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Characterisation Results for Steiner Triple
Systems and Their Application to
Edge-Colourings of Cubic Graphs

Daniel Král’, Edita Máčajová, Attila Pór, and Jean-Sébastien Sereni

Abstract. It is known that a Steiner triple system is projective if and only if it does not contain the

four-triple configuration C14. We find three configurations such that a Steiner triple system is affine

if and only if it does not contain one of these configurations. Similarly, we characterise Hall triple

systems using two forbidden configurations.

Our characterisations have several interesting corollaries in the area of edge-colourings of graphs.

A cubic graph G is S-edge-colourable for a Steiner triple system S if its edges can be coloured with

points of S in such a way that the points assigned to three edges sharing a vertex form a triple in

S. Among others, we show that all cubic graphs are S-edge-colourable for every non-projective non-

affine point-transitive Steiner triple system S.

1 Introduction

Steiner triple systems form a classical notion in combinatorial design theory. Recall

that a Steiner triple system S is formed by n points and several triples such that every

two distinct points are contained in exactly one common triple. Steiner triple systems

are simply-defined though complex and diverse combinatorial designs. A classical

result asserts the existence of a Steiner triple system with n points whenever n =
1, 3(mod 6), n ≥ 3. The number of results on Steiner triple systems is enormous,

and a separate monograph on the topic has recently appeared [2].

There are several prominent classes of Steiner triple systems. Among the most

important ones are projective and affine Steiner triple systems. The projective Steiner

triple system PG(d, 2) is the Steiner triple system with 2d+1 − 1 points corresponding

to non-zero (d + 1)-dimensional vectors over Z2 for d ≥ 1. Three such vectors form

a triple of PG(d, 2) if they sum to the zero vector. The smallest Steiner triple system

is the projective system PG(1, 2), comprised of three points forming a single triple. It

is referred to as the trivial Steiner triple system, while larger Steiner triple systems are

called non-trivial. The smallest non-trivial projective Steiner triple system is PG(2, 2),

the Fano plane, which is denoted by S7. An affine Steiner triple system AG(d, 3) is the

Steiner triple system with 3d points corresponding to d-dimensional vectors over Z3

for d ≥ 1. Three such vectors form a triple of AG(d, 3) if they sum to the zero vector.

The smallest affine Steiner triple system, AG(1, 3), is isomorphic to the trivial Steiner
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Figure 1: (a) The configuration C14 and (b) the Pasch configuration C16.

triple system. The smallest non-trivial affine Steiner triple system, AG(2, 3), is the

unique Steiner triple system with nine points and is denoted by S9.

It is natural to ask whether these two classes of Steiner triple systems can be char-

acterised in terms of well-described forbidden substructures (as for instance, it is

known that a graph is planar if and only if it does not contain a subdivision of one

of the graphs K3,3 or K5). To be more precise, a configuration C is formed by points

and triples such that each pair of points is in at most one of the triples, and a Steiner

triple system S contains C if there is an injective mapping of the points of C to the

points of S such that triples of points of C are mapped to triples of points of S.

The solution to the just stated problem is easy to find for the class of projec-

tive Steiner triple systems. Two four-triple configurations play important roles in

this characterisation: the first one is the configuration C14 formed by seven distinct

points ξ, α1, α2, β1, β2, γ1, and γ2 together with four triples {ξ, α1, α2}, {ξ, β1, β2},

{α1, β1, γ1}, and {α2, β2, γ2}; see Figure 1(a). The second one is the configuration

C16, known as the Pasch configuration, which is formed by six points and four triples;

see Figure 1(b).

Clearly, the configuration C14 cannot be contained in a projective Steiner triple

system. The converse is also true: Stinson and Wei established that a Steiner triple

system S with n points is projective if and only if it contains 1
24

n(n−1)(n−3) distinct

copies of the Pasch configuration [11]. By a counting argument given in [5], if S

contains fewer than 1
24

n(n−1)(n−3) copies of the Pasch configuration, then it must

contain a configuration isomorphic to C14. We state this observation as a separate

theorem.

Theorem 1.1 (Grannell et al. [5] and Stinson et al. [11]) A Steiner triple system S is

projective if and only if it contains no configuration C14.

However, we were not able to find such a simple argument characterising affine

Steiner triple systems in the literature. In Section 5, we show that a Steiner triple

system is affine unless it contains one of the three configurations depicted in Figure 2,

namely the Pasch configuration C16, the configuration C1
S , and the configuration C2

S

(the last two configurations are obtained from the squashed square configuration CS

introduced in Section 2).

Still a finer distinction between affine and non-affine Steiner triple systems can

be achieved. Hall triple systems are a prominent class of Steiner triple systems: a
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Figure 2: The three forbidden configurations for affine Steiner triple systems: the configura-

tions C16, C1
S , and C2

S (from left to right).

ξ

α1 β1 γ1

α2 β2 γ2

(a) (b)

Figure 3: (a) The mitre configuration and (b) the anti-mitre configuration CA.

Steiner triple system S is a Hall triple system if for every point x of S, there exists an

automorphism of S that is involution and its only fixed point is x. Hall [6] showed

that a Steiner triple system is a Hall triple system if and only if every Steiner triple

system induced by the points of two non-disjoint triples of S is isomorphic to S9.

Recall that the Steiner triple system induced by a set X of the points of S is the smallest

Steiner triple system S ′ such that S ′ contains all the points of X and all triples of S ′

are also triples of S. Hence, Hall triple systems look “locally” like affine Steiner triple

systems, and it can seem hard to distinguish these two classes in terms of forbidden

substructures. Also note that there are examples of Hall triple systems that are not

affine Steiner triple systems for every n = 3d, d ≥ 4, unlike in the case of projective

Steiner triple systems: if every two non-disjoint triples of S induce a Steiner triple

system isomorphic to S7, then S must be projective.

It is known that an n-point Steiner triple system is a Hall triple system if and only

if it contains n(n−1)(n−3)
12

configurations isomorphic to the mitre configuration [2]

which is depicted in Figure 3(a) (the points are labelled for future references). Since

no Steiner triple system can contain more than n(n−1)(n−3)
12

copies of the mitre con-

figuration, Hall triple systems are those which contains the largest number of config-

urations isomorphic to the mitre configuration.

Let us turn back to our results. As we mentioned, a Steiner triple system S is

affine if and only if it contains none of the configurations C16, C1
S , and C2

S . No Hall

triple system can contain the configuration C16 or the anti-mitre configuration CA

(see Figure 3(b)), as neither of them is contained in the Steiner triple system S9. The

converse is also true as we show in Section 5: a Steiner triple system is a Hall triple
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system if and only if it does not contain the configuration C16 or CA, and a Hall triple

system is affine if and only if it contains neither the configuration C1
S nor C2

S . With the

additional assumption that a Steiner triple system S is not projective, we can remove

the configuration C16 from the list of forbidden configurations both for affine Steiner

triple systems and Hall triple systems. We also note that every Steiner triple system

containing the configuration CA also contains one of the configurations C1
S and C2

S

(this seems to be a non-trivial fact which we state as Lemma 5.1).

1.1 Edge-Colourings of Cubic Graphs

Edge-colourings of cubic (bridgeless) graphs form a prominent topic in graph the-

ory because of their close relation to deep and important problems such as the four

colour theorem, the cycle double cover conjecture and many others. By Vizing’s theo-

rem, the edges of every cubic graph can be coloured with three or four colours in such

a way that the edges meeting at the same vertex receive distinct colours [13]. Non-

trivially connected cubic graphs (usually the cyclic 4-edge-connectivity is required)

such that their edges cannot be coloured with three colours are called snarks.

Archdeacon proposed studying edge-colourings of cubic graphs by the points of

Steiner triple systems [1]. Steiner triple systems seem to be general enough to “edge-

colour” most cubic graphs and still well-structured enough to provide us with new

results on cubic graphs. In particular, this notion extends the notion of the ordinary

edge-colourings among the lines of well-studied locally injective homomorphisms.

The points of a Steiner triple system S are assigned to the edges of a cubic graph G

in such a way that the edges incident with the same vertex are assigned three distinct

points that form a triple of S. Edge-colourings with this property are called S-edge-

colourings and G is said to be S-edge-colourable. A natural question is for which cubic

graphs G and which Steiner triple systems S, there exists an S-edge-colouring of G. In

particular, whether there exists a Steiner triple system S such that every simple cubic

graph (bridgeless or not) is S-edge-colourable; such a system S is called universal.

