex Minkowski plane are unbounded

simple curves; see [16, §8.2] and the survey [15, §4.2]. Also we note that the defi-

nition of bisectors immediately implies that B(p, q) is symmetric with respect to the

midpoint of [pq]. Many further results on and applications of bisectors in Minkowski

planes and spaces are collected in Part 4 of the survey [15].

2 Some Preliminaries

Let there be given a convex body B, (i.e., a compact, convex set with non-empty inte-

rior) in a Minkowski plane (X, ‖ · ‖). A collection {Bi} of finitely many convex bodies

in (X, ‖ · ‖) is called a covering of the body B if any point of B belongs to
⋃

i Bi and

for every body Bi of {Bi} there exists a point x ∈ B such that x ∈ ⋃
j 6=i B j . Denote by

hk(B) the smallest positive ratio of k homothetical copies of B whose union covers B.

The following bounds on hk(B) are known for k ∈ {3, 4, 7}:

2
3
≤ h3(B) ≤ 1,(2.1)

1
2
≤ h4(B) ≤

√
2

2
,(2.2)

θ ≤ h7(B) ≤ 1
2
,(2.3)
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where
√

7/7 ≤ θ ≤ 5
11

; see [12, 13]. If B is centrally symmetric, i.e., it can be consid-

ered as the unit disc with respect to some norm, let Rk(B) be the maximal radius of

all homothets of B that can be covered by k translates of B. Then Rk(B) = 1/hk(B),
and one can rewrite the inequalities (2.1), (2.2), and (2.3) in the forms

1 ≤ R3(B) ≤ 3

2
,(2.4)

√
2 ≤ R4(B) ≤ 2,(2.5)

2 ≤ R7(B) ≤ 1

θ
.(2.6)

The first lemma which is necessary for our considerations is known as the monotonic-

ity lemma. It was proved in [9]; see also [8] and [17, §3.5].

Lemma 2.1 Let C be the unit circle of a strictly convex normed plane (X, ‖ · ‖), and

p, q, r be different points belonging to C such that the origin 0 does not belong to the

open half-plane determined by 〈pq〉 which contains r. Then ‖p − q‖ > ‖p − r‖.

Remark 2.2. For any x, y ∈ D(p, λ) the monotonicity lemma implies that ‖x− y‖ ≤
2λ.

Lemma 2.3 Let there be given a convex body B in a Minkowski plane (X, ‖ · ‖), and

let B = {Bi}k
i=1 be a covering of B. If x ∈ ∂Bi ∩ B, where i ∈ {1, . . . , k}, then there

exists a body B j from B different from Bi such that x ∈ B j .

Proof We argue by contradiction. Suppose that for any j = 1, . . . , k and j 6= i we

have x 6∈ B j . Then there exists a disc D(x, ε) with (int D(x, ε)) ∩ B j = ∅. Let y be

a point of int D(x, ε) such that y 6∈ Bi . Denote by D the disc centered at y whose

interior lies in int D(x, ε) and which also satisfies D ∩ Bi = ∅; see Figure 1. For any

j = 1, . . . , k, and j 6= i, there exists a point y j ∈ B j ∩ B with

‖y − y j‖ = inf{‖y − z‖ : z ∈ B j ∩ B},

by [19, Theorem 1.9.1]. If y0 is that point among {y j}k
j=1, j 6=i which has the smallest

distance to y, then clearly y0 6∈ int D(x, ε). Thus for any z ∈
⋃

j 6=i(B j ∩ B) we get

‖y− y0‖ ≤ ‖y− z‖. Let y∗ be a point lying in [yy0]∩D. Then ‖y− y∗‖ < ‖y− y0‖,

which means that y∗ 6∈ ⋃
j 6=i(B j ∩ B). In view of y∗ ∈ D we have y∗ 6∈ Bi . Besides

this, the convexity of B implies that the point y∗ belongs to B. This contradicts the

fact that {Bi}k
i=1 is a covering of B.

It is known that for any three non-collinear points in a strictly convex normed

plane there exists at most one circle containing them; see [17, § 3.2]. The next lemma

shows that if these points form an equilateral triangle (in the Minkowskian sense),

then such a circle always exists.

