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B E N T POLYNOMIALS OVER FINITE FIELDS

ROBERT S. COULTER AND R E X W. MATTHEWS

The definition of bent is redefined for any finite field. Our main result is a com-
plete description of the relationship between bent polynomials and perfect non-linear
functions over finite fields: we show they are equivalent. This result shows that bent
polynomials can also be viewed as the generalisation to several variables of the class
of polynomials known as planar polynomials. An explicit method for obtaining large
sets of not necessarily distinct maximal orthogonal systems using bent polynomials
is given and we end with a short discussion on the existence of bent polynomials over
finite fields.

1. ORIGINS AND DEFINITIONS

Bent functions were introduced by Rothaus in 1976 and have since been shown to
have a wide range of applications. Defined originally over Z2 and then generalised to
1q for general q they have indirectly been studied over prime fields. In this article we
formally define the notion of bent polynomial for any finite field. The definition relies
on the concept of the Discrete Fourier Transform which we define in terms of additive
characters following the notation used in [6, Chapter 5]. Throughout we use the following
conventions: p is a prime, q = pe for some positive integer e, F, denotes the finite field
with q elements and ¥* the non-zero elements of F,. For a positive integer n, F£ denotes
the set of all n-tuples of elements from F, while Z£, is similarly defined from the ring
of integers modulo m. Finally, we use Yq[X\,..., Xn] to denote the set of all n-variable
polynomials over F9 and V™[Xi,..., Xn] for the set of all m-tuples of polynomials in the
variables Xx,..., Xn in F,.

The function xi defined by

Xi(ar) = e2™Tr<x>/*

for all x E F, is called the canonical additive character of F,. Here TV : F, —> Fp denotes

the absolute trace function from F, to Fp. For y € ¥q, the function xv{x) = X\{vx) f°r

Received 13th January, 1997
The majority of this work was completed in [2] and presented at the 3rd International Conference of
Finite Fields and Applications at Glasgow, Scotland in July, 1995. We note that parts of this work have
appeared recently in [1].

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 SA2.00+0.00.

429

https://doi.org/10.1017/S000497270003121X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003121X


430 R.S. Coulter and R.W. Matthews [2]

all x e ¥q is an additive character of F, and every character of ¥q can be obtained in this
way. Finally, we note that Xo is the trivial additive character which satisfies Xo{x) — 1
for all x e¥q.

DEFINITION 1.1: Let / e F , [X 1 ; . . . ,Xn]. The Discrete Fourier Transform of / is
the complex valued function c/iX : F^ —» C given by

-M.XV'V qn/

where x : F9 —> C is any non-trivial additive character on ¥q and • : ¥q x F™ —> ¥q is the
usual scalar dot product.

The polynomials we shall study within this paper are defined as follows.

DEFINITION 1.2: A polynomial / <E ¥q{Xx,...,Xn} is said to be bent if every
Fourier coefficient has unit magnitude for any non-trivial character. Explicitly,

= 1

for all A £ F?
n and for all X ¥" Xo-

The reason for the term bent used in the above definition is historical. These poly-
nomials can be viewed as a generalisation to finite fields of a well known class of functions
called bent functions which have been previously defined only on Z^. These functions
were first introduced by Rothaus [10] on Zg and generalised to Z£, by Kumar, Scholtz
and Welch in [5]. In those cases the motivation for studying bent functions lies with
properties of these functions which are relevant to coding theory and cryptology. In
this paper we consider bent polynomials as multivariate analogues of planar polynomials
defined over a finite field.

2. SOME GENERAL PROPERTIES

In this section we shall establish some properties of bent polynomials. In particular
we shall discuss their permutation behaviour and how they act under composition with
additive polynomials. We shall use the following concept for a multivariate polynomial
(see [6, Definition 7.34]).

DEFINITION 2.1: A polynomial / € Fq[X\,..., Xn) is called a permutation polyno-
mial in n indeterminates over F, if the equation

f ( . . , x n ) = a

has g""1 solutions in ¥q for each a e¥q.