Grannell et al. established the existence of a universal Steiner triple system with

381 points [4]. Later, Pál and Škoviera showed that there exists a universal Steiner

triple system with 21 points (the system they considered is the direct product of the

Fano plane and the trivial Steiner triple system) [10]. One of the corollaries of our

results is the existence of a universal Steiner triple system with 13 points. Let us note

that no Steiner triple system with fewer than 13 points can be universal [7].

We now survey further results on edge-colourings of cubic graphs with points of

Steiner triple systems. Let us emphasise that all cubic graphs that we consider in

this paper are connected and they can contain bridges unless stated otherwise. On

the other hand, they never contain loops or parallel edges. This assumption does

not decrease the generality of our results: a cubic graph with a loop does not have an

S-edge-colouring for any Steiner triple system S since the points assigned to the edges

incident with the vertex with the loop cannot form a triple in S. If a cubic graph G

contains a pair of parallel edges e1 and e2 between two vertices v1 and v2, let G ′ be

the graph obtained from G by removing e1 and e2 and identifying the other edges

incident with v1 and v2. It is straightforward to verify that G is S-edge-colourable if

and only if G ′ is. Hence, we can subsequently eliminate the pairs of all parallel edges
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in a cubic graph. Note that loops can appear during this elimination process, yielding

that the original graph is not S-edge-colourable for any Steiner triple system S.

Fu showed that every bridgeless cubic graph of order at most 189 and of genus

at most 24 is S7-edge-colourable [3]. A stronger result was obtained by Holroyd

and Škoviera who showed that a cubic graph G is S-edge-colourable for a non-trivial

projective Steiner triple system S if and only if it is bridgeless [7]. In particular, all

bridgeless cubic graphs are S7-edge-colourable. The condition on G being bridge-

less can be easily seen to be necessary since an edge-colouring of G with the points

of a projective Steiner triple system PG(d, 2) can be viewed as a nowhere-zero flow

over Z
d+1
2 . It is well known that a graph has a nowhere-zero flow if and only if it is

bridgeless.

A characterisation of cubic graphs that are S-edge-colourable for a non-projective

Steiner triple system S has been offered as a conjecture (see Conjecture 1). One of

the obstacles for the existence of an S-edge-colouring is the notion of a bipartite end

which we now introduce. If a cubic graph G has bridges, it can be split along its

bridges into 2-connected blocks, each incident with one or more bridges. Each bridge

is split into two half-edges, each half-edge incident with one of the blocks. Note that

some blocks can be formed by a single vertex incident with three half-edges; such

blocks are called trivial. A block incident with a single half-edge is called an end. Let

H be an end of a cubic graph and H ′ the graph obtained from H by suppressing the

vertex incident with the half-edge. Hence, H ′ is a bridgeless cubic graph which can

contain a single pair of parallel edges (one of those is the contracted edge). We say

that H is a bipartite end if the graph H ′ is bipartite, H is a 3-edge-colourable end if H ′

is 3-edge-colourable (in the usual sense), and H is hamiltonian if H ′ has a Hamilton

cycle avoiding the edge obtained by suppressing the vertex incident with the half-

edge.

We can now state the conjectured characterisation of cubic graphs that are S-edge-

colourable with a Steiner triple system S.

Conjecture 1 (Holroyd and Škoviera [7, Conjecture 1.4]) Let S be a non-projective

Steiner triple system. A cubic graph G is S-edge-colourable unless G has a bipartite end

and S is affine.

If a cubic graph G has a bipartite end H and a Steiner triple system S is affine,

an easy linear algebra argument yields that the two edges of H incident with the

bridge must be coloured with the same point of S [7]. Hence, G cannot be S-edge-

coloured. The conjecture of Holroyd and Škoviera asserts this to be the only obstacle

for the existence of an S-edge-colouring unless S is projective. A counterexample to

Conjecture 1 based on altering a projective Steiner triple system has been found very

recently by Griggs and Macajova.1 Its structure suggests that perhaps Conjecture 1

is not far from the truth, since the constructed counterexample is obtained through

a simple modification of a projective Steiner triple system (an exceptional system in

the conjecture).

1Personal communication.
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As a corollary of our characterisation results on Steiner triple systems, we can

show that Conjecture 1 is true when restricted to point-transitive Steiner triple sys-

tems. A Steiner triple system is point-transitive if for every two points x and y of S,

there exists an automorphism of S that maps x to y. In fact, for non-trivial point-

transitive Steiner triple systems S, we can characterise cubic graphs G that are S-edge-

colourable: if S is projective, G is S-edge-colourable if and only if G is bridgeless (this

follows from the results of [7]). If S is affine, G is S-edge-colourable if and only if G

has no bipartite end (this solves an open problem from [7, 10] whether every cubic

graph with no bipartite end is AG(2, 3)-edge-colourable). Finally, if S is a non-trivial

point-transitive Steiner triple system that is neither projective nor affine, then G is

always S-edge-colourable.

Since there exists a point-transitive Steiner triple system with 13 vertices that is

neither projective nor affine, we can infer from our results the existence of a univer-

sal 13-point Steiner triple system. Since the only smaller Steiner triple systems are

the trivial Steiner triple system, the projective Steiner triple system S7 = PG(2, 2)

and the affine Steiner triple system S9 = AG(2, 3), the point-transitive Steiner triple

system with 13 points is the universal Steiner triple system with the smallest number

of points (this solves an open problem from [4] to determine the number of points

of the smallest universal Steiner triple system).

2 Notation

In this section, we introduce some additional notation related to Steiner triple sys-

tems. If S is a Steiner triple system, we find it convenient to have a special notation

for the point z forming a triple with two given distinct points x and y: such point z is

denoted by x ⊕ y throughout the paper. For instance, in C14 depicted in Figure 1(a),

ξ = β1 ⊕ β2. Note that the operation ⊕ is commutative and need not be associative,

i.e., the points x1 ⊕ (x2 ⊕ x3) and (x1 ⊕ x2) ⊕ x3 could be distinct.

The set X of points of a Steiner triple system S is said to be independent if for every

x ∈ X, the Steiner triple system S ′ induced by X \ {x} in S does not contain x. For

instance, a set X of points of an affine Steiner triple system is independent if and only

if X is affinely independent over Z3.

We now introduce another notion of containment of configurations in Steiner

triple systems and relate it to the standard notion. Let C be a configuration, as defined

earlier, with a distinguished pair (a, b) of its points. As an example, consider the

squashed square configuration CS depicted in Figure 4 with a = xαβ and b = xγδ .

We say that a Steiner triple system S homomorphically contains the configuration C if

there exists a mapping ϕ of points of C to the points of S such that every triple of C is

injectively mapped onto a triple of S and ϕ(a) 6= ϕ(b). Note that we do not require

the mapping ϕ to be injective but we require that no two points of the same triple

of C are mapped to the same point of S and that the points a and b are mapped to

distinct points of S.

In Sections 3 and 4, when proving our characterisation theorems, it will be more

convenient to show that a given Steiner triple system homomorphically contains CS,

rather than that it contains one of the configurations C1
S and C2

S . Let us realise that

the two statements are equivalent.
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γ2 α1 x0

γ1

xγδ

xαβ

δ1

ξ β1 β2

Figure 4: The squashed square configuration CS. Note that it is required that ϕ(xαβ) 6= ϕ(xγδ),

but the other pairs of points can coincide in a Steiner triple system.

Lemma 2.1 A Steiner triple system S homomorphically contains the squashed square

configuration CS if and only if S contains the configuration C1
S or the configuration C2

S .

Proof If S contains the configuration C1
S or the configuration C2

S , then S homomor-

phically contains CS. In the rest, we focus on proving the converse implication. Let X

be the set of points of the squashed square configuration CS; the points of CS are de-

noted as in Figure 4. Assume that S homomorphically contains the squashed square

configuration CS and let ϕ be the mapping from X to the points of CS as in the defi-

nition of homomorphical containment.

We first show that ϕ(ξ) is distinct from ϕ(x) for every x ∈ X\{ξ}. By symmetry, it

is enough to consider that ϕ(ξ) would be equal to ϕ(α1), ϕ(x0) or ϕ(xαβ) and obtain

a contradiction. If ϕ(ξ) = ϕ(α1), then ϕ(x0) = ϕ(γ1), since γ2 = ξ ⊕ γ1 = α1 ⊕ x0

(in more detail, since ϕ(ξ) = ϕ(α1) and S contains the triples {ϕ(γ2), ϕ(ξ), ϕ(α1)}
and {ϕ(γ2), ϕ(α1), ϕ(x0)}, it must also hold that ϕ(α1) = ϕ(x0)). Similarly, the

equality β1 = ξ ⊕ β2 = α1 ⊕ xαβ implies that ϕ(β2) = ϕ(xαβ), and δ1 = x0 ⊕ β2 =
γ1 ⊕ xγδ yields that ϕ(β2) = ϕ(xγδ). We infer that ϕ(xαβ) = ϕ(xγδ) = ϕ(β2), which

is impossible.

