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Chirped resonance dynamics in phase space
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The dynamics of passage and capture into resonance of a distribution of particles
driven by a chirped frequency perturbation is discussed. The resonant capture in
this case involves crossing of the separatrix by individual particles and, therefore,
the adiabatic theorem cannot be used in studying this problem no matter how slow
the variation of the driving frequency is. It is shown that, if instead of analysing
complicated single particle dynamics in passage through resonance, one considers
the slow evolution of a whole distribution of initial conditions in phase space, the
adiabaticity and phase space incompressibility arguments yield a solution to the
resonant passage problem. This approach is illustrated in the case of an ensemble of
electrons driven by a chirped frequency wave passing through Cherenkov resonances
with the velocity distribution of electrons.
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1. Introduction

The passage through and capture into resonance in systems with slowly varying
parameters is one of the outstanding problems of nonlinear physics. Examples include
resonant capture in planetary dynamics (see Batygin 2015 and references therein),
excitation of nonlinear waves (Friedland & Shagalov 2005; Barak et al. 2009),
manipulation of trapped particle distributions for formation of antihydrogen (Andersen
et al. 2010), resonant control of atomic and molecular systems (Karczmarek et al.
1999; Grosfeld & Friedland 2002; Marcus, Friedland & Zigler 2004) and more. The
basic model of the passage through resonance is that of a particle of mass m and
charge q in an anharmonic potential driven by a chirped frequency oscillating electric
field. The Hamiltonian in this problem is

H = 1
2m

p2 + qV(x)− εx cos ϕd, (1.1)

where the driving force ε cos ϕd is viewed as a perturbation and the driving
frequency dϕd/dt = ωd(t) is a slow function of time passing through the resonance
with the oscillator, which may or may not be excited initially. This problem is
most conveniently analysed within the single resonance approximation (Chirikov
1979), which involves transformation from p, x to action-angle variables I, θ of the
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unperturbed Hamiltonian H0 = p2/2m + qV(x) (so that H0 = H0(I)) and yields the
following system of evolution equations (Friedland 2008)

∂tI =−εa(I) sinΦ, (1.2)

∂tΦ =Ω(I)−ωd(t)− εda
dI

cosΦ, (1.3)

where we used Fourier expansion x(I, θ) =∑ an(I) exp(inθ) and wrote the complex
amplitude of the first harmonic as a= a1 exp(iϕ); also Ω(I)= dH0/dI is the frequency
of the oscillator and Φ = θ − ϕd + ϕ1 is the phase mismatch between the oscillator
and the drive. This system is governed by the single resonance Hamiltonian

Hr =H0(I)−ωdI − εa(I) cosΦ. (1.4)

Hamiltonians of this type occur in many of the slow resonant problems mentioned
above and have been studied in a variety of applications. The process of resonant
capture in all these cases involves crossing of the separatrix and, therefore, the
adiabatic theorem cannot be used in studying this crossing no matter how slow
the variation of the driving frequency is. This complicates the theory and yields
non-trivial solutions. For example, if the oscillator is excited initially, only a fraction
of the possible initial conditions in phase space yield trapping of the oscillator in
resonance followed by a continuing phase locking with the drive (autoresonance). The
probabilistic approach in studying this case was pioneered by Neishtadt (1975) and
later used in several applications (Neishtadt & Timofeev 1987; Neishtadt & Vasiliev
2005; Neishtadt, Vasiliev & Artemyev 2013). In contrast, if the oscillator starts in
equilibrium, and the driving frequency passes its linear frequency, the capture into
resonance and autoresonance in the system are guaranteed, provided the driving
amplitude exceeds a threshold, scaling as α3/4 with the chirp rate α= |dωd/dt| of the
driving frequency (Fajans & Friedland 2001).

In the present work, we study the problem of passage through resonance with an
ensemble of particles distributed in phase space. We show that, if instead of analysing
complicated single orbit dynamics in passage through resonance (e.g. Neishtadt
1975; Timofeev 1978; Cary, Escande & Tennyson 1985; Dewar & Yap 2009) one
considers the evolution of a continuous distribution of initial conditions in phase
space, the adiabaticity of deeper trapped orbits and phase space incompressibility
in the vicinity of the separatrix yield a solution to the resonant capture probability
problem. Recently this approach was applied to the problem of capture of molecules
into rotational resonance in an optical centrifuge (Armon & Friedland 2016), while
here we illustrate these ideas in the case of a distribution of charged particles driven
by a chirped frequency ponderomotive wave passing through the Cherenkov resonance
with the distribution. The scope of the presentation will be as follows. Section 2 will
describe our driven kinetic model, present numerical simulations and illustrate the
complexity of passage through Cherenkov resonances. In § 3 we discuss our adiabatic
phase space approach for calculating the resonant capture probability in the problem
and compare the theory with simulation. The validity conditions of our theory will
be discussed in § 4. Finally, § 5 will present our conclusions.