Lemma 2.4 An equilateral triangle in a strictly convex Minkowski plane (X, ‖ · ‖)

possesses exactly one circumcircle.
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Figure 1 Figure 2

Proof Let there be given a triangle △p1 p2 p3 which is equilateral in (X, ‖ · ‖), and m1

and m2 be the midpoints of [p2 p3] and [p3 p1], respectively. Clearly, p1 ∈ B(p2, p3)

and p2 ∈ B(p3, p1). By [17, Proposition 17] (see also [11]), B(p2, p3) is contained in

the double cone of p2 and p3 with apex p1, and B(p3, p1) is contained in the double

cone of p3 and p1 with apex p2; see Figure 2.

The curve B(p2, p3) can intersect the segment [p2 p3] only in m1, so that if we

denote the part of B(p2, p3) between p1 and m1 by γ1, then γ1 ⊂ conv{p1, p2, p3}.

Analogously, if γ2 is the part of B(p3, p1) between p2 and m2, then

γ2 ⊂ conv{p1, p2, p3}.

If J := [p1 p2]∪ [p2m1]∪γ1, then J is a Jordan curve with respect to which the point

m2 is not an interior point. Assuming that m2 ∈ γ ⊂ B(p2, p3), we have

‖p2 − m2‖ = ‖m2 − p3‖ ⇐⇒ ‖p2 − 1
2

(p1 + p3)‖ =
1
2
‖p1 − p3‖

⇐⇒ ‖p2 − p1 + p2 − p3‖ = ‖p1 − p3‖.

This is impossible, since d-segments are always linear segments if and only if the

normed plane under consideration is strictly convex; see [4, Corollary 11.3]. (The

d-segment [a, b]d with endpoints a, b ∈ (X, ‖ · ‖) is the set of all x ∈ (X, ‖ · ‖) satisfy-

ing ‖a−x‖+‖x−b‖ = ‖a−b‖.) Hence m2 is an exterior point with respect to J. On

the other hand, there exists an ε > 0 such that C(p2, ε)∩γ1 6= ∅. If q ∈ C(p2, ε)∩γ1,

then q lies in the interior of J. This means that the part of γ2 between q and m2 has

to intersect J. But it does not intersect [p1 p2] or [p2m1] (eventually it can touch

[p1 p2] or [p2m1]); therefore it intersects γ1. Thus we have shown that B(p2, p3) and

B(p3, p1) have a common point, which completes the proof.

The proof of Lemma 2.4 implies the following.

Lemma 2.5 The circumcenter of any equilateral triangle in a strictly convex Minkow-

ski plane lies in the interior of this triangle.
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Lemma 2.6 Let p be a point in a strictly convex Minkowski plane (X, ‖ · ‖) different

from the origin 0. Then the bisector of the points p and −p intersects the circle C(0, ‖p‖)

in exactly two points which are opposite points of this circle.

Proof It is clear that B(−p, p) intersects C(0, ‖p‖) in at least two points which are

opposite points of that circle, e.g., in x and −x. We will show that, besides x and −x,

there are no further intersection points of B(−p, p) and C(0, ‖p‖). We have that the

bisector B(−p, p) is contained in the double cone V of p and −p with apex x; see

[11] and [17, Proposition 13]. Let us consider that part of V (denoted by V ∗) which

lies in the half-plane bounded by 〈−pp〉 and containing x. Thus

V ∗
= {x+λ(−p−x)+µ(p−x) : λ, µ ≤ 0}∪{x+λ(−p−x)+µ(p−x) : λ, µ ∈ (0, 1)}.

