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1. Introduction

The concept of a laminated near-ring was introduced in [2]. We recall briefly what it
is. Let N be a near-ring and let aeN. Define a new multiplication on N by x*y = xay
for all x,yeN. With this new multiplication and the same addition as before we have
another near-ring which we denote by JVa. The near-ring Na is referred to as a
laminated near-ring, the original near-ring N is the base near-ring and a is the
laminator or laminating element.

In [2] the base near-ring N was the near-ring of all continuous selfmaps of the reals
under pointwise addition and composition and the laminator was an odd degree
polynomial P. Our purpose in [2] was to describe the automorphism group AutiVP of
the laminated near-ring NP and we were able to show that it is either UM the
multiplicative group of nonzero real numbers, Z2 the cyclic group of order two or the
trivial group consisting of only one element. Moreover, it turned out that for most P,
Aut NP is the trivial group.

In this paper our base near-ring is the near-ring Jf of all continuous selfmaps of the
complex plane and the laminating element P is any complex polynomial whatsoever.
We will assume, however, that our polynomials are nonconstant. The problem of
determining kvXJfP seems to be considerably more difficult than that of determining
Aut/Vp [2]. Indeed the problem for complex polynomials is still far from being
completely solved. For one thing, there are considerably more possibilities for kutyVP

than for Aut NP.

In Section 2 we obtain some rather general results which follow from one of the main
results in [1]. The near-rings JfP are treated in subsequent sections and all the results
in those sections rely heavily on the results in Section 2. In Section 3, we characterise
those complex polynomials P for which kw\JfP is a finite group. In Section 4, we
address ourselves to the problem of determining precisely what infinite groups can occur
as kvXJfp and here we are able to completely solve the problem. There are exactly
three such infinite groups and they are GL(2), the full linear group of all 2 x 2
nonsingular real matrices, and two of its subgroups. Furthermore, for each of these
infinite groups, we are able to completely characterise those polynomials P such that
Aut JVP is isomorphic to that particular group.

EMS- D

https://doi.org/10.1017/S001309150002808X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150002808X


74 K. D. MAGILL, JR., P. R. MISRA AND U. B. TEWARI

2. Some general results

Let X be a topological space, G an additive topological group and a a continuous
function from G into X. The family JV{X, G, a) of all continuous functions from X into
G forms a near-ring when addition of functions is defined pointwise and the product fg
of continuous functions / and g is defined by fg = f ° a ° g. The near-ring Jf(X, G, a) is
referred to as a sandwich near-ring with sandwich function a. For any topological group
G and any decomposition II of C into mutually disjoint nonempty subsets, we let
TA(G, FI) denote the group, under composition, of all topological automorphisms t of
the group G which satisfy t [ / 4 ] e n for each AeTl. Now we are in a position to state
our first result.

Theorem 2.1. Let X be a completely regular Hausdorff space which has more than one
point and contains a compact subspace with nonempty interior and let G be a connected,
locally arcwise connected metrizable topological group. Let a be a quotient map from G
onto X and let IT(a) be the decomposition of G which is induced by a. Then
Aut Jf{X, G, a), the automorphism group of the sandwich near-ring Jf(X, G, a), is
isomorphic to the group TA(G, n(a)).

Proof. Let <f> be any automorphism of Jf(X, G,a). Then, according to Theorem (3.1)
of [1] there exists a unique homeomorphism h from X onto itself and a unique
topological automorphism t in TA(G,H(a)) such that the following diagram commutes
for e a c h / i n JT(X,G,a).

