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Abstract

The key theme is converse forms of criteria for deciding determinateness in the classical moment problem.
A method of proof due to Koosis is streamlined and generalized giving a convexity condition under which
moments /*„ = /0°°x"f (x)dx satisfying ^n~c/" < oo implies that f™ x~l~c(— \o%f (x))dx < oo,
c a positive constant. A contrapositive version is proved under a rapid variation condition on f (x),
generalizing a result of Lin. These results are used to obtain converses of the Stieltjes versions of the
Carleman and Krein criteria. Hamburger versions are obtained which relax the symmetry assumption
of Koosis and Lin, respectively. A sufficient condition for Stieltjes determinateness of a discrete law is
given in terms of its mass function. These criteria are illustrated through several examples.

2000 Mathematics subject classification: primary 44A60, 62E10; secondary 26A51, 60E05.
Keywords and phrases: classical moment problem, Carleman and Krein conditions, Fenchel transform,
rapid variation.

1. Introduction

Let F(x) be a distribution function (DF) on K with finite moments of all positive
orders, nn = JRx"dF(x), (n e N = {0, 1,...}). The classical Hamburger moment
problem is to find conditions on the moment sequence J% = {fj,n} ensuring that it is
determining, meaning that F is the only DF having this sequence of moments. We
then say that F is determined by M', or just that it is determinate, abbreviated as
H-det. We say that F is indeterminate (or H-indet) when ^ is non-determining,
that is, there is another DF having the same moment sequence. We are concerned in
this partly expository paper with some aspects of the Carleman and Krein conditions,
effectively the only viable criteria which can be used to decide when F is H-det or
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H-indet, respectively. In particular we are concerned with recently published converse
forms of these criteria.

We say that F is HC-det if its moment sequence satisfies the Carleman condition

aH {Jl) = £ y^/2n = oo.

This is a sufficient condition for F to be H-det; see Heyde [5] for a proof that it is not
necessary.

Now suppose / (x) = F\x) exists on IR. The usual form of Krein's condition, or
criterion (Stoyanov [18] for a general review), states that F is H-indet if

_ r°
~J-c I X

This is a strong condition requiring in particular that f (x) > 0 a.e. in R. Pedersen
[12] obtains a substantial weakening of (1) by showing that the region of integration
can be replaced by a set & of positive lower uniform density. This means that Ql
contains the union over n e 2? of intervals [an — 8n, an + 8n] where the numbers <5n

and an — an_i are bounded away from zero and infinity.
Any set of the form (—oo, —x'] U [x1, oo) with x' > 0 has positive lower uniform

density. Hence we will assume that there exists such a set, that f (x) > 0 a.e. in it,
and we say that F is HK-indet if

HK(f): /„</;,') = [ ^/^dx < oo.

This is a sufficient condition for F to be H-indet which has the pleasing feature
of imposing a condition only on the tails of F. Pedersen [12] gives a still weaker
criterion, allowing him to construct a simple explicit example of an H-indet law having
/ ( f ) = oo.

These sufficient conditions can be used along with simple comparison arguments to
resolve the situation for a very wide range of statistically interesting continuous laws
and their powers. Pakes et al. [11] demonstrate this using a unified approach which
subsumes all previous specific examples. We are concerned here with certain converse
criteria valid under additional growth conditions on the density function / (•).

It is little known among statisticians that Koosis [7] gives conditions on / (•)
which ensure that / ( / ) < oo holds if oH(J() < oo. Independently of this work,
and in the other direction, Lin [8] provides extra conditions on / (•) under which
/ ( / ) = oo implies HC(^K). Lin's conditions are tantamount to the assumption that
/ (•) belongs to a sub-family of functions which are rapidly varying at infinity with
index — oo (Bingham et al. [2, page 83]).
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[3] Converse Carleman and Krein criteria 83

The conclusions of these workers are equivalent in the contrapositive sense that
Koosis proves that I(f) = oo plus technical conditions implies oH{Jt) = oo, but
Lin shows that aH(^) < oo plus technical conditions implies that / ( / ) < oo. As
might be anticipated from this, their key technical assumptions are related—see the
remarks in Section 2 following the proof of Corollary 1. However their proofs are
quite different. Both authors assume / (•) is symmetric about zero.