We will show that neither

V−
= {x ∈ X : x + λ(−p − x) + µ(p − x) : λ, µ ≤ 0},

nor the set

V +
= {x ∈ X : x + λ(−p − x) + µ(p − x) : λ, µ ∈ (0, 1)}

(see Figure 3 below) contains points of C(0, ‖p‖) which are different from x. For any

y ∈ V− we have

y = x + λ(−p − x) + µ(p − x) ⇐⇒ (1 − λ − µ)x = y + (λ − µ)p,

where λ, µ ≤ 0. Therefore

(1 − λ − µ) ‖x‖ = ‖y + (λ − µ) p‖ < ‖y‖ + |λ − µ| ‖p‖

⇐⇒
{
‖x‖ ≤ (1 − 2λ) ‖x‖ < ‖y‖ if λ − µ ≥ 0,

‖x‖ ≤ (1 − 2µ) ‖x‖ < ‖y‖ if λ − µ < 0.

Hence any y ∈ V− is an exterior point with respect to C(0, ‖p‖). On the other hand,

V + is a triangle inscribed to the strictly convex curve C(0, ‖p‖). Therefore V + also

does not contain points of C(0, ‖p‖) (except for p, −p, and x).

Lemma 2.7 In a Minkowski plane (X, ‖ · ‖), let there be given two circles C(x1, λ1)

and C(x2, λ2) with λ1 6= λ2. Then the homothety

ϕ : x 7−→ −λ2x1 + λ1x2

λ1
+

λ2

λ1
x

maps C(x1, λ1) into C(x2, λ2). The center of ϕ is the point

s =

λ2

λ2 − λ1
x1 −

λ1

λ2 − λ1
x2.

The proof of this lemma is immediate.
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3 Covering a Disc by Three Translates of the Unit Disc

Now we are going to use the results from Section 2 for the case n = 3 of the circle

covering problem in strictly convex Minkowski planes. The diameters of the circles

to be covered will be given in terms of side-lengths of inscribed equilateral triangles.

Theorem 3.1 In a strictly convex normed plane let there be given an equilateral tri-

angle △p1 p2 p3 of side-length 2. Then the circumradius of △p1 p2 p3 is > 1, and the

circumdisc of △p1 p2 p3 can be covered by three translates of the unit discs.

Proof If C(q, λ) is the circumcircle of △p1 p2 p3 (note that according to Lemma 2.4

this circumcircle exists), then

‖p1 − q‖ + ‖q − p2‖ > ‖p1 − p2‖ ⇐⇒ 2λ > 2 ⇐⇒ λ > 1.

We now show that if mi is the midpoint of [p j pk], where {i, j, k} = {1, 2, 3}, then

Figure 3 Figure 4

the discs D(mi, 1), i = 1, 2, 3, cover D(q, λ). At first we check whether m j, mk ∈
C(mi, 1). Indeed,

‖mi − m j‖ =

∥∥∥ p j + pk

2
− pk + pi

2

∥∥∥ =

1

2
‖p j − pi‖ = 1.

Thus we get that the discs D(mi, 1), i = 1, 2, 3, cover conv{p1, p2, p3}. In order to

complete the proof, it remains to show that D(m3, 1) covers the arc p̂1 p2 (of course,

we mean that arc which does not contain p3), say; see Figure 4. Let us assume that

q ≡ 0 and write C1 := C(0, λ) and C2 := C(m3, 1). We consider the homothety

ϕ mapping the circle C1 into the circle C2, i.e., ϕ : x 7→ m3 + 1/λx; see Lemma 2.7.

Then the center of ϕ is s =
λ

λ−1
m3, which belongs to the opposite ray of [m30〉, i.e.,
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s lies in the half-plane bounded by 〈p1 p2〉 which does not contain p3. We will prove

that s 6∈ D(m3, 1) and s 6∈ D(0, λ). Assume that s ∈ D(m3, 1). This is equivalent to

1 ≥ ‖m3 − s‖ = ‖m3 −
λ

λ − 1
m3‖ =

1

λ − 1
‖m3‖ =

1

2(λ − 1)
‖p1 + p2‖

⇐⇒ 2(λ − 1) ≥ ‖p1 + p2‖ ⇐⇒ 2λ ≥ ‖p1 + p2‖ + 2.

The last inequality contradicts the triangle inequality referring to △p1 p2(−p2). As-

suming that s ∈ D(0, λ), we get

‖s‖ =

λ

λ − 1
‖m1‖ =

λ

2(λ − 1)
‖p1 + p2‖ ≤ λ ⇐⇒ 2(λ − 1) ≥ ‖p1 + p2‖,

again a contradiction.