(2.1.1)

We refer to the pair (h,t) as "the pair associated with 0" and we define a mapping $
from A u t ^ ( X , G , a ) into TA{G,Tl(<x)) by <b(<t>) = t. Now let ^ and <f>2 be any two
automorphisms of JV{X,G,OL) with associated pairs (hut1) and (h2,t2) respectively. Then
the triples (puhut1 and </>2,h2,t2 both satisfy a commutative diagram of the form
(2.1.1). It then follows that the following diagram also commutes

(2.1.2)

-* X

Thus, (ht °h2,tl ot2) is the pair associated with (t>i°4>2 a n d by uniqueness, it follows that
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j o<p2) =
 <to(.4>i)°®(<l)2)- ^n other words, O is a homomorphism. Suppose <t>(<t>) = e, the

identity automorphism. Then there exists a homeomorphism h from X onto X such that
the following diagram commutes.

(2.1.3)

Thus, /io<x = ocoe = a and since the range of a is all of X, it follows that h is the identity
on X. Consequently, <j> is the identity automorphism. This means that the kernel of <D is
trivial and that O is injective.

Now let t be any element of TA(G, FI(a)) and define a mapping h as follows: let any x
in X be given. Choose any yeG such that oc(y) = x and define

Since t[/l] e II(a) for each A e II(a) it readily follows that the definition of h(x) does not
depend on the choice of y. One notes immediately that

ho<x = tx°t. (2.1.4)

Now suppose that h(x]) = h(x2). Choose yt and y2 so that oc(yl) = xl and a.{y2) = x2. By
(2.1.4) we have

aiHyJ) = h(a(yi)) = h(Xl) = h(x2) = h(a(y2)) = oc(t(y2)).

Thus, t(yj) and t(y2) both belong to the same set in the decomposition I"I(a). Since
t e TA(G, n(a)) it follows that yt and y2 must belong to the same set in the
decomposition Il(a). Consequently

That is, h is injective. To see that h is surjective, let any x e l be given. Choose any y
such that a.(y) = x and by (2.1.4) we get

We have shown that h is a bijection from X onto X. Let H be any open subset of X
and note that

Now a<>t is continuous so {a.oi)~l[H~\ is open. Since a is a quotient map, this means
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that h~l[H] is open and hence that h is continuous. Similarly, it follows from (2.1.4)
that / i~1°a = a°r~1 and we use this to get

a -»[/j[tf ] ] = (/T»o a)~x [/f] = (a o t - T x [ # ] .

Since a°t~1 is continuous, ( a o r 1 ) " 1 ^ ] is open and since a is a quotient map, fc[H] is
open. This verifies the fact that h is a homeomorphism. We now define an
automorphism <j) of JV(X,G,a) by (p(f) = t° f °h~K One readily shows that <&(</>) = t and
this completes the proof that Aut J/~{X, G, a) is isomorphic to TA{G, IT(a)).

In our next result, V is a real topological vector space, G(V) is its additive topological
group and TLA(V,H) is the group, under composition, of all topological linear
automorphisms t of V such that t[A] e n for each A e II where IT is any decomposition
of V into mutually disjoint nonempty subsets.

Corollary 2.2. Let X be a completely regular Hausdorff space which has more than one
point and contains a compact subspace with nonempty interior, let V be a metrizable real
vector space and let a. be a quotient map (in the topological sense) from V onto X. Then
Aut JT{X, G{ V), a) is isomorphic to TLA( V, II(a)).

Proof. Since V is metrizable, there is a metric for V with the property that each
sphere about 0 is circled. It is an easy exercise to show that such sets are arcwise
connected so V must be locally arcwise connected. Since any real topological vector
space is arcwise connected, the hypothesis of Theorem 2.1 is satisfied so we conclude
that AutjV(X,G(V),ix) is isomorphic to TA(G(V),U{a)) which certainly contains
TLA(V,Yl{oc)). To verify equality, let te TA(G(V),U(a)) and note that t(rx) = rt(x) for any
vector x and any rational number r. This follows from the additivity of t and it then
follows that t(kx) = kt{x) for any real number k since t is continuous. This completes the
proof.