Our principal aim is to provide a more unified account of these results and to
generalize them by placing no restriction on the form of/ (•) inside a bounded interval
[—x', x'], and by relaxing the symmetry assumption. We follow historical precedent
by starting with the Stieltjes moment problem. Thus in the next section we prove
two basic results assuming only that / (x) > 0 is denned on R+ with finite moments

First, by following the Koosis line of reasoning we show under a weakened form
of his convexity condition that if £ fj.~c/n < oo for a positive constant c, then
fx, x~l~c(— logf(x))dx < oo. Our analytically focused proof seems more trans-
parent than Koosis' geometrically flavoured account (which is spread over several
sections in two chapters of his book). We achieve this by using some basic results
about the Legendre-Fenchel transform. Also, in Step 4 of the proof of Theorem 1, we
supply a proof of an inequality asserted by Koosis [7, page 131] with an explanation
we are unable to fathom. The proof of Theorem 1 simplifies a lot if the convexity
condition ((b) in the assertion) is tightened to strict convexity. Second, we show
that Lin's [8] proof of his contrapositive statement is essentially unchanged if/(•) is
assumed to be rapidly varying. The resulting criterion can be expressed directly in
terms of the index function in the canonical integral representation of / (•) .

These results are used in Section 3 to give the Stieltjes versions of the converse
Carleman and Krein conditions. In addition we give some examples, showing in
particular that Lin's assertion of his converse Krein condition is not quite correct.
This section ends with some reflections on decidability for discrete laws. Pedersen
[12, Corollary 3.4] gives a Krein condition for a discrete law to be H-indet. In
Proposition 2 we show this induces a comparable result for the Stieltjes problem. In
addition we give in Theorem 6 a discrete version of Theorem 2, and this specialises
to conditions under which a discrete law is S-det.

We return to the Hamburger problem in Section 4, using the basic theorems to give
our generalizations of the Koosis and Lin theorems. It seems not possible to entirely
drop the symmetry assumption, but we can replace it with a balance condition on the
extreme tails of F. This is done either by imposing a condition on the structural form
of the even-order moments, or on / (•). Section 4 begins with a short review of known
results about converse formulations of the classical criteria.

In Section 5 we consider the effect of logarithmic and exponential transformations
on decidability criteria for determinateness. Roughly speaking, if Y > 0 then the
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distribution of log Y can be H-indet only if P(Y > y) and P(Y < y"1) decrease like a
slowly varying function. The exponential transformation gives 'logged' distributions
such as the log-normal and log-gamma. We end the paper by finding those values of r
for which the distribution of Xr is S-det, where X = e~S(a) and S{a) has a spectrally
positive stable law.

2. Basic results

The proof of our first basic result follows Koosis' (1988) arguments, but it is
rendered more transperant by using basic properties of the Legendre-Fenchel transform
(Hiriart-Urruty and Lemarechal [6, Chapter 1]). The argument used in Step 4 seems
far more transperant than the proof of the second lemma of Section IV D in Koosis
[7], which he invokes on page 131.

THEOREM 1. Suppose that / ( • ) is defined and non-negative on R+ and that it
satisfies the following conditions.

(a) /xn = /0°° x"f (x) dx is finite for all n.
(b) There exists x' > 0 such that 0 < / (x) < oo for x > x' and

is convex in (y\ oo), where y' = log*',
(c) For some c > 0,

n>0

Then
/•OO

Kif; c, JC') - / x~l-c(- log/ (*)) dx < oo.
Jx'

PROOF. A change of variables shows that

K<J;c,x') = J{i,;c,y')= f e~cy xj, (y) dy.

The thrust of the proof is to show that the hypotheses imply J{ijf\c, y') < oo. The
proof proceeds in several steps.