Furthermore, let x1 belong to the arc p̂1 p2 of C1 not containing p3. If 〈sx1〉∩C1 =

{x1, y1}, then x1 is between s and y1. This follows from the fact that s belongs to the

same half-plane with respect to 〈p1 p2〉 containing the arc p̂1 p2. If ϕ(x1) = x2, then

x2 ∈ C2 and

x2 = m3 +
1

λ
x1 ⇐⇒ x2 =

λ − 1

λ
s +

1

λ
x1.

Since λ > 1, we state that the point x2 is between s and x1. Let 〈x1x2〉∩C2 = {x2, y2}.

This means that x2 is between s and y2. Moreover, y2 = ϕ(y1), equivalent to that y2

is between s and y1. Thus we have that the points s, x2, x1, y2, y1 are located on the

line 〈x1x2〉 in this order or in the order s, x2, y2, x1, y1. But the second situation is

impossible because the points x1 and y2 lie in different half-planes with respect to

〈p1 p2〉. Therefore x1 is between x2 and y2, equivalent to the fact that D(m3, 1) covers

the arc p̂1 p3 p2.

The next theorem gives the geometric meaning of the maximal radius R3(D) of all

homothets of the unit disc D in a strictly convex normed plane that can be covered

by three translates of D.

Theorem 3.2 If (X, ‖ · ‖) is a strictly convex normed plane with unit disc D, then the

quantity R3(D) is the maximal circumradius of equilateral triangles with side-length 2.

Proof If λ is the maximal circumradius of all equilateral triangles of side-length 2,

we will prove that the disc D(0, λ + ε), where ε > 0, cannot be covered by three

translates of the unit disc D. Let △p1 p2 p3 be an equilateral triangle of side-length

2 inscribed in D(0, λ). If ϕ is the homothety mapping C(0, λ) into C(0, λ + ε) and

ϕ(p1, p2, p3) = (p ′
1, p ′

2, p ′
3), then △p ′

1 p ′
2 p ′

3 is equilateral and of side-length 2+2ε/λ.

Assume that D(0, λ+ ε) can be covered by the translates D1, D2, and D3 of D. If p ′
1 ∈

D1, say, then p ′
2, p ′

3 6∈ D1, by Remark 2.2. If p ′
2 ∈ D2, say, then p ′

3 6∈ D2. Therefore

p ′
3 ∈ D3. For {i, j, k} = {1, 2, 3}, let p̂ ′

i p ′
j be the circular arc of C(0, λ + ε) between

the points p ′
i and p ′

j which does not contain p ′
k. Then Lemma 2.1 and Lemma 2.5

imply that any point of p̂ ′
i p ′

j does not belong to Dk. Let ∂D1 ∩C(0, λ + ε) = {q1, q3}
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Figure 5.

and q1 ∈ p̂ ′
1 p ′

2, q3 ∈ p̂ ′
1 p ′

3. Note that if q1 ≡ q3, then q1 ≡ q3 ≡ p1, which means

that D(0, λ + ε) cannot be covered by D1, D2, and D3. By Lemma 2.3 we have that

q1 ∈ D2 and q3 ∈ D3. Thus we obtain △q1q2q3 inscribed in C(0, λ + ε) such that

q1 ∈ p̂ ′
1 p ′

2, q2 ∈ p̂ ′
2 p ′

3, q3 ∈ p̂ ′
3 p ′

1, q1 6= p1, q1 6= p2, q2 6= p2, q2 6= p3, q3 6= p3,
q3 6= p1, and the sides of△q1q2q3 are of length≤ 2. Moreover, it is easy to see that the

interior of conv{q1, q2, q3} contains the origin 0. Let △q1q2q3 be positively oriented,

say. Construct an equilateral triangle △u1u2u3 of side-length 2, which is positively

oriented and such that 〈u1u2〉 is parallel to 〈q1q2〉. According to [17, Proposition 33],

for a given segment [u1u2] there exists exactly one such triangle. Let C(0, µ) be a