2. The distribution driven by a chirped frequency wave
Consider a one-dimensional problem of a tenuous electron distribution f (v, x, t)

driven by a travelling longitudinal field E(t) sin(kx − ∫ ωd dt) having slowly varying
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amplitude and frequency. Inclusion of the self-field of the distribution requires addition
of the Poisson equation, the problem studied previously in application to Bernstein–
Greene–Kruscal modes (Khain & Friedland 2010) and we will discuss the expected
effect of this inclusion on the resonant capture probability in § 5. If one neglects the
self-field, the single particle trajectory in this problem is governed by

∂tx= v, (2.1)

∂tv =− e
m

E(t) sin
(

kx−
∫
ωd dt

)
. (2.2)

Therefore, defining I = kv, Θ = kx, Θd =
∫
ωd dt, Φ = Θ − Θd and ε = keE/m, we

have

∂tI =−ε(t) sinΦ, (2.3)
∂tΦ = I −ωd(t), (2.4)

which is the same as (1.2) and (1.3) with a= 1, so our resonant Hamiltonian is

Hr =H0(I)−ωd(t)I − ε(t) cosΦ, (2.5)

where H0(I) = I2/2 and Ω = I. Remarkably, the same Hamiltonian describes the
classical evolution of the angular momentum of a polar molecule (in the rigid rotor
approximation) driven by an electric field rotating in the plane of molecular rotation
(Marcus, Friedland & Zigler 2005). Therefore, our equations are isomorphic to those
encountered in the problem of capture of an ensemble of molecules into a continuing
rotational resonance, the configuration known as the optical centrifuge (Karczmarek
et al. 1999).

We start our analysis by assuming a linear driving frequency chirp

ωd =ω0 + αt, (2.6)

where ω0 is the initial driving frequency. We introduce dimensionless time τ =√αt
and normalized J= I/Ic, where Ic is some characteristic value of I. In these variables,
the evolution equations (2.3) and (2.4) become

∂τJ =−P1 sinΦ, (2.7)
∂τΦ = P2(J − J0)− τ , (2.8)

where J0 =ω0/Ic and the two dimensionless parameters are

P1 = ε

Ic
√
α
, P2 = Ic√

α
. (2.9a,b)

These parameters can be associated with three characteristic time scales in the
problem, i.e. the chirping time scale Tch = α−1/2 (this scale is only relevant in the
chirp-driven problem), the time scale associated with the amplitude of the driving
perturbation Td = Ic/ε and the scale of the nonlinearity Tnl = I−1

c . In terms of these
time scales, the two parameters in (2.7) and (2.8) are P1 = Tch/Td and P2 = Tch/Tnl,
referred to as the driving and nonlinearity parameters in the following. Note that the
normalized driving frequency ω=ωd/Ic can be written as ω= J0 + τ/P2.
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(a)

(b)

(c)

FIGURE 1. Passage through resonance with the cold beam distribution. (a) Initial
distribution, (b) P1 = 0.1, P2 = 30 and (c) time varying P1 case. The initial distribution
is strongly perturbed, while 15.7 % of the particles are trapped in autoresonance with the
drive for the time varying P1.

Next, we present the results of numerical simulations of our driven system for
two initial particle distributions. Figure 1 illustrates the evolution of an initially
monoenergetic particle beam J = 1 at τ = 0 with uniformly distributed values of Φ,
as shown in figure 1(a). Figure 1(b) shows the strongly perturbed distribution of
these particles at τf = 60 after passage through resonance (at τ = 15) in the case of
P1 = 0.1 and P2 = 30. We choose the initial driving frequency ω(0) = J0 = 0.5, so
the final driving frequency is ωf = 2.5. Figure 1(c) shows the final distribution for
the same parameters and initial conditions as in figure 1(a), but P1 = βτ , β = 0.0067
(note that at the time τ = 15 of crossing of the resonance, in this case P1= 0.1). The
final distribution in this case is also strongly perturbed but, in contrast to figure 1(b),
15.7 % of the initial distribution in figure 1(c) forms a separated region in phase space,
which is trapped in resonance and enters the autoresonant stage as its averaged J is
accelerated, following the driving frequency continuously J ≈ 0.5+ 0.0067τ/P2.