(1) Since /J x"f (JC) dx - • 0, we have

*, = 0(1)+ I xn(x2f(x))^.
Jx>l x

x
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A little thought shows that condition (b) implies that VOO increases convexly to oo
as v f oo. Hence f(x) \. 0 as x t oo. In addition, it follows from (a) that f (x)
decreases to zero faster than any power x~A, A » 0. Consequently,

Mn = sup[x"+2f(x)] (neN)
x>x'

is finite and the supremum is achieved in a compact interval, since / (•) is continuous.
Clearly then, /xn < Mn + o(l), and hence (c) implies that

(2)

(2) Observe that

log Mn = /„ = sup[ny - g(y)] (n € N),

where g(y) = \Jr(y) — 2logy is convex. The sequence {/„} is convex and increasing.
This follows from standard results about the Legendre-Fenchel transform y(z) =
supy>y,[zy — g(y)] (z > 0) which is convex and non-decreasing in K+ (Hiriart-
Urruty and Lemarechal [6, page 36]). It follows that the sequence {Mn/Mn+\} is
non-increasing whence

and

(3)

we conclude

Mi

Mn+1

from (2) that

Mi

M2

T

M2 Mn

M 3 Mn+X

(Mn/Mn+i)c <

( Mn

\Mn+i

oo.

(3) Along the lines of Koosis [7, page 130] define the function

<p(y) = sup[yn - ln], (y>y').

We show in this step that (3) implies

(4) J(4>;c,y') <oo.

A consideration of the convex piecewise-linear function which interpolates the points
(n, /„) shows that 4>(y) is a piecewise-linear and convex function. Let <j>n(y) — yn — ln

(n € N) and A0n(y) = <f>n(y) - (f>n-i(y) - y - pn, where pn = /„ - Zn_i. Since {/„}
is convex, {/>„} is a non-decreasing sequence. Since /„ -*• oo, the pn are ultimately
all positive, and hence there is no loss of generality in supposing they are positive for
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all n. In addition we may assume that they are distinct since equal pairs make a zero
contribution in what follows.

If pn < y < pn+\ then A<pv(y) changes sign from positive to negative as v jumps
from n to n + 1. Hence

4>(y) = yn-ln and (p'{y) = n (pn < y < pn+x).

Observe that

n>0

Integration by parts gives

f"+' e-tjiy) dy = 0(pn)<r<*" - </>(pn+1)e-<*"+' + f

Summing yields
N

; c, y') = lim Y] U){pn)e-cp" -

The summands are non-negative, whence expressing n as a sum of units and reversing
the order of the resulting double sum yields the series (3). This proves (4).

(4) The final step is to show that (4) implies J{ijt\c, y') < oo. The principal step
is showing that (4) implies

(5) J(g;c,y') <oo.

Observe in passing that the supremum defining </»(y) is attained at some v € N
(depending on y), that is, <p(y) = yv — lv. The definition of /„ implies that /„ >
ny — #00 (y ^ y')> an(l hence that <p(y) < g(y)- This shows that (5) implies (4). We
obtain the desired converse inequality by showing that

g(y) <$(y) + y

for sufficiently large y.
To see this observe that the Legendre-Fenchel transform y(z) is defined for all real

z, where it still is convex and non-decreasing. The Fenchel duality theorem asserts
the inverse relation

(6) gCy) = sup[yz-y(z)], (y>y).
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To understand the structure of y{z) on the whole line, it suffices to consider the case
where g(-) has a continuous derivative in (>•', oo). For this it suffices that g'(y) exists
everywhere in (y\ oo). Choose A « 0 and let co(x) = xAf{x). Then g(y)/y =
A — y"1 logco(ev). Since co(x) —> 0 (x —»• oo), we see that liminfv_.x g(y)/y > A,
that is, g(y)/y -*• oo. Hence g(y) > y for all y > y", say, and since g(-) is convex
we have that

g(y)/y < ,?'(}') (>' > y") and g'(y) t oo.

Consequently we can choose y' large enough to ensure that z' = g'(y') > 0, and that
g(y) > 0 in [y', oo). It follows that the objective function defining y (•) has derivative
z — g'(y) < z — z' < 0 if z 5 z'. Hence for such z the supremum is attained at y = y',
and then y(z) = zy' — g(y'). It follows that for z < z' the objective function in (6)
equals z(y — y') + g(y'), and since this is increasing in z when y > y', we conclude
that the supremum in (6) is achieved in [z\ oo), and hence in the larger set [0, oo).