We conclude this section with one more corollary. It is the one to which we refer in
later sections. Let RN denote the usual topological group of iV-tuples of real numbers
and let LA(RN, IT) denote the group, under composition, of all linear automorphisms t of
the real vector space RN which satisfy l | \ 4 ] e n for each AeU where II is any
decomposition of RN. We then have

Corollary 2.3. Let X be a completely regular Hausdorff space which has more than
one point and contains a compact subspace with nonempty interior and let a. be a quotient
map from RN onto X. Then Aut Jf(X, RN, a) is isomorphic to LA{RN,Xl(a)).

Proof. This follows immediately from Corollary 2.2 and the fact that in a finite
dimensional vector space, every linear automorphism is topological.

3. Laminated near-rings determined by complex polynomials

Throughout the remainder of the paper, we will be concerned with laminated near-
rings of the type J/~P, that is, near-rings consisting of all continuous selfmaps of the
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complex plane (6 where addition is pointwise and multiplication is given by fg = f ° P°g.
Our goal, of course, is to determine Aut J/~P for any polynomial P. In this paper we get
a partial solution in that we are able to determine huiJfp for certain P. As we
mentioned before, however, we are far from having a complete solution to the problem.

In our main result in this section, we characterise those P for which Aut JVP is a finite
group. Before we proceed to the formal results, suppose we make a few observations
about an arbitrary complex polynomial P. First of all, since ^ is an algebraically closed
field, P maps %> onto %? and P is certainly a quotient map (in fact, P is closed as well as
open) so that we can apply Corollary 2.3. It follows immediately that Aut-zFp is
isomorphic to LA(R2, Yl(P)) which, hereafter, we will denote more simply by LA(P). In
other words, LA(P) is the group of all linear automorphisms on the real vector space ^
with the property that t[A~] e Il(P) whenever A e IT(P). We will not hesitate to use the fact
that Aut JfP is isomorphic to LA(P) without explicitly mentioning it. To assist us in
proving the main result, it is convenient to have some lemmas.

Lemma 3.1. A linear automorphism t of ^ belongs to LA(P) if and only if for all
distinct zl,z2e'&, the following statements are equivalent

P(zl) = P(z2) (3.1.1)

P(((z1)) = P(t(z2)). (3.1.2)

Lemma 3.2. Let P be any polynomial on # and let T be a polynomial whose degree is
one. Then AutyTP is isomorphic to Aut^K"ro/..

The proof of Lemma 3.1 is straightforward. As for Lemma 3.2, T is a
homeomorphism from %> onto ^ so one can produce an isomorphism from JfP onto
JYT.?. Or, alternatively, one can notice that Yl(P) = Tl(T°P) so that LA(P) = LA{T °P).

Lemma 3.3. Let DegP = n. Then there exist at most n—l complex numbers {/•,•}"=/
such that P(z) — r{ has multiple roots.

Proof. Suppose, to the contrary, that there exist n complex numbers {rt}"=i such
that P(z) — r{ has multiple roots. For each i, let z, be a multiple root of P{z) — ri. Then
each z,- is a root of P\z) which is a contradiction since there are n such z, and Deg P' = n
- 1 .

Lemma 3.4. Let DegP = n. Then there exist at most n—l complex numbers {rj'r,1

such that P~l(rj) contains less than n points.

Proof. Suppose, to the contrary, that there exist n such points {r,}"= t . Then each of
the polynomials P(z) — rj has multiple roots and the previous lemma has been
contradicted.
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Some remarks. We illustrate the previous lemma in the case of the cubic P(z) = z3

+ az2 + bz + c. One can show, with a little calculation that if a2 = 3b, then U(P) contains
exactly one singleton and the rest are triples. In this case, the singleton is {—(a/3)}. If
a2 =/= 3b, then Tl(P) contains exactly two doubles and the rest are triples. In this case the
doubles are

— 2a + w a+w) , f 2a+ w a — w
and { — , —

where w = 2x/a2 — 3b.
We still need one more lemma. Its proof is quite straightforward and will be omitted.