If it held ϕ(ξ) = ϕ(x0), then it would also hold that ϕ(α1) = ϕ(γ1) and ϕ(β1) =
ϕ(δ1). Consequently, ϕ(xαβ) = ϕ(xγδ), contrary to the definition of homomorphical

containment.

Finally, if ϕ(ξ) = ϕ(xαβ), we obtain ϕ(α1) = ϕ(β2). From this it follows that

ϕ(xαβ) = ϕ(xγδ), similarly to the case where ϕ(ξ) = ϕ(α1) with β2 playing the role

of ξ.

If ϕ maps X to ten distinct points of S, i.e., ϕ is injective, then S contains the

configuration C1
S . Otherwise, two of the points of X are mapped to the same point of

S. As the points ξ, x0, β2, and γ2 are mapped to distinct points of S, ϕ(α1) 6= ϕ(δ1)

(otherwise, x0 = α1 ⊕ γ2 = δ1 ⊕ β2 implies that ϕ(β2) = ϕ(γ2)). By the symmetry,

we can assume that ϕ(α1) = ϕ(xγδ). It is now straightforward to check that no other

two points of X can be mapped by ϕ to the same point of S and thus S contains the

configuration C2
S . We conclude that if S homomorphically contains the squashed-

square configuration CS, then S contains one of the configurations C1
S and C2

S .
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3 Forbidden Configurations in Hall Triple Systems

We split the proof of our characterisation results into two parts. In this section, we

deal with Hall triple systems and in the next section, we focus on non-Hall triple

systems.

Lemma 3.1 Every Hall triple system S that is not affine homomorphically contains the

squashed-square configuration CS.

Proof Let us first introduce some additional notation that we use throughout the

proof. Fix an arbitrary point of S; we refer to this point as to the zero and it is denoted

by 0. The other points of S are said to be non-zero.

For a set M of non-zero points of S, L(M) is the Steiner triple system induced

by M ∪ {0}. If M contains a single point, then L(M) is isomorphic to the trivial

Steiner triple system. Observe that if a set M of non-zero points of S is such that

a /∈ L(M \ {a}) for every a ∈ M, then it is independent, as defined in Section 2.

Since S is Hall, L(M) is isomorphic to S9 for every two-point set M such that M∪{0}
is independent. On the other hand, since S is not affine there exists an independent

set M such that L(M) is not an affine Steiner triple system. Let M = {e1, . . . , ed} be

an inclusion-wise minimal independent set for which L(M) is not affine. Note that

d ≥ 3.

Let V = Z
d
3 and let V 0 be the set of the vectors of V with at least one coordinate

equal to zero. Define a mapping φ : V 0 → L(M) as follows: the zero-vector is mapped

to 0 and the unit vectors are mapped to the points of M. The mapping φ is then

extended to the remaining vectors of V 0 in such a way that whenever the vectors ~a,
~b, and ~c have at least one common coordinate equal to zero and sum to zero, then

φ(~a), φ(~b), and φ(~c) form a triple in L(M). Since each of the systems L(M \ {ei}),

i = 1, . . . , d, is affine, such an extension of φ to V 0 is well defined and unique.

Since L(M) is not affine, the mapping cannot be extended to the whole set V in

such a way that each triple of vectors summing to zero is mapped to a triple of L(M).

There could be several obstacles for the existence of such an extension. The simplest

one is that there exist three vectors ~a,~b, and~c of V 0 such that ~a +~b +~c = ~0 but the

points φ(~a), φ(~b), and φ(~c) do not form a triple in L(M). By the definition of φ, the

vectors~a,~b, and~c cannot have a common coordinate equal to zero. Hence, there exist

three distinct indices i, j, and k such that ~ai = ~b j = ~ck = 0 but the coordinates ~a j ,

~ak,~bi ,~bk,~ci , and~c j are non-zero.

We now define four vectors ~w, ~x, ~y, and~z based on the vectors ~a,~b, ~c. The i-th

coordinates of the vectors are ~xi = ~yi = ~zi = 0 and ~wi = −~ci ; the j-th coordinates

are~x j = ~w j = 0, ~y j = −~a j , and~z j = −~c j ; and the k-th coordinates are~xk = ~yk = ~ak

and ~wk = ~zk = 0. The remaining coordinates are set as ~xt = −~at , ~yt = 0, and

~wt =~zt =~ct for t /∈ {i, j, k}. Note that~a +~x +~y =~0 and~c + ~w +~z =~0. In addition,

the vectors~x and ~w have a common coordinate equal to zero, and similarly the pairs

of vectors ~x and ~y, ~y and~z, and ~w and~z. Observe also that the j-th coordinate of~b

and −(~x + ~w) is zero, and~b + (−~x − ~w) + (−~y −~z) =~0. Since φ(~b) 6= φ(~a) ⊕ φ(~c)

by our assumption, the configuration is as depicted in Figure 5(a). Hence, we have

exhibited the squashed-square configuration in S.
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φ(~w) φ(~c) φ(~z)

φ(−~x − ~w)
φ(~b)

φ(−~y − ~z)

φ(~x) φ(~a) φ(~y)

(a)

φ(~y) φ(~b′′) φ(~w)

φ(~a′) φ(~a′′)

φ(~x) φ(~b′) φ(~z)

(b)

Figure 5: Two squashed-square configurations constructed in the proof of Lemma 3.1.

Assume now that for every triple~a,~b, and~c of vectors of V 0 with~a +~b +~c =~0 the

points φ(~a), φ(~b), and φ(~c) form a triple in L(M). Our next aim is to try to extend φ
to V by defining φ(~a) = φ(~a ′) ⊕ φ(~a ′ ′) for vectors~a ∈ V \V 0 and~a ′,~a ′ ′ ∈ V 0 such

that~a+~a ′+~a ′ ′ =~0. This extension would be possible unless there existed four vectors

~a ′,~a ′ ′,~b ′,~b ′ ′ ∈ V 0 such that~a ′ +~a ′ ′ =~b ′ +~b ′ ′ and φ(~a ′)⊕φ(~a ′ ′) 6= φ(~b ′)⊕φ(~b ′ ′).

Assume the existence of such vectors~a ′,~a ′ ′,~b ′, and~b ′ ′.

We next find four vectors ~w,~x,~y, and~z in V 0 such that~a ′+~x+~y =~0,~b ′+~x+~z =~0,

~a ′ ′ + ~w +~z =~0, and~b ′ ′ + ~y + ~w =~0; see Figure 5(b). Thus S contains the squashed-

square configuration. Note that ~a ′ + ~a ′ ′ = ~b ′ + b ′ ′ /∈ V 0 by our assumptions. In

particular, the vectors ~a ′ and ~a ′ ′ do not have the same coordinate equal to zero and

the same also holds for~b ′ and~b ′ ′. If we fix arbitrarily one of the coordinates of ~w,

say ~wi , then the i-th coordinates of the vectors ~x, ~y, and~z are uniquely determined:

~yi = −(~b ′ ′
i + ~wi), ~zi = −(~a ′ ′

i + ~wi), and ~xi = −(~a ′
i + ~yi) = −(~b ′

i +~zi) (the last

two expressions are the same, since ~a ′
i + ~a ′ ′

i = ~b ′
i +~b ′ ′

i ). Similarly, fixing the i-th

coordinate of~x determines the i-th coordinate of the vectors ~y,~z, and ~w.

First we assume that the vectors~a ′ and~b ′ have the same coordinate equal to zero,

say ~a ′
i =~b ′

i = 0. We set ~xi = 0. This determines the i-th coordinates of the vectors

~w, ~y, and ~z. In particular, ~yi = 0 and ~zi = 0. Since ~a ′ ′,~b ′ ′ ∈ V 0, there exist i ′

and i ′ ′ such that ~a ′ ′
i ′ = 0 and~b ′ ′

i ′ ′ = 0 (the indices i ′ and i ′ ′ need not be distinct).

Since the vectors~a ′ and~a ′ ′ do not have a common coordinate equal to zero, i 6= i ′.

Analogously, i 6= i ′ ′. Set ~wi ′ = 0 and ~wi ′ ′ = 0. The remaining coordinates of the

vector ~w are chosen arbitrarily. This completely determines all the vectors ~w, ~x, ~y,

and~z. All the vectors ~w, ~x, ~y, and~z are in V 0 and they satisfy the above constraints.