Using this, and the fact that /„ = y(n), we have

g{y) — supfyz - y(z)] = sup max [yz - y(z)]

< sup[y(« + 1) - y(n)] = 4>(y) + y.

This establishes the equivalence of (4) and (5) under the convexity condition (b). But
since i/r(y) = #(y)+21ogy, we conclude that (5) is equivalent to J(\}r;c, y')<oo. D

REMARK. The details of the proof do not require F(x) to be differentiable in (0, x').
Since the convexity assumption (b) implies g'(y) exists a.e. in (y\ oo), the argument
in Step (4) entails no loss of generality.

Much of what is in Step 3 and Step 4 can be avoided as follows, at least under a
slightly stronger smoothness assumption. Since the secant function y(z)/z is eventu-
ally non-decreasing it follows from integral test comparisons that (2) is equivalent to

Choose B » 0 and y(B) such that g(y) < B if y' < y < y(B). Then

y(z)/z> sup [y-g(y)/z]> sup [y - B/z\ = y(B) - B/z,

whence liminf.-^^ y(z)/z > y(B). Clearly y(B) -> oo as B -> oo, showing that
y(z)/z -*• oo as z —»• oo. The derivative y'(z) exists provided g(-) is strictly convex
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(Hiriart-Urruty and Lemarechal [6, page 40]) and then y(z)/z < y'(z) if z is large
enough. We conclude that (2) implies that

/•OO

J = / e~cy'(z) dz < oo.

Indeed, this is generally valid if the derivative is replaced by either the right-hand
or left-hand derivative functions of y(-). Anyway the generalized inverse of y'(z)
coincides with the left-hand derivative function g'_(y) of g(-) (Hiriart-Urruty and
Lemarechal [6, page 39]). This derivative function is non-decreasing and left-
continuous. Substituting y = y'{z) in the above integral yields

= / '
J v

-c> dg'_{y).

Writing this infinite Stieltjes integral as the limit as y" -> oo of an integral over
[y1, y"], a double integration by parts yields

>r e yg(y)dy,

and the assertion of the theorem follows.
The following corollary is an apparent generalization of Theorem 1. Koosis' proof

is for the case c = 1/2 and 1 — 2.

COROLLARY 1. Suppose Conditions (a) and (b) are satisfied and that (c) is replaced
with
(c') For some c> 0 and I e N, ^n>a ^in'" < °°-

Then

K(f;c,l,x')= I x-[-c(-\ogf(x]/l))dx<oo,

or equivalently, K(f \lc,x') < oo.

PROOF. A change of variables shows that {/!/„} is the moment sequence of the
density function//(*) = / " ' JC~ 1 + ' / / / ( .V ' / ' ) . The corresponding g()-function is

which satisfies Condition (b) of Theorem 1. Hence (c') implies K(fr, c, x') < oo, and
the assertion follows after a little algebra. •
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Lin [8] assumes/'(JC) exists and is positive in (0, oo) and that £ ( JC)=—X/ ' ( JC) / / ( JC)

is eventually increasing to oo. An integration yields the explicit form / ( J C ) =
/ (1) exp[— / * v~lZ;(v) dv]. This is a special case of the representation of the Kara-
mata class KR-X of rapidly varying functions with index —oo. See Bingham etal. [2]
for the reciprocal class KR^.

At this point we observe that if / ' ( * ) exists in (0, oo) then Koosis [7] convexity
condition, that r(r(y) is convex on the real line, is equivalent to the condition that
rj/'iy) is non-decreasing, that is, that £(JC) is non-decreasing in (0, oo). This is the link
between Lin's and Koosis' assumptions mentioned in Section 1.

For our generalization of Lin's condition we admit a larger subset of K R^^ by
assuming that

(A) f{x) = Aix)e~RM = Aix)exp[-r]ix) - f* tr'£(i;)dv],

where 0 < A(x) ->• A e (0, oo);

(B) r){x) is non-decreasing for x > x'; and
(C) £(*') > 0, £(JC) —• oo as x \ oo, and there exists N e M and numbers xn

(n > N) such that n < £(JC) < n + 1 if and only if xn <x< xn+l, and jcn t oo.