translate of the circumcircle of △u1u2u3. Then µ ≤ λ. If v1, v2, v3 are the images

of u1, u2, u3 with respect to this translation, let v ′
1, v ′

2, v ′
3 be the images of v1, v2, v3

with respect to the homothety mapping C(0, µ) into C(0, λ + ε). Thus we obtain

that △v ′
1v ′

2v ′
3 is an equilateral triangle inscribed in C(0, λ + ε) and of side-length

2(λ + ε)/µ > 2, where the side [v ′
1v ′

2] is parallel to [q1q2]. Therefore the side [v ′
1v ′

2]

lies in the open half-plane with respect to 〈q1q2〉 that contains the origin 0. The third

vertex v ′
3 of △v ′

1v ′
2v ′

3 belongs either to the arc q̂1q3 or to the arc q̂2q3. But both these

cases contradict the monotonicity lemma.

The next proposition gives an upper bound on R3(D), where D is the unit disc in

a strictly convex normed plane. This upper bound strengthens the second inequality

in (2.4) for the case that B is centrally symmetric and strictly convex.

Proposition 3.3 In a normed plane (X, ‖ · ‖) with unit disc D we have R3(D) ≤ 4/3

if D is strictly convex, and R3(D) = 4/3 if ∂D is an affine regular hexagon.

Proof Let ±p,±q,±(p + q) be the vertices of a hexagon that is regular in the norm

(i.e., an affine regular hexagon with sides of the same Minkowskian length) and in-

scribed in the unit circle C = ∂D. Note that this is possible; see, [17, §4]. The triangle

with vertices 4
3

p− 2
3
q, − 2

3
p + 4

3
q, and − 2

3
(p + q) is equilateral with side-length 2 and

inscribed in 4
3
C; see Figure 5. Therefore, if C is strictly convex, we have R3(D) ≤ 4

3
,

and R3(D) =
4
3

holds if C is an affine regular hexagon.
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4 Covering a Disc by Four Translates of the Unit Disc

In case of four covering circles we will see that, somehow analogous to the consid-

erations in the former section, regular quadrangles inscribed to a circle will play an

essential role.

Lemma 4.1 In a strictly convex Minkowski plane let there be given two points x1 and

x3 that are opposite points of the unit circle C; see Figure 6. If B(x1, x3) ∩ C = {x2, x4},

then the intersection points of C(xi , 1) and C(xi+1, 1) (with i = 1, 2, 3, 4 and x5 ≡ x1),

which are different from 0, lie on the same circle C with radius between 1 and 2.

Proof Note that according to Lemma 2.6 the intersection of B(x1, x3) and C consists

of exactly two points, which are opposite in C. The monotonicity lemma implies

‖xi − xi+1‖ < 2, i = 1, . . . , 4. Hence C(xi , 1) and C(xi+1, 1) have exactly two points

in common. Clearly, the origin 0 is one of them, and we denote by pi the other

intersection point. Thus, by (1.1) we obtain xi + xi+1 = pi . Since x1 and x3 are

opposite points, as are x2 and x4, it follows that ‖pi‖ = ‖xi+1 − xi+2‖ (note that

x6 ≡ x2). But we have x2, x4 ∈ B(x1, x3), i.e.,

‖x1 − x2‖ = ‖x2 − x3‖ = ‖x3 − x4‖ = ‖x4 − x1‖ = λ,

which is equivalent to pi ∈ C(0, λ). Moreover, with respect to △x1x2x3 we have

2 = ‖x1 − x3‖ < ‖x1 − x2‖ + ‖x2 − x3‖ ⇐⇒ 1 < λ.

On the other hand, applying the fact that for any convex quadrangle (and thus also

for x1x2x3x4) the sum of lengths of its diagonals is at least the sum of lengths of two

opposite sides (see [17, Proposition 7]), we obtain

‖x1 − x3‖ + ‖x2 − x4‖ > ‖x1 − x2‖ + ‖x4 − x3‖ ⇐⇒ 2 > λ.