Lemma 3.5. Let P(z) = z2 + az + c and let zt and z2 be any two distinct complex
numbers. Then P(zl) = P(z2) if and only if zl + z2 + a = Q.

And now we are in a position to prove

Theorem 3.6. Let P(z) = anz" + an_lz"~i +--- + a0 (anj=0) be a complex polynomial.

Then Aut JfP is a finite group if and only if Deg P ^ 3 and at =fc 0 for some i =fc 0, n.

Proof. (Sufficiency.) Suppose D e g P ^ 3 and a.-^O for some i=f=0,n. We must show
that Aut JVP is finite. There is one set in II(P) which will play an increasingly important
role in our considerations and that is P~i(P(0)). We will denote it by Z(P). The reason
that Z(P) is important is because OeZ(P) and since for any teLA(P) we have r(0) = 0
and t[Z(P)]eII(P), it follows that t must map Z(P) bijectively onto itself. In this
particular case where we are assuming a,=/=0 for some ij=0 or n, it follows that Z(P)
must contain at least one nonzero element v (it may, in fact, contain only one nonzero
element). If Z(P) contains two linearly independent elements, we are through for each
teLA(P) must map Z(P) bijectively onto itself and is completely determined by the
values it takes on at those linearly independent elements. It follows that in this case,
LA(P) cannot have more than (n— l)(n-2) elements.

It remains for us to consider the case where each pair of nonzero elements in Z(P) is
linearly dependent. Then, since any teLA{P) maps Z{P) bijectively onto itself, we must
have t(v) = kv for some nonzero real number k. Since t(kmv) = km + 1v for all positive
integers m, it follows that kmveZ{P) for all positive integers m. Since Z{P) is finite we
conclude that /c = l or k= — 1 and we have

t(v) = v or t{v)= -v for each teLA(P). (3.6.1)

Next, we assert that

there exists a nonzero real number r such that P~1(P(rv)) contains two
linearly independent elements. (3.6.2)

Deny (3.6.2). According to Lemma 3.4 there exists a nonzero real number /q such that
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P~l(P(klv)) consists of n elements where n is the degree of P. By our assumption, we
have

P " W i » ) ) = {*i», k2v,..., knv} (3.6.3)

where the kt are distinct real numbers. Define a real polynomial Q by

Q(x) = (x - *,Xx - k2)... (x - kn) (3.6.4)

and choose a real number rl such that Q~\Q{r$ contains at most two real numbers
and P~1(P{r1v)) consists of n elements. The former can be satisfied because of well
known properties of real polynomials and the latter can be satisfied because of Lemma
3.4. Because we are denying (3.6.2), we have

p-'iPir.v)) = {rlV, r2v, r3v,.., rnv) (3.6.5)

where the r, are distinct real numbers. Now from (3.6.3) we get

P(z) = an(z -klV)(z - k2v)... (z - knv) + P(klV). (3.6.6)

For any rlveP~i{P{rlv)), we then have

P(rlv)=P(riv) = an{rtv - k^rp - k2v)... (r{v - knv) + P^v)

= anv"(ri-k1)(ri-k2)...(ri-kn) + P(k1v)

= anv"Q(ri) + P(klv). (3.6.7)

Since anv"£0, it follows immediately from (3.6.7) that G(r,-) = 6(r;) for l^ij^n. In other
words

consists of n distinct real numbers. Since DegP = n ^ 3 , we have a contradiction since rl

was chosen so that 8"1(6(ri)) contains no more than two real numbers. This
contradiction allows us to conclude that statement (3.6.2) is indeed valid. Let A
= P~\P{rv)) and B = P"1(P(-ry)) and let t be any element in LA(P). By (3.6.1), either
t[/l] = A or f[/l] = B. The linear automorphism t is completely determined by the values
it takes at the two linearly independent points of A and there are only finitely many
possibilities. In fact 2n(n— 1) is an upper bound for the number of elements in LA(P) in
this particular case.