Bent functions have been closely associated with the class of functions called perfect
non-linear functions, which we define here over finite fields.
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D E F I N I T I O N 2.2: Let / e F , [ X i , . . . , Xn). Then we call / perfect non-linear if for

every a £ F?", a ^ O , the difference polynomial A/|O defined by

is a permutation polynomial.

Over ZJJ, bent functions and perfect non-linear functions have been shown to be
closely linked. Nyberg in [8] proved that any perfect non-linear function must be bent,
while a bent function must be perfect non-linear if m is prime. When dealing with a
general finite field the connection between the two classes is much simpler. In fact, they
are equivalent.

THEOREM 2 . 3 . A polynomial f e Wq[Xi,...,Xn] is perfect non-linear if and

only if it is bent.

P R O O F : Let / e ¥q[Xu ..., Xn\. Then for arbitrary x ¥" Xo,

£ X{f{x) - X • x) £ X(f(y) - A • y)

= i £ x(/W) £ xirfiy) - A • (x - y))
i€F»

(i) =££/(-*•*)£
Suppose / is a perfect non-linear polynomial. Then the inner sum of (1) is zero unless
2 = 0 in which case the inner sum has value qn. Hence we have |c/iX(A)|2 = 1 and / is a
bent polynomial.

Now suppose / is a bent polynomial. Let

Then (1) becomes

(2)

for all A € F,". We need to show that Sx{f,z) = 0 for all z € F,", z / 0. From (2) we
have qn equations in q" unknowns. Ordering the elements of F " by a o , . . . , aqn_x with
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Q0 = 0, we can express (2) as the following matrix equation.
/ 1 1 w sxJIT) x

(3)

\ (ay—i • ay—!)

Sx(f,an)

\

nn \

\
Let H denote the qn x qn matrix in the above equation. Then using the orthogonality
relations for characters we have

HTH = qnl.

Multiplying (3) by H on the left yields the qn equations

(4)
i=0

for j' = 0 , . . . ,qn - 1. However for a, ^ 0 the right hand side of (4) is zero. Hence
Sx(f, z) = 0 for all z € F^1, z / 0, and so / is a perfect non-linear polynomial. D

As previously mentioned, equivalence in the prime case was established by Nyberg
in [8]. We illustrate that the above result is a true generalisation of Nyberg's work.
By choosing a basis (yi,..., yr) of a general field ¥q, with q — pr, viewed as a vector
space over its prime subfield, a bent polynomial from F™ to ¥q is equivalent to a bent
transformation from F™ to F*. Thus the above result is fundamentally different to the
result of Nyberg [8, Theorem 2.3] in that there the result is only shown for the case r = 1.
In other words Nyberg proves the result for single valued polynomials on Fp, not vector
valued polynomials as is shown here.

A polynomial L € Fq[X] is called additive on F, if L(x+y) = L(x)+L(y) for all x, y e
Fq. Any such L can be regarded as an Fp-linear transformation of Fg. Polynomials which
induce an Fp-linear transformation are known in the literature as linearised polynomials.
There is an explicit description of such polynomials: their reduced form has the shape

i=0

where a, € F,,. We note that the existence of an additive polynomial vector mapping
F^ to F?" is equivalent to the existence of an additive polynomial over F,n. Here, by an
additive vector polynomial / we mean / € V£[Xl 5. . . , Xn) with f(x + y) = f(x) + f(y)
for all x,y e F?

n.

Since the polynomials may always be considered as reduced, we may assume that any
additive polynomial has the above shape. These polynomials form a subset of the class of
polynomials called affine polynomials. Affine polynomials have been studied extensively
and we refer the reader to [6, pages 107-124] for their properties. The following result is
well known, see [6, Theorem 7.9] for example.
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LEMMA 2 . 4 . Let L e ¥q[X] be defined by

e- l

i=0

Then L is a permutation polynomial over ¥q if and only if L has no roots in ¥q other
than 0.

If we choose a standard basis for F^1 over Fq (for example, 1,2, z 2 , . . . with z a
generator) then an additive polynomial vector will be a permutation polynomial vector
if and only if it has no roots other than the zero vector. This can be shown by using the
linear independence of the basis chosen and relating the additive polynomial vector back
to its additive polynomial which must be a permutation polynomial.