Remark 4.2. The construction of the points x1, x2, x3, x4 in Lemma 4.1 shows that

in every circle of a strictly convex Minkowski plane a regular quadrangle can be in-

scribed.

Remark 4.3. It is easy to check that the points p1, p2, p3, and p4 (see the proof of

Lemma 4.1) form a parallelogram all of whose sides are of Minkowskian length 2 and

whose two diagonals have the same length. The proof of Lemma 4.1 also implies that

for any given direction such a parallelogram with two sides parallel to this direction

can be constructed.

Theorem 4.4 If, in a strictly convex normed plane, C(xi , 1), i = 1, 2, 3, 4, and C are

determined as in Lemma 4.1, then C(xi , 1) with i = 1, 2, 3, 4 is a covering of C.

Proof In view of the constructions of C(xi , 1), i = 1, 2, 3, 4, it is enough to prove

that, e.g., D(x1, 1) covers the circular arc p̂1 p4 (meaning that arc which does not

contain the points p2 and p3). This can be verified in a way quite similar to the proof

of Theorem 3.1, using the homothety that maps C(0, λ) into C(x1, 1).
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Figure 6.

Based on Remark 4.3 the next theorem can be proved in the same way as Theo-

rem 3.2.

Theorem 4.5 In a strictly convex normed plane with unit disc D, the quantity R4(D)

is the maximal circumradius of all parallelograms whose four sides are of Minkowskian

length 2, and whose two diagonals have the same length.

5 Covering a Disc by Seven Translates of the Unit Disc

Levi [14] proved that every plane convex body B can be covered by 7 homothetical

copies of ratio 1
2
; see also [13]. In this section we state that, as in the Euclidean

situation (for which we refer to [10]), this is the best such covering if B is a centrally

symmetric, strictly convex body.

For the proof of our final theorem we need the next lemma.

Lemma 5.1 In a strictly convex normed plane, a hexagon of side-length < µ cannot

be inscribed in a circle of radius µ.

Proof Assume that there exists a hexagon p1 p2 · · · p6 inscribed in the circle C(p, µ)

such that ‖pi − pi+1‖ < µ with i = 1, . . . , 6 and p7 = p1. In C(p, µ) we can inscribe

a regular hexagon q1q2 · · · q6 of side-lengths µ such that q1 ≡ p1. Denote by p̂i pi+1

the circular arc which does not contain the remaining vertices of p1 p2 · · · p6. Then

the monotonicity lemma implies q2 ∈ p̂2 p3 and q6 ∈ p̂5 p6 such that q2 6= p2 and

q6 6= p6. Clearly, it is impossible that q3 ∈ p̂2 p3 and q5 ∈ p̂5 p6. Therefore the points

q3, q4, and q5 belong to p̂5 p4 ∪ p̂4 p3. This means that at least two of them lie on the

same arc, which is impossible.

Theorem 5.2 A disc of radius > 2 cannot be covered by seven unit discs.

Proof Assume that the disc D(0, λ), where λ > 2, is covered by seven unit discs

Di = D(xi , 1). Then at most six of them can have a common point with C(0, λ) =
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∂D(0, λ). Indeed, let 0 ∈ D1, say. Assume that D1 ∩ C(0, λ) 6= ∅ and y1 ∈ D1 ∩
C(0, λ). Since y1 ∈ C(0, λ), we get ‖y1‖ = λ > 2. But y1 ∈ D1 implies ‖y1‖ ≤ 2, a

contradiction. Thus, by Lemma 2.3 we get that an n-gon with n ≤ 6 can be inscribed

in C(0, λ). The case n = 6 is contradictory to Lemma 5.1. Hence C(0, 2) cannot be

covered by six unit discs. This means that C(0, 2) also cannot be covered by n < 6

unit discs.

From Theorem 5.2 and (2.6) we immediately get the following statement.

Corollary 5.3 In a strictly convex normed plane with unit disc D the maximal radius

R7(D) of all homothets of D that can be covered by 7 translates of D is 2.
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[1] E. Asplund and B. Grünbaum, On the geometry of Minkowski planes. Enseignement Math. 6(1960),
299–306.
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