(Necessity.) We accomplish this by showing that if Deg P < 3 then Aut JVP is infinite
and similarly, if a, = 0 for 0< i<n , then Aut./Tp is also infinite. Suppose first that
DegP<3. If DegP=l then it is immediate that LA(P} consists of all linear
automorphisms of (€. Now consider the case where P(z) = az2 + bz + c (a^O) and define
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Q(z) = z2 +(b/a)z. In view of Lemma (3.2) it is sufficient to show that Aut JfQ is infinite.
Let t be any linear automorphism of <# such that t(b/a) = b/a. It is immediate that for
any two distinct complex numbers zl and z2, we have zx +z2+b/a = 0 if and only if t(zj)
+ t(z2) + b/a = 0. Thus, Lemma 3.5 tells us that Q{zl) = Q(z2) if and only if Q(t(z,))
= Q(t(z2)) and it now follows from Lemma 3.1 that teLA(Q). Thus, LA(Q) contains
every linear automorphism of W which fixes b/a and therefore must indeed be an infinite
group.

It remains for us to show that Aut Jf r is infinite when P is of the form P(z) = az" + b.
Here again, Lemma 3.2 assures us that it is sufficient to show that Aut,/fe is infinite
where Q(z) = z". For a complex number ufO, define a linear automorphism tv by tv(z)
-vz. It is immediate that Q(z1) = Q(z2) if and only if Q(tv(z1)) = Q(tv(z2)) so that LA{Q)
contains all linear automorphisms of the form tv where v ± 0. This concludes the proof.

4. The infinite automorphism groups

Let GL(2) denote the full linear group of all real 2 x 2 non-singular matrices. Let Gx

denote the subgroup of GL(2) consisting of all matrices of the form

I I where b=/=0

L° foJ
and let Gc denote the subgroup of GL(2) consisting of all matrices of the form

fa -bl [a
\h a n d U
\_b a] [b -a

where a2 + b2j=O.
If Aut-yKp is infinite, it must be one of these three groups. In this section, we

characterise, for each of these groups, the polynomials P such that Aut^Tp is
isomorphic to that particular group. We first derive a lemma (whose proof is somewhat
computational) and several corollaries.

Lemma 4.1. Let u + vi, x + yi and x—yi be three vectors with the same absolute value
such that x^0^=y and u2^x2. Let t be any linear automorphism which maps these three
vectors to vectors which also have the same absolute values. Then, there exists a nonzero
complex number w such that either t(z) = wzfor each zeW or t(z) = wzfor each zet?.

Proof. Let t(l) = a + bi and t{i) = c + di. Then

t{x + yi) = xt{l) + yt(i) = (ax + cy) + (bx + dy)i

and we get

\t(x + yi)\2 = (a2 + b2)x2+(c2+d2)y2 + 2xy(ac + bd) (4.1.1)
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and similarly,

(4.1.2)

By equating (4.1.1) and (4.1.2) we immediately get 4xy(ac + bd) = 0 which since
implies that

ac + bd = 0 (4.1.3)

It readily follows from (4.1.3) and the fact that |t(u + i;i)|2 = |t(x + };i)|2 that

(a2 + b2)u2 + (c2 + d2)v2 = (a2 + b2)x2 + (c2 + d2)y2 (4.1.4)

which, in turn, implies

(a2 + b2)(u2-x2) = (c2 + d2)(y2-v2). (4.1.5)

By hypothesis, x2 + y2 = u2+v2 and u2j=x2 which, together with (4.1.5) implies that

a2 + b2 = c2 + d2 (4.1.6)

From (4.1.3) we get a2c2 = b2d2. We use this and (4.1.6) to get

a\a2 + b2-d2) = a2c2 = b2d2 (4.1.7)

from which we get a2(a2 + b2) = d2(a2 + b2). Now a2 + b2=fc0 since t{\) = a + bi and t is
injective so we must have

a2 = d2 (4.1.8)

One easily checks that (4.1.3) and (4.1.8) together imply that if a^O then either a = d and
b= — c or a= — d and b = c. If a = 0 then b may be either c or — c. In any event, we have
either t(z) = wz or t(z) = wz where w = t(l) = a + bi.