Our second initial distribution, shown in figure 2(a), is uniform in J between
J10 = 1 and J20 = 2 and in Φ, corresponding to the usual water bag model (Bertrand
& Feix 1968; Berk, Nielsen & Roberts 1970). We again use P2 = 30, chirp the
driving frequency as before by starting at ω(0) = 0.5 and allow it to cross the
Cherenkov resonances with all the particles in the distribution at different times. The
final distribution, after passage of ω through the distribution, in this case is shown
for constant P1= 0.1 in figure 2(b) and increasing P1= βτ , β = 0.0067 in figure 2(c).
One can see in the figure that in both cases, after passage through the resonances,
the distributions remained uniform except in the boundary regions and that the whole
distribution is shifted on average to lower energies (the phenomenon discussed in
Friedland, Khain & Shagalov (2006) and Schmit & Fisch (2012)). In addition, for the
increasing P1 case, some phase space area 1S of the initial distribution is captured
into resonance forming a ring of the same uniform initial density. This area is phase
locked to the drive, continues its accelerating motion in J as the driving frequency
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(a)
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(c)

FIGURE 2. Passage through resonance with the water bag distribution. (a) Initial
distribution, (b) P1 = 0.1, P2 = 30 and (c) time varying P1 case. Only the boundaries of
the initial distribution are perturbed after passage through resonance, while 11.8 % of the
distribution is trapped in autoresonance with the drive for time varying P1.

increases and defines the resonant capture probability P=1S/[2π(J20 − J10)] (in our
example P= 11.8 %). This capture probability is discussed next.

3. Resonant capture probability
Our theory below is based on analysing the dynamics governed by (2.7) and (2.8),

which can be combined into a single second-order equation

∂2
τΦ =−D sinΦ − 1, (3.1)

where D = P1P2. For constant D, this equation describes a ‘pendulum’ subject to a
constant ‘torque’ and is integrable. The pendulum moves in a tilted cosine potential

V =Φ −D cosΦ (3.2)

illustrated in figure 3(a). Figure 3(b) shows the phase space portrait of the dynamics.
One can see that the phase space is divided into trapped and untrapped trajectories
separated by the separatrix. The area of the separatrix in the D= const case remains
constant and all particles trapped inside the separatrix initially remain trapped at
later times despite the variation of the driving frequency, while all the untrapped
trajectories remain untrapped. Therefore, if the evolution of the separatrix starts in
the empty region of phase space, its area will remain empty during the passage
through the water bag distribution. The resonant capture probability in this case
is zero, as seen in figure 2(b). Importantly, as the empty separatrix enters the
distribution, it mainly disrupts the evolution of particles close to the separatrix,
because other particles experience non-resonant forcing which effectively averages to
zero. Therefore, in the water bag simulations in the constant D case, we observe a
significant disruption of the boundaries of the initial distribution, but as the separatrix
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(a)

(b)

FIGURE 3. The effective potential equation (3.2) (a) for P1P2 = 3 and the phase space
portrait of the associated dynamics (b). The boundary of the red filled area in the bottom
panel is the separatrix. The equal energy lines in the bottom panel are separated by energy
steps of π.

enters the bulk of the distribution, the boundaries of the separatrix define a nearly
empty hole surrounded by a uniform distribution having initial phase space density,
because of the incompressibility of the phase space (Goldstein 1980). The situation
changes drastically when the parameter D varies (increases in our case) in time. We
assume adiabatic variation of D (see the discussion of this condition below), which
conserves the actions (areas in phase space) associated with all trapped trajectories,
but those in the vicinity of the separatrix. As the separatrix area grows, the phase
space hole entering the water bag distribution from outside will remain mostly empty
and preserves its area, while because of the incompressibility of the phase space
fluid, the extension of the hole inside the growing separatrix will be filled by the
particles having the initial phase space density. These trapped particles comprise the
ring around the hole as seen in figure 2(c). Using these arguments and assuming that
at all times the separatrix width 1J in J is small compared to the width of the initial
distribution (this is our weak drive assumption, to be discussed in the next section),
one can estimate the capture probability of newly trapped particles in the problem as

Q= Sout − Sin

2π(J20 − J10)
, (3.3)

where Sin and Sout are the instantaneous areas of the separatrix at the entrance and exit
from the initial distribution. Here the area of the separatrix in (J, Φ) phase space is