Analogously, we can handle the cases where the vectors ~a ′ and~b ′ ′, ~a ′ ′ and~b ′, or ~a ′ ′

and~b ′ ′ have the same coordinate equal to zero.

We now assume that no pair of the vectors~a ′,~a ′ ′,~b ′, and~b ′ ′ have the same coor-

dinate equal to zero. Let i ′, i ′ ′, j ′, and j ′ ′ be the indices such that~a ′
i ′ = 0,~a ′ ′

i ′ ′ = 0,
~b ′

j ′ = 0, and~b ′ ′
j ′ ′ = 0. Choose~xi ′ = ~x j ′ = 0 and ~wi ′ ′ = ~w j ′ ′ = 0. This determines

the i ′-th, i ′ ′-th, j ′-th, and j ′ ′-th coordinate of all the vectors ~w, ~x, ~y, and ~z. The

remaining coordinates of the vector~x are chosen arbitrarily and the remaining coor-

dinates of the other vectors are determined by this choice. Again, we have obtained

https://doi.org/10.4153/CJM-2010-021-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-021-9
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the configuration depicted in Figure 5(b).

Hence, we have excluded the existence of the vectors~a ′,~a ′ ′,~b ′, and~b ′ ′. Therefore,

we conclude that the mapping φ can be extended to V \V 0 in such a way that φ(~x) =
φ(~x ′)⊕φ(~x ′ ′) for all vectors~x ∈ V and~x ′,~x ′ ′ ∈ V 0 with~x +~x ′ +~x ′ ′ =~0. Since L(M)

is not affine, there must exist three vectors~a,~b, and~c in V such that~a +~b +~c =~0 and

φ(~c) 6= φ(~a) ⊕ φ(~b) for this (uniquely defined) mapping φ.

If~a =~0, choose arbitrarily two vectors~b ′ and~b ′ ′ in V 0 such that~b +~b ′ +~b ′ ′ =~0.

Hence,~c + (~a +~b ′) + (~a +~b ′ ′) =~0 and both~a +~b ′ and~a +~b ′ ′ are contained in V 0.

Since S is Hall and φ(~x) = φ(~x ′) ⊕ φ(~x ′′) for all vectors~x ∈ V and~x ′,~x ′ ′ ∈ V 0 with

~x +~x ′ +~x ′ ′ =~0, it follows that φ(~c) = φ(~a) ⊕ φ(~b), a contradiction. Hence,~a 6=~0.

Since the vectors ~a,~b, and~c are distinct, there exists i such that ~ai ,~bi and~ci are

distinct. By symmetry, we can assume that~ai = 0. We aim to define four vectors ~w,

~x, ~y, and~z that would form the configuration depicted in Figure 5(a). Set~xi = ~yi =
~zi = 0 and ~wi = −~ci . Let j be the index such that ~a j 6= 0 and set ~x j = ~w j = 0,

~y j = −~a j , and~z j = −~c j . The remaining coordinates of the vectors ~w,~x, ~y, and~z are

chosen in such a way that~a+~x+~y =~0 and~c+~w+~z =~0. Observe that~x+~w ∈ V 0 and

~y +~z ∈ V 0. Hence, φ(~b) = φ(−~x−~w)⊕φ(−~y−~z) since~b+(−~x−~w)+(−~y−~z) =~0.

We conclude that the constructed configuration matches that depicted in Figure 5(a).

This finishes the proof that if the mapping φ cannot be extended to the whole set V ,

then S homomorphically contains the squashed-square configuration. Hence, the

proof of the lemma is complete.

4 Forbidden Configurations in Other Steiner Triple Systems

In the previous section, we have dealt with Hall triple systems, and in this section we

consider non-Hall triple systems. In the next section, the results of the previous and

this section are combined to obtain characterisations of affine Steiner triple systems

and Hall triple systems in terms of forbidden subconfigurations.

Our aim is to show that every non-projective Steiner triple system that is not Hall

contains the anti-mitre configuration CA, depicted in Figure 3(b). As the first step,

we establish that if a Steiner triple system S does not contain CA, then every three

independent points of S induce a system isomorphic to S7 or S9.

Lemma 4.1 If a Steiner triple system S does not contain the anti-mitre configuration,

then every three independent points of S induce a Steiner triple system isomorphic to S7

or S9.

Proof Let A, B, and C be three independent points of S and let a = B⊕C , b = A⊕C ,

and c = A⊕B; see Figure 6(a). Note that all the points A, B, C , a, b, and c are mutually

distinct. We next consider two cases.

• The points a, b, and c form a triple of S.

Let m = A⊕a. If m⊕c is neither b nor C , we obtain a configuration isomorphic to

the anti-mitre configuration. Since the points a, b, and c form a triple in S, m ⊕ c

cannot be b. Hence, m ⊕ c = C . A symmetric argument yields that m ⊕ b = B.

So the points A, B, and C induce a Steiner triple system isomorphic to S7.
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Figure 6: The configurations considered in the proof of Lemma 4.1.

• The points a, b, and c are independent.

Let A ′ = b ⊕ c, B ′ = a ⊕ c, and C ′ = a ⊕ b. Since a, b, and c are independent, all

the points A, B,C, a, b, c, A ′, B ′, and C ′ are mutually distinct. Since S contains no

anti-mitre configuration, the point A ′ is either a or A ⊕ a. We have just excluded

the former case. Hence, A ′ = A ⊕ a. By symmetry, we deduce that B ′ = B ⊕ b

and C ′ = C ⊕ c.

Therefore we obtain the configurations depicted in Figure 6(b) and (c). Again,

since S does not contain the anti-mitre configuration, the point B ′ is equal to

either C ′ or A ⊕ C ′. Since the points B ′ and C ′ are distinct, it holds that B ′ =
A⊕C ′. By symmetry, B = A ′⊕C ′ and C = A ′⊕B ′. We conclude that the points

A, B,C, a, b, c, A ′, B ′, and C ′ induce a Steiner triple system isomorphic to S9.

Before going further, we state the following result obtained by Teirlinck [12].

Lemma 4.2 Let S be a Steiner triple system. If every three independent points of

S induce a system isomorphic to S7 or S9, then either every such triple of S induces a

system isomorphic to S7, or every such triple induces a system isomorphic to S9.

Using Lemmas 4.1 and 4.2, we can now show that every non-projective Steiner

triple that is not Hall contains the anti-mitre configuration.

Lemma 4.3 Every Steiner triple system S that is not projective and that is not a Hall

triple system contains the anti-mitre configuration CA.
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β2

f(β2)
γ1 ⊕ β2

β1

γ2 γ1 ξ

Figure 7: The notation used in the proof of Lemma 5.1.

Proof Assume for the sake of contradiction that S is neither a projective Steiner triple

system nor a Hall triple system, and yet does not contain the configuration CA. By

Lemma 4.1, every three independent points induce a Steiner triple system isomorphic

to S7 or S9. By Lemma 4.2, either all such triples induce systems isomorphic to S7

or all such triples induce systems isomorphic to S9. The latter is excluded by our

assumption that S is not a Hall triple system. Hence, Theorem 1.1 yields that S is

projective, which contradicts our original assumptions on S.

5 Characterisations of Affine Steiner Triple Systems and Hall Triple
Systems

Before we can state our characterisation results, we have to show that every Steiner

triple system containing CA also contains one of the configurations C1
S and C2

S . We

prove instead that it homomorphically contains CS which is equivalent by Lemma 2.1.

Lemma 5.1 Every Steiner triple system S containing the anti-mitre configuration CA

also homomorphically contains the squashed-square configuration CS.

Proof Choose the points ξ, β1, β2, γ1, and γ2 to be the points of the anti-mitre

configuration as depicted in Figure 7. Note that the five points are distinct and ξ =
β1 ⊕ β2 = γ1 ⊕ γ2.

For a point z of a Steiner triple system S, let f (z) = (z ⊕ γ2) ⊕ β1 and h(z) =
(z ⊕ β2) ⊕ γ1. Note that the functions f and h are not defined for all the points

of S. More precisely, the function f (z) is a bijection between its domain D( f ) =
S \ {γ2, γ2 ⊕ β1} and its image set R( f ) = S \ {β1, γ2 ⊕ β1}. Similarly, h(z) is a

bijection between D(h) = S \ {β2, β2 ⊕ γ1} and R(h) = S \ {γ1, γ1 ⊕ β2}.