In connection with Theorem 2.3 we shall define AfA € F , , [Xi , . . . , Xn] by

(5) Afta(X) = f(X + a)-f(X)

where / 6 ¥q[Xu • • •, Xn] and a € ¥£. In light of Theorem 2.3 it is clear that we shall
be particularly interested in A / a whenever a is not the all zeros vector. The following
two results are the obvious generalisations of [3, Theorem 2.3] and as the proofs are the
same as those given there we omit them.

THEOREM 2 . 5 . Let f e Fq[Xu...,Xn} and let L G ¥q[X] be additive. Then
L(f) is bent if and only if f is bent and L is a permutation polynomial.

THEOREM 2 . 6 . Let f € Fq[Xu ..., Xn] and let Ln € V^[XU ..., Xn] be an ad-
ditive polynomial vector. Then f(Ln(X]) is a bent polynomial if and only if f is bent
and Ln is a permutation polynomial vector.

3. O R T H O G O N A L S Y S T E M S AND T H E S I N G L E VARIABLE C A S E

D E F I N I T I O N 3 .1 : A system of polynomials / i , . . . , / m € ¥q[Xi,... ,Xn],
1 ^ m sC n, is said to be orthogonal in ¥q if the system of equations

fi(xi,...,xn) = yu...,fm(xi,...,xn) = y m

has exactly qn~m solutions in F^ for each ( j / i , . . . , ym) € F£\ If n = m then we shall call
the system maximal.

Niederreiter in [7] showed that every polynomial in an orthogonal system must be
a permutation polynomial. We now show that bent polynomials are also related to
orthogonal systems.

THEOREM 3 . 2 . Let f € ¥qn [X] be a bent polynomial. Then f defines n distinct

bent polynomials / i , • • • , / „ over ¥£ such that the set of polynomials

{ A / j i O € F , [ A - , , . . . , Xn] | A / t , a ( X ) = f{(X + a) - ft(X), i = l,...,n}

forms a maxima] orthogonal system in ¥q for each non zero a € ¥£.
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P R O O F : Let / be a bent polynomial over F9n. Then f(X+a)-f(X) is a permutation
polynomial for all a € F*n. Select (y1,.. .,yn), yt € F,n, to be a basis for F,n over F,.
Then any a G F9n can be written in the form

+ a2y2 H h anyn

with each a; € F?. In particular we may write

n
where ft € ¥q[Xi,..., Xn] for i = 1 , . . . , n and X = J2 ̂ iVi- Similarly we have for any

i l

and combining yields

n

f(X + a) - f(X) = J X / i p G +au...,Xn + an)- fi(Xu... ,Xn))

for all a € F,n. As / is bent we have that each /j must be a bent polynomial on F<J\
Moreover, for / to be a bent polynomial, the set Aa given by

{AA,O G Fg[Xu ...,Xn}\ A / i > a (X) = ft{X + a) - ft{X), i = 1 , . . . , n}

must form a maximal orthogonal system for each non-zero a € F^1. If ft = fj for some
1 ^ i < j ^ n then none of the sets Aa could be orthogonal. Hence the n bent polynomials
are distinct. D

So a bent polynomial in one variable over ¥gn describes qn — \ not necessarily distinct
maximal orthogonal systems in ¥g. A bent polynomial in one variable is also known as
a planar polynomial or planar function.

Planar functions were first introduced by Dembowski and Ostrom in [4] in connection
with projective planes satisfying certain properties. A recent paper by the authors [3]
considered several aspects of planar functions over finite fields and the planes described
by them. In particular, several classes of planar polynomials were identified and they can
be listed as follows:

(i) f(X) = X2, which gives the Desarguesian plane over F,, q odd.

(ii) f{X) — Xp"+l, which is planar over Fp«, p odd, if and only if e/(a,e) is
odd.

(iii) f(X) = X10 + X6 - X2, which is planar over F3« if and only if e = 2 or e
is odd.
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(iv) f{X) = X ( 3 ° + 1 ) / 2 , which is planar over F3« if and only if (a, e) = 1 and a

is odd.

From experimental data it appears that all known planar polynomials are equivalent to

one of these types in the sense that they can be obtained through multiple applications of

Theorems 2.5 and 2.6, and through the addition of single variabled additive polynomials.