Corollary 4.2. Let t be a linear automorphism such that |t(l)| = |t(i)| and \t{x + yi)\ = \t(x
— yi)\ for some xj=0=fcy. Then there exists a nonzero complex number v such that t(z) = vz

for all ze^ or t(z) = vzfor all

Proof. Let t(l) = a + bi and t(i) = c + di. Then |r(x + j>i)| = |r(;c-}>i)| implies ac + bd = 0
and |f(l)| = |f(/)| implies a2 + b2 = c2 + d2. It follows from all this that the vectors
y/x2 + y2, x+yi and x—yi satisfy the hypothesis of the previous lemma. This completes
the proof.

By a circle in <&, we mean any set of the form {z: \z\ = r} where r is a positive real
number. We immediately get the following
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Corollary 4.3. A linear automorphism t carries circles onto circles if and only if there
exists a nonzero complex number w such that t(z) = wzfor all z or t(z) = wzfor all z.

Now we are in a position to prove the main result of this section.

Theorem 4.4. Let P be any complex polynomial. Then:

Aut JfP is isomorphic to GL{2) if and only if Deg P = 1 or P(z) = az2

+ b where aj=0. (4.4.1)

Aut JfP is isomorphic to G^ if and only if P(z) = az2 + bz + c where
(4.4.2)

Aut Jf p is isomorphic to Gc if and only if Deg P ^ 3 and P(z) = az"
+ b. (4.4.3)

Proof. We first prove, in turn, the sufficiency portions of each of the three
statements. If D e g P = 1, then it is immediate that every linear automorphism belongs to
LA(P) so that Aut JfP is indeed isomorphic to GL(2). Now suppose P(z) = az2 + b.
Lemma 3.2 assures us that Aut JfP is isomorphic to Aut JfQ where Q(z) = z2. For any
linear automorphism t and z1,z2e

(€ we have Q(z1) = Q(z2) if and only if Q(t(zl)) = Q(t{z2))
so that LA(Q) consists of all linear automorphisms of %>. Hence, when P(z) = az2 + c,
Aut Jf p is also isomorphic to GUI).

Now suppose P(z) = az2 + bz + c where a^O^b and let Q(z) = z2 + (b/a)z. Again,
Lemma 2.2 tells us that Aut Jf P is isomorphic to Aut JfQ. By Lemma 3.5, we have

Q(zl) = Q(z2) if and only if zl+z2 + (b/a) = 0 (4.4.4)

for distinct points zl and z2 of c€. Let t be any linear automorphism of <& such that
t(b/a) = (b/a). It follows from (4.4.4) that for distinct zuz2e<g, we have Q(zi) = Q(z2) if
and only if Q[t(zl)) = Q(t{z2)). Thus by Lemma 3.1, teLA(Q). On the other hand, suppose
teLA(Q) and choose any two distinct points zltz2 such that Q(zl) = Q(z2). By Lemma
3.1, we must also have Q(t(zl)) = Q(t(z2)) which by (4.3.4) means that the equalities

z1+z2 + (b/a)=0 (4.4.5)

and

= 0 (4.4.6)

must hold simultaneously. This can only happen, of course, when t(b/a)=(b/a). Thus
LA(Q) consists of all linear automorphisms which fix the vector {b/a). It is an easy
exercise to show that this group is isomorphic to LA± the group of all linear
automorphisms which fix the vector 1. For any teLAu we have t(i) = a + bi where
and it follows that the mapping which sends t to the matrix