Observe that if there exists a point z of S such that both f (z) and h(z) are defined

and f (z) 6= h(z), we are able to construct the squashed-square configuration in S.

Indeed, we set x0 = z, α1 = z⊕γ2, δ1 = z⊕β2, xαβ = f (z) = α1⊕β1 = (z⊕γ2)⊕β1,

and xγδ = h(z) = δ1 ⊕ γ1 = (z ⊕ β2) ⊕ γ1; see Figure 4. Hence, in order to establish

the statement of the lemma it is enough to show that there exists a point z of S such

that f (z) 6= h(z).
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Recall that f and h are defined on all the points of S except β2, γ2, β1 ⊕ γ2, and

β2 ⊕γ1. The points β2 and γ2 are distinct from the remaining exceptional points, but

the points β1 ⊕ γ2 and β2 ⊕ γ1 might be the same. Analogously, the set of possible

common values of f and h are the points of S except for β1, γ1, β1 ⊕ γ2, and β2 ⊕ γ1.

Again, these points are distinct with a possible exception of the pair β1 ⊕ γ2 and

β2⊕γ1. Since the pairs of points that could be the same point are the same pairs both

for the domains and image sets of f and h, it holds that |D( f )∩D(h)| = |R( f )∩R(h)|.
Assume to the contrary that there is no point z such that z ∈ D( f ) ∩ D(h) and

f (z) 6= h(z). In particular, f and h restricted to D( f ) ∩ D(h) are the same bijective

mapping onto R( f )∩R(h). Therefore, the points of D( f ) \D(h) are mapped by f to

R( f ) \ R(h). We conclude that f (β2) is one of the points γ1 and γ1 ⊕ β2. However,

f (β2) cannot be either of these two points; see Figure 7.

We can now state the theorem characterising affine Steiner triple systems and Hall

Steiner triple systems.

Theorem 5.2 A Steiner triple system S is affine if and only if it contains none of the

configurations C16, C1
S , or C2

S . Moreover, if S is known to be non-projective, then S is

affine if and only if it contains neither of the configurations C1
S and C2

S .

Similarly, S is a Hall triple system if and only if it contains neither of the configura-

tions C16 and CA, and if S is known to be non-projective, then S is Hall if and only if it

does not contain the configuration CA.

Proof It is easy to see that an affine Steiner triple system S cannot contain any of the

configurations C16, C1
S , and C2

S . Suppose now that S is not affine. If S is projective,

then it contains C16. If S is a Hall triple system, then it contains C1
S or C2

S by Lem-

mas 2.1 and 3.1. Finally, if S is not projective and not a Hall triple system, then it

contains CA by Lemma 4.3, and hence it contains one of the configurations C1
S or C2

S

by Lemmas 2.1 and 5.1.

Similarly, a Hall triple system S contains neither C16 nor CA as neither of these

two configurations is contained in S9. Analogously to the above argument, a pro-

jective Steiner triple system S contains the configuration C16, and a non-projective

Steiner triple system that is not a Hall triple system contains the configuration CA by

Lemma 4.3.

6 Preliminary Results on Colourings with Points of Steiner Triple
Systems

We now turn our attention to applying our characterisation results to edge-colour-

ings of cubic graphs. We start by recalling several results on colourings of cubic

graphs with Steiner triple systems. As the first, a theorem on edge-colourings of

bridgeless cubic graphs with the points of Steiner triple systems from [7] is stated and

proved. Though the main idea follows that of [7], we provide its proof for several rea-

sons. The most important is that the proof is later altered to obtain edge-colourings

in more special scenarios, and we want to avoid extensive referral to a different paper.

Another reason is that we want to present the proof using our notation. Given a sub-

graph C of a graph G, let G/C be the graph obtained by contracting the components
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Figure 8: The colouring constructed in the proof of Theorem 6.1. The edges of M \ (T1 ∪ T2)

are drawn as dashed and coloured with the point ξ.

of C to single vertices and removing the loops that may arise (but not the parallel

edges).

Theorem 6.1 (Holroyd and Škoviera [7]) Let S be a non-trivial Steiner triple system.

Every bridgeless cubic graph is S-edge-colourable. Moreover, for every edge e of G and

every point ξ of S, there exists an S-edge-colouring that assigns ξ to e.

Proof It can be shown using standard graph theory arguments that G contains a

perfect matching M with the following properties (see [8,9] for instance): M contains

the edge e and the graph H = G/C , where C is the complement of M in G, contains

two edge-disjoint spanning forests T1 and T2, e 6∈ T1 ∪ T2, such that the degree of a

vertex v is odd in Ti , i = 1, 2, if and only if the degree of v in H is odd. Such spanning

forests are called parity forests.

Choose an arbitrary point α1 of S distinct from ξ and set α2 = ξ ⊕ α1. Let β1 be

a point of S distinct from ξ, α1, and α2 and let β2 = ξ ⊕ β1. Further, let γi = αi ⊕ βi

for i = 1, 2. Finally, let δ12 = α2 ⊕ β1 and δ21 = α1 ⊕ β2; see Figure 9.

If all the cycles of C were even, we would colour the edges of M with ξ and the

edges of the cycles with α1 and α2 alternately. This would give us the desired colour-

ing of the edges of G. However, some cycles of C could be odd. We cope with this in

the rest of the proof.

The edges of cycles will be coloured with α’s and β’s in such a way that the indices

of the colours alternate precisely at vertices not incident with the edges of T1. Once

we choose which edges of a cycle C1 of C are coloured with α1 or β1 and which with
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ξ

α1 β1γ1

α2 β2γ2

δ12 δ21

Figure 9: The notation used in the proof of Theorem 6.1.

α2 or β2, the points assigned to the edges of T1 incident with C1 are determined

to be either γ1 or γ2 depending on the colours of the two edges incident with that

edge of T1. The choice of a colouring of a single cycle corresponding to a vertex of a

component of T1 determines the colourings of the edges of all cycles corresponding

to the vertices of the same component of T1. Since T1 is acyclic and each cycle is

incident with the number of edges of T1 matching its parity, the edges of T1 can be

coloured with γ1 and γ2 in such a way that the colouring of T1 can be extended to all

cycles.

Similarly, we can partition the edges of C into two classes such that the edges of

one of the classes will be coloured with α1 or β2, and the edges of the other class with

α2 or β1. The classes alternate at vertices not incident with an edge of T2 and the

edges of T2 get the colours δ12 and δ21.

In the way just described, we have defined colourings of the edges of T1 and T2.

The edges of M not contained in T1 or T2 are coloured by ξ. As discussed above,

the colouring of the edges of M extends to the edges of C . Indeed, the colours of

the edges of T1 determine the indices and those of T2 then completely fix the colours

assigned to the edges of C . Since e ∈ M \ (T1∪T2), the colour of e is ξ, as desired.

Note that in addition to prescribing the colour of e to be ξ, we can also assume

in the proof of Theorem 6.1 that the colours of the edges of the even cycles corre-

sponding to vertices that are isolated both in T1 and T2 are coloured with α1 and α2

alternately, and fix a colouring of one odd cycle.

We now sketch an alternative proof of the following result of Pál and Škoviera [10]:

we focus on the aspects that are different and used in our further arguments. The

proof was obtained during discussions between Zdeněk Dvořák and the first author.

Theorem 6.2 (Pál and Škoviera [10]) Every cubic graph with no bipartite end is

AG(d, 3)-edge-colourable for all d ≥ 3.

The graph is first split into blocks with half-edges corresponding to bridges in-

cident with the blocks. We next construct an edge-colouring of each block. It is

required that the points assigned to each triple of edges sharing the same vertex form

a triple in the system. In particular, the points assigned to a half-edge and the two

edges incident with it form a triple. As stated in the next lemma, it is enough to be
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able to construct edge-colourings of non-bipartite ends and bridgeless cubic graphs

since the half-edges of non-trivial blocks incident with more bridges can be merged

to obtain graphs only of these two kinds.

Lemma 6.3 Let H be a non-trivial block of a cubic graph incident with at least two

half-edges. If H is incident with an odd number of half-edges and H is not a triangle with

three half-edges, then the half-edges can be identified in such a way that the resulting

graph is a non-bipartite end. On the other hand, if H is incident with an even number

of half-edges, then the half-edges of H can be identified in such a way that the resulting

graph (after a possible successive removal of pairs of parallel edges) is either a simple

bridgeless cubic graph or a graph formed by a triple of parallel edges.