S= 1
P2

∮
∂τΦ

s dΦ, (3.4)

where ∂τΦs is the velocity of the ‘pendulum’ on the separatrix. The latter is found
by observing that the energy at the separatrix is

E∗ =Φ∗ −D cosΦ∗, (3.5)
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FIGURE 4. The rescaled area of the separatrix P2S versus parameter D=P1P2 (blue solid
line) and its asymptotic value 16D1/2 (red dashed line).

where Φ∗ is the value of Φ (mod(2π)) at the local maximum of the quasipotential
(3.2) and that sinΦ∗ =−1/D, cosΦ∗ =−√1−D−2. Then,

∂τΦ
s =±

√
2(E∗ −Φs +D cosΦs), (3.6)

or by using (3.5) and introducing ϑ =Φs− Φ∗, we have

∂τϑ =±
√

2[sin ϑ − ϑ + A(1− cos ϑ)], (3.7)

where A = (D2 − 1)1/2. Therefore, the area of the separatrix (3.4) can be evaluated
from

S= 2
√

2
P2

∫ 2π

0
Re[sin ϑ − ϑ + A(1− cos ϑ)]1/2 dϑ. (3.8)

We show P2S versus D in figure 4. Note that no separatrix (trapped trajectories)
exists if D< 1, S is an increasing function of P1 and asymptotically, as D becomes
large, P2S→ 16D1/2. In the example in figure 2, (3.3) yields Q = 12.6 %, in good
agreement with simulations. The developments above can be also used for calculating
the trapping probability for resonant passage through an arbitrary initial distribution
F0(J) (normalized as

∫
F0(J) dJ = 1/2π). Indeed, define the resonant value Jr, which

follows the driving frequency continuously

Jr(τ )= J0 + τ/P2. (3.9)

If the driving frequency increases during an infinitesimal time step δτ , then Jr

increases by δJr = δτ/P2 and the separatrix area S changes by δS, the fraction of the
trapped particles will change by

F0(Jr)δS= F0(Jr)
dS
dJr
δJr. (3.10)
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(a) (b) (c)

FIGURE 5. The chirp-driven phase space distribution at different times: (a) the initial
shifted Gaussian distribution at τ = 0, (b) a resonant phase space hole in the distribution
at τ = 90 and (c) a resonant bump in the tail of the distribution at τ = 180. The colour
coding represents probability density in phase space.

In all examples in this work, we assume that ∂τP1> 0, so δS> 0 and, therefore, (3.10)
describes the fraction of newly trapped particles. Nevertheless, if the instantaneous
dS/dJr is negative, i.e. ∂τP1 < 0, equation (3.10) describes the fraction of particles
leaving the separatrix, i.e. detrap. By integration of (3.10), after a finite time, the
trapping probability is

Q=Q0 +
∫ Jr(τ2)

Jr(τ1)

F0(Jr)
dS(Jr)

dJr
dJr, (3.11)

where τ1 and τ2 are the initial and final times, respectively, and Q0 is the fraction
of the particles inside the separatrix initially. For dS/dJr > 0, this result can be
interpreted probabilistically (Neishtadt 1975), viewing (1/2π)(dS(Jr)/dJr) as the
probability of resonant capture of uniformly distributed initial conditions in a thin
strip in phase space of size 2π dJr as the resonant action Jr passes this strip. Note
that (3.11) reduces to (3.3) in the water bag model, where F0(J)= 1/(2π(J20 − J10))

for J10 < J < J20 and zero elsewhere. As a more complex example, we consider a
shifted Gaussian initial electron distribution, F0(J) = [4π

√
2π]−1 exp[−(J − 2)2/8].

We again use parameters P1 = βτ , β = 0.0067, P2 = 30 and show in figure 5
the distribution F(J, Φ, τ) at the initial, intermediate and final times of the
simulation, as the driving frequency ω varies from 0 to 6. The formation of the
resonant region inside the separatrix is seen in the figure, with colours indicating
the origin in J of different trapped particles. Additional information from this
simulation is presented in figure 6, showing the distribution of the electrons in
J, i.e. f (J, τ ) = ∫ F(J, Φ, τ) dΦ at times corresponding to those in figure 5. One
can see the deviation of f (J, τ ) from the initial distribution (dashed line) and the

https://doi.org/10.1017/S0022377816000969 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000969


Chirped resonance dynamics 9

(a)

(b)

(c)

FIGURE 6. The distribution f (J, τ ) of the electrons (blue solid lines) at the times shown
in figure 5. The initial distribution is shown by red dashed lines.