(If / € Vq[X] is a planar polynomial then so is / + L for any additive polynomial

L e F,[X].)

The study of planar functions has so far been motivated essentially by their connec-

tion with projective planes. They are also studied under the name of relative difference

sets. Each planar function describes an affine plane whose projective closure satisfies

certain properties, see [4] for details. Until recently all known finite planes described by

planar functions were either semi-field planes or Desarguesian. However, in [3] a new class

of planar polynomials was discovered (the fourth class in the list above) which described

a class of planes which could not be coordinatised by quasi-fields. These planes were

shown to be of Lenz-Barlotti class II (they have since been shown to be LB Class II. 1 by

Jill Yaqub). All previously known such planes had been obtained through derivation or

lifting and so had square prime power order. The new class of planes contains at least one

Lenz-Barlotti class II plane of order 3 e for each e ^ 4. We summarise with the following

theorem which was implicitly proven in [3] but not explicitly stated.

THEOREM 3 . 3 . There exist planes of Lenz-Barlotti class II which have non-

square order and hence cannot be obtained by derivation or lifting.

This answers affirmatively a problem which has been in existence virtually since the

introduction of the concept of derivation by Ostrom in the 1960's.

4. EXISTENCE

We end with some remarks on the existence of bent polynomials. As can be seen

from the listing above, bent polynomials in one variable exist over ¥q for all q = pe with

p an odd prime - a simple argument shows that bent polynomials in one variable cannot

exist when p = 2, see [9]. In particular, the polynomial X2 is bent over all finite fields

of odd order. The application of Theorem 3.2 to X2 over ¥qn for any n shows that there

must exist bent polynomials in n variables over F, for any q odd.

The existence of bent functions over Z, has been dealt with in many papers. In a

similar vein to [5, 10] we have the following.

LEMMA 4 . 1 . Let f e ¥q[Xi, ...,Xn] and g e ¥q[Xu ..., Xm}. If f and g are

bent then the polynomial F = f + g £ ¥q[Xi,..., Xn+m] is bent. If q is prime then the

converse holds also.
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P R O O F : Let / and g be bent. We have

g(n+m)/2
2 6 l fg

I V
n(n+m)/2 Z__/

= c/,x(An)c9>x(Am).

Clearly F is bent if / and g are. For the converse see [5, 10]. D

For q = 2 this was first shown by Rothaus [10]. Kumar, Scholtz and Welch in
[5] claimed the forward part of the above result for general Z? without proof with the
statement that it was a straight generalisation of Rothaus' proof. We note that as the
converse part of Rothaus' proof can also be generalised it seems likely that Kumar, Scholtz
and Welch meant to claim the full generalisation of Rothaus' Theorem. Thus for q an
odd prime we attribute Lemma 4.1 to [5]. We have the following corollary.

COROLLARY 4 . 2 . Let f £ ¥q[Xu ..., Xn] have the shape

with fi S F, [X] . Then f is bent if every fi is a planar polynomial.

Of particular interest would be any bent polynomial constructed in this manner with

fi(Xi) = X\ " for some i. As these planar monomials were only recently discovered

it would be interesting to know whether any corresponding bent polynomials are already

known and if so how they were constructed.

The characteristic 2 case requires special attention as no planar polynomials exist in

this case. Results and constructions by Rothaus in [10] show that bent polynomials on

F ^ with q = 2 can only occur if n is even and that they do occur for every even n. It is

a simple mat ter to prove the following.

LEMMA 4 . 3 . Letq = 2e. Then the polynomial XXX2 is bent on ¥2
q.

Thus it is clear that by multiple applications of Lemma 4.1 we can construct bent
polynomials in characteristic 2 for any even number of variables. With the work of
Rothaus just mentioned in mind this is perhaps not a surprising result. We note that if
q = 2e then it is not possible for there to exist bent polynomials over ¥q if ne is odd.
To see this note that for p = 2 any additive character of F, will only take values in the
set {0,1}. Thus the sums involved in the Fourier transform will be integers only. If ne
is odd then qn is not a square and so it is not possible for any Fourier coefficient to have
unit magnitude.
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