Proof If H is incident with four or more half-edges, than H contains two half-edges

f1 and f2 which are not incident with adjacent vertices. We identify the half-edges f1

and f2 and obtain a block with fewer half-edges and without parallel edges that also

satisfies the assumption of the lemma. Hence, we assume in the rest that the block is

incident with two or three half-edges.

If H is incident with two half-edges, we identify the two half-edges and obtain

a bridgeless cubic graph H ′, which need not be simple. We next remove pairs of

parallel edges as we describe in the Introduction: remove the pair of parallel edges

and identify the two edges incident with the pair of parallel edges that remain in the

graph. Note that the graph is kept bridgeless and cubic in this way and thus we cannot

obtain a loop. Hence, we either end with a simple bridgeless cubic graph or a triple

of parallel edges as claimed in the statement of the lemma.

The case where H is incident with three half-edges is more involved. We distin-

guish two cases based on whether or not the vertices of H can be coloured with two

colours. If the vertices can be coloured with two colours, then identify two half-edges

incident with vertices of the same colour. This does not create a pair of parallel edges.

In addition, the resulting graph is not a bipartite end, since we have just created an

odd cycle.

If the vertices of H cannot be 2-coloured, then identifying any pair of half-edges

does not create a bipartite end. Hence, we have only to avoid creating a pair of parallel

edges, i.e., we have to identify half-edges incident with non-adjacent vertices. This is

possible unless H is a triangle with incident three half-edges.

Every bridgeless cubic graph as well as a trivial block or a block formed by a tri-

angle with three incident half-edges is AG(d, 3)-edge-colourable [7]. Therefore, we

only have to establish that each non-bipartite end is AG(d, 3)-edge-colourable for all

d ≥ 3 to finish the proof of Theorem 6.2. We next show that if the non-bipartite end

is 3-edge-colourable, then it is indeed AG(d, 3)-edge-colourable for every d ≥ 2.

Lemma 6.4 Let S be a non-trivial affine Steiner triple system. Every 3-edge-colourable

non-bipartite end G0 is S-edge-colourable.

Proof Let S be an affine Steiner triple system AG(d, 3), d ≥ 2. The points of S are

d-dimensional vectors (x1, . . . , xd) with xi ∈ {0, 1, 2}. Let G be the graph obtained

from G0 by suppressing the vertex incident with the half-edge and let e be the new

edge of G. For the rest of the proof, we fix a 3-edge-colouring of G.
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We claim that G contains an odd cycle C0 passing through the edge e. Since G is

not bipartite, it contains an odd cycle C . If e ∈ C0, the claim holds. Assume that

e 6∈ C0. Since G is bridgeless, there exist two edge-disjoint paths in G from the end-

vertices of e to C . The two paths combine with one of the two parts of C delimited by

the final vertices of the paths to an odd cycle C0 containing the edge e.

We are now ready to define the S-edge-colouring of G0. The first coordinate x1 is

equal to 0, 1, or 2 depending on the colour of the edge of G in the fixed colouring.

Note that the first coordinates of every two incident edges, except for the two edges

incident with the half-edge, are distinct. The second coordinate x2 is equal to 0 for all

the edges not contained in C0. For the other edges which form an even cycle in G0, the

second coordinate alternates between 1 and 2. The remaining coordinates xi , i > 2,

are equal to 0. It is easy to verify that the defined colouring is an S-edge-colouring

of G0.

The proof that each non-3-edge-colourable (and thus non-bipartite) end is

AG(d, 3)-edge-colourable if d ≥ 3 is obtained by combining arguments used in the

proofs of Theorem 6.1 and Lemma 6.4. The first two coordinates are used to mimic

the edge-colouring from the proof of Theorem 6.1, and the third coordinate is used

to distinguish the colours assigned to the edges incident with the half-edge (in the

same way as the second coordinate in the proof of Lemma 6.4). Since we do not use

Theorem 6.2 in our further considerations and only use Lemmas 6.3 and 6.4, we leave

to the reader the details missing to complete the proof of Theorem 6.2.

7 Non-3-Edge-Colourable Ends

By Lemma 6.3, the problem of an edge-colouring of a cubic graph can be decom-

posed into several problems dealing with edge-colourings of ends. In this section, we

consider ends that are not 3-edge-colourable.

Lemma 7.1 Let S be a Steiner triple system containing the configuration C14. Every

non-3-edge-colourable end G0 is S-edge-colourable.

Proof We alter the proof of Theorem 6.1. The points of C14 are ξ, αi , βi , and γi

as in Figure 1(a). Note that this is consistent with the notation used in the proof of

Theorem 6.1.

Let e1 and e2 be the two edges incident with the half-edge and G be the bridgeless

cubic graph obtained by suppressing the vertex incident with the half-edge. Let e be

the resulting edge of G. As in Theorem 6.1, we consider a perfect matching M, e ∈ M,

and two disjoint parity forests T1 and T2 of G/C where C is the complement of M

and e 6∈ T1∪T2. Let v0 be the vertex of G/C corresponding to a cycle incident with e1.

Since the end is not 3-edge-colourable, G/C contains a vertex of odd degree.

Hence, both T1 and T2 contain some edges. Let v0 · · · vk be a shortest path in G/C

from the vertex v0 to a vertex vk that is not isolated in T1 or T2. Note that k may be

0. Further, let Ci be the cycle of C corresponding to the vertex vi , i = 0, . . . , k, and

let P be the path in G0 comprised of the edge e1, the edges corresponding to the path

v0 · · · vk and parts of the cycles C0, . . . ,Ck. By symmetry, we can assume that e2 does
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Figure 10: The modification of the colouring performed in the proof of Lemma 7.1: the original

colouring is in the top and the modified in the bottom of the figure. The edges of the path P

are drawn solid bold.

not belong to P, see Figure 10. The last vertex of P is the only vertex of P incident

with an edge contained in T1 ∪ T2.

Next, we modify the colouring obtained in the proof of Theorem 6.1. As men-

tioned after its proof, we can assume that the edges of P ∩ C are coloured with α1

and α2 only. In addition, we can assume that the colours of edges of P ∩ C incident

with the same edge of P ∩ M are the same, i.e., they both are either α1 or α2, the last

edge of P is coloured with α1 and the edge eM of M incident with the last vertex of P

is contained in T1 (see the figure). In particular, the colour of eM is γ1. Note that all

the edges of P ∩ M are coloured with ξ.

Let x1 be the point β1 ⊕ γ2. Note that x1 is distinct from the points ξ, α1, and

α2. Further, let x2 = ξ ⊕ x1. Analogously, x2 is different from α1 and α2. Note that

α2 + xi 6= ξ for each i ∈ {1, 2}.

We now alter the constructed colouring. Recolour the edge eM to γ2 and swap the

indices of the colours of the edges of the subtree of T1 separated by eM from vk, i.e., the

edges of the subtree coloured with γ1 are now coloured with γ2 and vice versa. This

results in a change of the colouring of the edges of C contained in the cycles incident

with edges of swapped colours. By the choice of the path v0 · · · vk, the colours of all

the edges of P as well as edges incident with them, except for the edge eM , have been

preserved.
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We now modify the colouring of the edges of P in such a way that the obtained

colouring is an S-edge-colouring of G0. The colours of the edges of P ∩ C that are

originally coloured with αi are changed to xi both for i = 1 and i = 2. Consider

now an edge f ∈ P ∩ M. Note that both the ends of f are either incident with edges

coloured α1 and x2, or with edges coloured α2 and x1. Hence, we can extend the

colouring to the edges of P ∩ M. Since the colour of e1 is not equal to ξ, and the

colour of e2 is ξ, the colouring can also be extended to the half-edge of G0 which is

incident with e1 and e2. This finishes the proof of the lemma.

8 3-Edge-Colourable Ends

In Section 7, we constructed colourings of non-3-edge-colourable ends. It remains to

consider 3-edge-colourable ends. It seems that the core of the problem lies in hamil-

tonian ends. More precisely, we first construct the desired colourings for hamilto-

nian ends and we later show how to reduce the problem of colouring general 3-edge-

colourable ends to hamiltonian ones. The first cases we consider are hamiltonian

non-bipartite ends.

Lemma 8.1 Let S be a Steiner triple system containing the configuration C14. Every

hamiltonian non-bipartite end G0 is S-edge-colourable. Moreover, there exists an S-

edge-colouring such that the edges not contained in the Hamilton cycle receive at most

three distinct colours.

Proof Let G be the graph obtained from G0 by suppressing the vertex incident with

the half-edge, e the resulting edge of G, and e1 and e2 the two edges of G0 incident

with the half-edge. Further, let CH be the Hamilton cycle with e 6∈ CH and for every

chord f of CH , let C f be one of the cycles formed by f and a part of the cycle CH .