FIGURE 7. The resonant capture probability for initially Gaussian electron distribution
versus initial resonant J0. The theoretical prediction is shown by the blue solid line, the
yellow diamonds represent the results of the numerical simulations.

appearance of a resonant bump in the distribution which includes resonantly trapped
particles. Finally, figure 7 compares the theoretical prediction (3.11) for the trapping
probability Q in this example for different initial driving frequencies ω(0) = J0

with simulations, showing a very good agreement.

4. Validity conditions

We have made the adiabaticity and weak drive assumptions in developing the theory
above and discuss these assumptions next. Both will be analysed in D=P1P2�1 case
(the width of the separatrix in Φ in this case is nearly 2π). In estimating the validity
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FIGURE 8. The region of validity of the theory in P1,2 parameter space is coloured in
blue. The black lines represent the weak drive and adiabaticity (for β = 2) limits and the
limit of the existence of the separatrix is shown by the dashed line.

conditions of the theory we linearize equations (2.7), (2.8) in Φ

∂τ (δJ)=−P1Φ, (4.1)
∂τΦ = P2δJ, (4.2)

where δJ = J − Jr. The characteristic frequency of oscillations of δJ and Φ in this
system is ν = D1/2. Then the adiabaticity condition for deeper trapped orbits is
∂τν/ν

2� 1, yielding (for ∂τP1 = β)

(P3
1P2)

1/2� β. (4.3)

This condition preserves the area of the empty phase space hole inside the separatrix
passing a water bag distribution, while the remaining area of the separatrix in this
model is filled uniformly by trapped particles, as described above. Finally, we estimate
the weak drive condition. The amplitude of oscillations of δJ is 1J = P11Φ/ν. By
using 1Φ ∼ O(1) and assuming |J − J0| ∼ O(1) for typical values of J in the
distribution, the small 1J (weak drive) condition 1J� |J − J0| can be written as

(P1/P2)
1/2� 1. (4.4)

The inequalities (4.3) and (4.4) in the trapping regime comprise the validity conditions
of our theory and are satisfied in all our numerical examples. We illustrate these
conditions in P1,2 parameter space in figure 8. The condition D = 1 (the separatrix
exists for D> 1 only) is also shown in the figure by dashed line. The region of the
applicability of the theory is coloured in blue.

5. Conclusions
In conclusion, we have studied the problem of capture of a distribution of electrons

into a nonlinear resonance with a ponderomotive wave having a slowly chirped
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frequency. For individual particles, the theory of capture into resonance is complicated
because of the non-adiabatic crossing of the separatrix between the trapped and
untrapped trajectories. Nevertheless, if one considers the evolution of the whole
distribution in phase space, the phase space incompressibility near the separatrix and
adiabaticity of deeper trapped orbits still allow the calculation of the resonant capture
probability, see (3.11). This result takes into account either resonant trapping or
escape of the particles in passage through resonance depending on weather the area
of the separatrix increases or decreases during the evolution. Furthermore, we have
assumed a positive driving frequency chirp rate in the theory, but it can be easily
reformulated to allow for a negative chirp rate. In all cases, the trapping probability
is described by (3.11). Both the trapping and the escape from resonance, as well as
down chirping of the driving frequency, are important in plasma applications (e.g.
Ghizzo, Del Sarto & Reveille 2009). Our theory uses two dimensionless parameters
P1,2 (see (2.9)) related to three time scales in the problem characterizing the driving
frequency variation, the driving strength and the nonlinearity, respectively. We have
found the validity region of our formalism in the P1,2 parameter space and compared
the predictions of the theory with simulations, illustrating a good agreement. In
addition to the problem analysed in this work, there exists many other important
applications (e.g. passage through higher harmonic and subharmonic resonances and
capture of molecules into rotational resonance (Armon & Friedland 2016)), where a
similar analysis can be used in calculating the resonant capture efficiency. Finally, the
inclusion of a self-field of the electrons in the resonant capture problem seems to be
an important goal for future research. Such a theory would require a self-consistent
analysis of the Vlasov–Poisson system. However, under certain conditions, the driven
plasma wave phase locks to the driving wave (Khain & Friedland 2010). In this case,
the resonant capture problem can be treated by adding the slowly varying amplitude
of the excited plasma wave to that of the driving field, i.e. including this additional
time variation in parameter P1.
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