n .1

is an isomorphism from LAl onto
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Next, we consider the case .where Deg P ̂  3 and P(z) = az" + b. Again, it is sufficient to
show that AutjVQ is isomorphic to Gc where Q(z) = z". Let H be the group of all linear
automorphisms t of %> with the property that there exists a nonzero complex number v
such that either t(z) = vz for all z or t(z) = vz for all z. It follows from Lemma 3.1 that
H<=LA(Q). On the other hand suppose that teLA(Q) and n=/= 4. Let w be an nth root of
unity whose real and imaginary parts are both nonzero. Then Q(l) = Q(w) = Q{w) which
implies Q{t(\)) = Q(t(w)) = Q{t(w)) which, in turn, implies (t(l))n = (t(w))n = (t(w))n. Thus, |t(l)|
= \t(w)\ = |t(vv)| and it follows from Lemma 4.1 that teH. In the event n = 4, we have
6~1(2(1)) = {1, - 1 . i, - ' } • Here we have t(l) = v which means Q~1(Q(t(lj)) = {v, -v, iv,
— iv}. Thus t(i) is iv or — iv which implies t{z) = vz or t(z) = vz. We have shown that in
any event LA(Q) = H. Now, for any t e H , we have either t(z) = vz or t(z) — vz for some
v^Q. In the former case we define

and in the latter we define

<P(t)

-[: "3

•G -
where a + bi is the vector v. One easily verifies that <p is an isomorphism from H onto
Gc.

We have now verified the sufficiency portions of (4.4.1), (4.4.2) and (4.4.3). In order to
verify necessity, we need the fact that the three groups GL(2), Gx and Gc are mutually
nonisomorphic. We will identify these groups with their corresponding groups of linear
automorphisms when it is convenient to do so. First of all one verifies easily that

the squares of any two elements in Gc commute (4.4.7)

and with some calculation, one shows that the squares of t and / do not commute where

i) = x + 2yi. (4.4.8)

Since both t and / belong not only to GUI) but also to Glt it follows that Gc cannot be
isomorphic to either Gx or GL(2). As for Gt and GUI) note that

teGl is an involution (has order two) if and only if t ( l )= l and
t(i) = a — i for some real number a. (4.4.9)

It follows from (4.4.9) that the product of any three involutions in G: is again an
involution so in order to conclude that GUI) and Gt are not isomorphic, it is sufficient
to produce three involutions of GL(2) whose product, in some order, is not an
involution. This is not difficult to do. For example t i ° t 2 o t 3 ' s n ° t a n involution where
tl(z)=~z, £2(z) = f and t3(x + yi) = y + xi. In fact, one can show that {ti°t2°t3)\i)= —i.
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Thus, we have established the fact that no two of the groups GL(2), Gj and Gc are
isomorphic. Now we can establish the necessity portions of (4.4.1), (4.4.2) and (4.4.3). We
take (4.4.1) first. Suppose that Aut-yT/, is isomorphic to GL(2). Then by Theorem 3.6 we
know that either DegP<3 or a, = 0 for all i'=£0,n. We have already established that if
DegP^3 and a; = 0 for all i=£0,n, then AutJ^P is isomorphic to Gc and hence not to
GL(2). Thus we must have DegP<3. If P(z) = az2 + bz + c and bj=O, we know from
previous considerations that Aut̂ K"P is isomorphic to GY which is not isomorphic to
GL(2). Consequently when P(z) = az2 + bz+c, we must have b = 0. This means that the
polynomial P must either be of the form az + b or az2 + b. This establishes the necessity
of (4.4.1). The arguments for (4.4.2) and (4.4.3) follow in the same manner.

We remark, in conclusion, that much remains to be done in order to determine
Aut^Vp for an arbitrary complex polynomial P. To be sure, we have completely
determined those infinite groups which occur as automorphism groups of the near-rings
Jf ? but the problem of determining which finite groups can occur as Aut JfP has not
been touched upon.
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