Since the cycles CH and C f form a base of the cycle space of G and G is not bipartite,

one of these cycles is odd. Since G is cubic, the length of CH is even and thus one of

the cycles C f is odd.

We first consider the case that the cycle Ce is odd (in the graph G). The edges e1

and e2 are coloured with γ1 and γ2, the other chords of CH are coloured with ξ. The

edges of one of the parts of CH delimited by e are coloured with α1 and α2 and the

edges of the other part with β1 and β2 (see Figure 11). Let us recall that the points of

C14 are ξ, αi , βi , and γi as in Figure 1(a).

In the rest of the proof, we assume that the cycle Ce is even and consider a cycle

C f , f 6= e, that is odd. Before we proceed further, let us introduce some additional

notation: α ′
1 is the point α2 ⊕ γ1, α ′

2 is ξ ⊕ α ′
1, and ξ ′ is α ′

2 ⊕ β2. Since α ′
1 6= ξ, the

point α ′
2 is well defined. Moreover α ′

2 6= β2, i.e., the point ξ ′ is also well defined.

We now distinguish two cases based on whether the chords e and f cross. If the

chords e and f cross (see Figure 12(a)), colour f with γ1 and one of the parts of CH

delimited by f , say one incident with e1, with α1 and α2 alternately. The other part of

CH is split by e2 into two parts: the edges of one of the parts are coloured with β1 and

β2 alternately and the edges of the other with α ′
1 and α ′

2 alternately. Finally, the edges

e1 and e2 are coloured with ξ and ξ ′, and the remaining chords of CH are coloured

with ξ. It is straightforward to verify that the colouring is an S-edge-colouring. Since

ξ 6= ξ ′, the colouring can be extended to the half-edge.
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e1 γ1

e2 γ2
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α2

α1

α2

α1

α2 β2

β1

β2

β1

β2

β1

Figure 11: The colouring of G0 constructed in the proof of Lemma 8.1 in the case where the

cycle Ce is odd in G. The dashed chords are labelled with ξ.
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Figure 12: The colourings of G0 constructed in the proof of Lemma 8.1 in the case where the

cycle Ce is even and (a) the chords e and f cross, (b) the chords e and f do not cross. The

dashed chords are labelled with ξ.

https://doi.org/10.4153/CJM-2010-021-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-021-9


Characterisation Results for Steiner Triple Systems 375

ξ

xγδ
x0

xαβ

δ2

δ1γ2

γ1

β2

β1

α2

α1

Figure 13: The squashed-square configuration CS enhanced by two new points α2 = ξ ⊕ α1

and δ2 = ξ ⊕ δ1. Note that it is required that xαβ 6= xγδ but the other pairs of points can

coincide.

The final case to consider is that the chords e and f do not cross. By symmetry, we

can assume that the part of CH delimited by e1 and f is odd and the part delimited

by e2 and f is even; see Figure 12(b). The edges of the part of CH between f and

e1, and e1 and e2, are coloured with β1 and β2 alternately. The edge f is assigned γ1

and the edges of the part of CH delimited by f are assigned α1 and α2 alternately.

The remaining edges of CH are then coloured with α ′
1 and α ′

2. Finally, the edge e2 is

coloured with ξ ′ and the remaining chords of CH with ξ. Since ξ 6= ξ ′, this colouring

can also be extended to the half-edge.

Note that, regardless whether the cycle Ce is odd or even, there are three distinct

points assigned to the edges not contained in the Hamilton cycle, namely, the points

γ1, ξ, and ξ ′.

It remains to consider hamiltonian bipartite ends. This is the point where we will

utilise our characterisation results since such ends cannot be edge-coloured by affine

Steiner triple systems.

Lemma 8.2 Let S be a Steiner triple system homomorphically containing the squashed-

square configuration CS. Every hamiltonian bipartite end G0 is S-edge-colourable. More-

over, there exists an S-edge-colouring such that the edges not contained in the Hamilton

cycle receive at most five distinct colours.

Proof Let us enhance the squashed-square configuration CS by introducing two new

points α2 = ξ ⊕ α1 and δ2 = ξ ⊕ δ1; see Figure 13. Let G be the graph obtained

from G0 by suppressing the vertex incident with the half-edge, e the resulting edge of

G, and e1 and e2 the two edges of G0 incident with the half-edge. Further, let CH be

the Hamilton cycle of G with e 6∈ CH .

Assume first that G contains a chord f that crosses e as depicted in Figure 14. The

edge e1 is coloured with xαβ , e2 with xγδ , and f with x0. The other chords of CH are

coloured with ξ. The edges of the parts of CH delimited by e and f are coloured with

α1 and α2, β1 and β2, γ1 and γ2, and δ1 and δ2, each part with one of the pairs of the

colours alternately. Since xαβ 6= xγδ , the colouring can be extended to the half-edge.

Note that only the points ξ, x0, xαβ , and xγδ are assigned to the edges not contained

in the Hamilton cycle.
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e1 xαβ

e2 xγδ

f
x0

α1

α2

α1

γ2

γ1

γ2

γ1 δ1

δ2

δ1

δ2

δ1

β2

β1

Figure 14: The colouring of G0 constructed in the proof of Lemma 8.2 in the case where there

is a chord crossing e. The dashed chords are labelled with ξ.

A more involved case is when no chord of CH crosses e. Since G has no parallel

edges (with a possible exception of e), it contains a pair of crossing chords. Each pair

of crossing chords split CH into four parts, out of which one is incident with both the

end-vertices of e. Choose among all pairs of chords f1 and f2 the one with distance

between the end-vertices of f1 and f2 delimiting the part opposite to the part incident

with e the smallest possible. It is not hard to show that this distance must be equal to

one, otherwise, there would exist a pair of crossing chords with closer end-vertices.

Let v1 and v2 be the end-vertices of f1 and f2 that are adjacent and v ′
1 and v ′

2 the other

end-vertices of f1 and f2.

Before we proceed further, we show that it can be assumed that xαβ 6= γ1 or

xγδ 6= β1 (note that the two inequalities are symmetric). If xαβ = γ1 and xγδ = β1,

then α1 = δ1; see Figure 13. Consequently, β2 = γ2 and β1 = γ1. However, this

implies xαβ = xγδ which is inconsistent with the definition of the configuration CS.

Hence, we can assume that xαβ 6= γ1 in the rest of the proof. Since xαβ 6= γ1, there

exists a point z1 that forms a triple with xαβ and γ1. Observe that z1 6= ξ (otherwise,

xαβ would be equal to γ2, x0 would be β1, and ξ would be δ1, which is impossible).

Consequently, there exists a point z2 = ξ ⊕ z1.

We are now ready to colour the edges of G. The edge v1v2 is coloured with α1, the

edge f1 with x0, and the edge f2 with xαβ . The chords of CH distinct from e1, e2, f1,

and f2 are coloured with ξ. The edges of the part of CH delimited by v1 and v ′
2 are

coloured with γ1 and γ2 alternately and the edges of the part delimited by v2 and v ′
1

are coloured with β1 and β2 as in Figure 15. This colouring switches at the vertex

incident with f1 to an alternating colouring with δ1 and δ2 until it hits the end-vertex

of the edge e1. The edges of CH between the end-vertices of e2 and f2 are coloured

with z1 and z2 alternately; see Figure 15.

It remains to colour the edges of the part of CH delimited by e and the edges e1

and e2 themselves. The coloured edge incident with e1 is coloured with δk and the
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Figure 15: The colourings of G0 constructed in the proof of Lemma 8.2 in the case where there

is no chord crossing e. The dashed chords are labelled with ξ.
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coloured edge incident with e2 is coloured with zk (note that the indices of the two

colours are the same by the parity constraints). We assert that δk 6= zk: if z1 = δ1,

then xαβ = xγδ which is impossible. If z2 = δ2, then z1 = δ1, which we have just

excluded.

Choose arbitrarily a point y1 of S that is distinct from ξ, δk and zk, and let

y2 = ξ ⊕ y1. The remaining edges of HC are coloured with y1 and y2 alternately

in such a way that the edges e1 and e2 are incident with edges coloured with y1. Since

y1 6∈ {zk, δk}, the colouring can be extended to e1 and e2. Moreover, since zk 6= δk,

the colours of e1 and e2 are distinct. Hence, the colouring can also be extended to the

half-edge.

It remains to verify that there are at most five points used to colour the edges not

contained in the Hamilton cycle: indeed, only the points ξ, x0, xαβ and the points

assigned to e1 and e2 are such points. The proof of the lemma is now finished.

We have constructed colourings of hamiltonian ends. A 3-edge-colourable end

does not need to be hamiltonian in general, but we can reduce the problem to hamil-

tonian ends as described in the next lemma.

Lemma 8.3 Let S be a Steiner triple system containing the configuration C14 and ho-

momorphically containing the squashed-square configuration CS. Every 3-edge-colour-

able end G0 is S-edge-colourable.

Proof Let G be the graph obtained by suppressing the vertex u incident with the half-

edge and e = v0v1 the resulting edge. Fix a colouring of the edges of G with three

colours, say red, green and blue, such that the edge e is red and the cycle formed by

green and blue edges that contains v0 is the longest possible.

Let w1, . . . , wk be the vertices of the cycle formed by green and blue edges that

contains the vertex v0 and assume that w1 = v0. We construct an auxiliary end H0

with the vertices w0, . . . , wk, where w0 is a new vertex which will be incident with the

half-edge of H0. The cycle w1 · · ·wk is contained in H0. In addition, the vertices wi

and w j are joined in H0 by an edge ei j if G contains a path Pi j formed by red and blue

edges such that wi and w j are the only vertices of Pi j contained in the cycle w1 · · ·wk.

Note that for each vertex wi , there exists a unique vertex w j with this property. The

chord incident with w1 is replaced by a path containing the vertex w0. Observe that

the resulting graph H0 is a hamiltonian end. In addition, H0 has no parallel edges:

if two vertices wi and w j adjacent in the cycle were joined by a chord, then we could

assume by the symmetry that the edge wiw j of the cycle is blue and switch the red and

blue colours on the cycle Pi j ∪ {wiw j} thereby obtaining a longer green-blue cycle

with v0. This would contradict our choice of the 3-edge-colouring.

By Lemma 8.1 or 8.2 (depending on whether H0 is bipartite), H0 has an S-edge-

colouring such that at most five distinct points of S are used to colour the chords of

the Hamilton cycle of H0. Choose a point ξ0 of S distinct from the five points used

on edges not contained in the Hamilton cycle. In addition, choose another point

α0 distinct from ξ0. We now construct an S-edge-colouring of the edges of G0. The

edges of the cycle w1 · · ·wk keep their colours. The red edges of the path Pi j get the

colour of the edge ei j ; the edge w1u gets the colour of w0w1, and the red edges on the

path from w1 as well as the edge uv1 get the colour of the other edge incident with
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w0. The remaining red edges of G0 are coloured with α0. The green edges of G0 not

contained in the cycle w1 · · ·wk are coloured with ξ0.

The only edges that are not yet coloured are blue edges not contained in the cycle

w1 · · ·wk. Now observe that each end-vertex of every uncoloured blue edge is inci-

dent with two edges coloured with the same pair of points of S (one of these two

colours being ξ0). Hence, the colouring can be extended to all the edges of G0. This

finishes the proof of the lemma.

9 Characterisation of Edge-Colourability of Cubic Graphs

In Sections 7 and 8, we constructed S-edge-colourings of ends of cubic graphs. It

remains to combine these colourings to a colouring of the whole cubic graph.

Theorem 9.1 Let G be a cubic graph and S a non-trivial point-transitive Steiner triple

system.

• If S is projective, then G is S-edge-colourable if and only if G is bridgeless.
• If S is affine, then G is S-edge-colourable if and only if G has no bipartite end.
• If S is neither projective nor affine, then G is always S-edge-colourable.

Proof Fix a cubic graph G and a non-trivial point-transitive Steiner triple system S.

If S is projective, then G is S-edge-colourable if and only if G is bridgeless [7].

Next, we assume S is affine. If G has a bipartite end, then G is not S-edge-

colourable [7]. Hence, assume G has no bipartite ends. If G is bridgeless, G is

S-edge-colourable since all bridgeless cubic graphs are edge-colourable by all non-

trivial Steiner triple systems; see Theorem 6.1. Hence, we also assume G has one or

more bridges.

Now split the graph G along its bridges into several blocks. We colour each block

with its incident half-edges. Since S is affine, it contains the configuration C14. Hence,

all the ends can be S-edge-coloured either by Lemma 6.4 or by Lemma 7.1. Let us

now consider a block incident with two or more half-edges. The trivial blocks and

the blocks formed by a triangle with three half-edges are clearly S-edge-colourable.

By Lemma 6.3, the half-edges of the remaining blocks of G can be identified in such

a way that the resulting graph (after a possible removal of parallel edges) is a bridge-

less cubic graph, a triple edge, or a non-bipartite end. All such graphs are S-edge-

colourable as argued before. Since the obtained S-edge-colouring can be extended to

the removed parallel edges, the original block of G is also S-edge-colourable.

It remains to combine the colourings of the blocks. After contracting the blocks

of G into single vertices, the graph G becomes a tree. We further refer to the vertices

as nodes in order to distinguish them from the vertices of G. Root this tree at any

of its nodes. We fix the S-edge-colourings of the blocks from the root of the tree to

its leaves. The block corresponding to the root keeps its original colouring. Since

S is point-transitive, we can permute the colourings of the blocks corresponding to

the nodes adjacent to the root (its children) in such a way that they match on the

half-edges. Next, we permute the edge-colourings of the blocks corresponding to

the grandchildren in such a way that they match the colours of edges leading from

the blocks corresponding to the children. We proceed in this way until we obtain an

S-edge-colouring of the entire graph G.
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It remains to consider the case where S is neither projective nor affine. By Theo-

rems 1.1 and 5.2, and Lemma 2.1, we deduce that S contains the configuration C14

as well as it homomorphically contains the squashed-square configuration CS. If G is

bridgeless, G is S-edge-colourable by Theorem 6.1. Otherwise, we also split G along

its bridges to blocks. The ends can be S-edge-coloured by Lemmas 7.1 and 8.3. The

trivial blocks and the blocks formed by triangles with three half-edges are S-edge-

colourable from trivial reasons. The half-edges of the remaining blocks can be iden-

tified to get bridgeless graphs and (non-bipartite) ends. Hence, such blocks are also

S-edge-colourable. The obtained colourings of the blocks of G can be combined to

an S-edge-colouring of the whole graph G in the same way as in the case of affine

Steiner triple systems.

As a corollary of Theorem 9.1, we derive the conjecture of Holroyd and Škoviera

(Conjecture 1) for point-transitive Steiner triple systems.

Corollary 9.2 Let G be a cubic graph and S a non-projective (and thus non-trivial)

point-transitive Steiner triple system. If G has no bipartite end or S is not affine, then G

is S-edge-colourable.

10 Concluding Remarks

In the first part of the paper, we characterised several important classes of Steiner

triple systems in terms of forbidden subconfigurations: we have shown that a Steiner

triple system is affine if and only if it contains none of the configurations C16, C1
S , or

C2
S , and S is a Hall triple system if and only if it contains neither the configuration C16

nor CA. It would be interesting to provide such characterisations of other important

classes of Steiner triple systems.

Let us now turn our attention to edge-colourings of cubic graphs with elements

of Steiner triple systems. Conjecture 1 is now proven for affine Steiner triple sys-

tems since all affine Steiner triple systems are point-transitive. Hence, it is only

open whether every non-projective non-affine Steiner triple system that is not point-

transitive is universal. The smallest such Steiner triple system has 13-vertices; let S ′
13

be this Steiner triple system. Note that there are only two Steiner triple systems with

13 vertices, namely the point-transitive system S13 mentioned in Section 1, and the

system S ′
13.

Along the lines of the proof of Theorem 9.1, we have tried to establish that S ′
13

is also universal. First we identified several configurations such that if all of them

are present in S ′
13, all the ends can be coloured. As in the proof of the lemmas in

Sections 7 and 8, several cases based on whether the end is 3-colourable, bipartite,

etc., need to be considered. Next, we prepared a computer program to check the

presence of these configurations in S ′
13 with the additional requirement that one of

their points, the one to be assigned to the half-edge, is a prescribed point of S ′
13. In

this way, the presence of all the needed configurations in S ′
13 with the special point

being any of the points of S ′
13 was established.

Based on this, we concluded that each block of every cubic graph can be S ′
13-edge-

coloured if one of the half-edges incident with it is precoloured with a point of S ′
13.

Hence, the system S ′
13 is universal. We believe that an analogous argument can be
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used to establish that other small non-point-transitive Steiner triple systems are uni-

versal but we have not yet managed to develop a theoretical background that would

give us any hope of extending our results to Steiner triple systems that need not be

point-transitive.
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