Note that we do not require the index function f (•) to be monotone, although this
condition is likely to be satisfied and it ensures the xn exist. However the connection
with convexity is severed by allowing rji-) to be non-convex and by allowing £(•) to
oscillate to a limited degree. Thus Theorem 1 and Theorem 2 below have overlapping
but different domains of validity. Assumptions (A)-(C) are about the lightest allowable
for the proof which follows.

We want the condition

(D) Kif;c,x') = oo

to be determined by only the index function f (•) and hence we will further assume

(E) f^x~i~c'r)ix)dx < oo.

It follows from (E) that (D) is equivalent to

(F) f™x-l-cl;ix) dx = oo.

THEOREM 2. Suppose f (•) is given by (A) and that it satisfies (a), (B), (C) and (E)
for some c > 0. Then (D), equivalently (F), implies that a i^; c) = oo.

PROOF. The proof follows Lin's [8] proof in broad outline, which in turn has an
antecedent [8, page 87]. By increasing x' if necessary, we can assume /?(•) is strictly
increasing and that A(x) < 2A in [x', oo). It follows that for JC > x',

0 < / U) < s u p / (JC) < oo.

Without loss of generality we can assume the jcn's are distinct because coincident pairs
will make no contribution to what follows. Also, we can take JC' = xN.
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In the notation of (A), define / (x) = Ae~R{x), not necessarily a density function,
and 4>n(x) = x"f(x) (n > TV). We have for x > xn and h > 0 that

th (r 4- h\ fx+R px+h
— log— = r)(x + h) — rj(x) + I %(v)dv/v — n I dv/v>0,

<Pn{X) Jx Jx

since the last term is — log[((x + h)/x)n], and we have used (B) and (C). Hence (f>n{x)
is non-increasing in [jcn, oo) and in particular (pn(x) < <j>n(xn).

The next step follows Lin's upper bounding argument:

Mn = f x
nf (x)dx< I "+2x"f (x)dx+2 f <f>n+2{x)dx/x2

Jo Jo Jxn+2

/

oc

x~2 dx = x"n+2 [1 + 2xn+2f (xn+2)] < const • x"n+2,
n-t-2

since xf(x) -»• 0. Hence fi~c/" > const • x~£2 and the conclusion follows if S(c) =
^2n>NxnC = °°- Bu t ' from (C) and (F),

= / jc-'-'"<(jr)d

JxM n>N •'"•'-'

This series is essentially the same as the one in Step 3 of the proof of Theorem 1.
Thus it differs by 0(1) from S(c). •

Corollary 1 has the following analogue.

COROLLARY 2. Suppose I € N, that Conditions (a), (A)-(C) hold, and that

x <oo. //

^~'~(1'V/v\ Wv ^ QQ

3. The Stieltjes moment problem

The Stieltjes moment problem is the analogue of the Hamburger problem for
distributions supported in R+, that is, whose DF's satisfy F(O-) = 0. We use the
terms S-det and S-indet to denote that F is determinate or indeterminate, respectively,
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for the Stieltjes problem. It is possible for F to be S-det but H-indet, and then it must
be a discrete DF. If F is S-det and F(0) = 0 then it is H-det too. See Heyde [5,
Theorem A].

It is well known that the map x H* X2 allows the Stieltjes moment problem to be
imbedded in the Hamburger problem. See Heyde [5, page 92] and Slud [15, page 2201 ]
on this correspondence. In statistical terms, if a random variable X > 0 has DF F and
moment sequence [iin} then, with B a random variable which is independent of X and
P(B = 1) = P(B = -1) = 1/2, the random variable Y = B-Jx has a symmetric
DF and E(Y2n) = nn. Hence, as is well known, we can say that F is SC-det if

This is a sufficient condition for F to be S-det.
In the other direction, we consider the following Stieltjes version of HK(f): There

exists x' > 0 such that

SK(f): Is(f;X')= *J \ ' dx < oo,
Jx' 1 + * 2

that is,
/•oo

/ x~V2{-\ogf{x))dx <oo.

We formally state and prove the following relaxed version of Slud [15, Corollary 1].

PROPOSITION 1. If there exists x' > 0 such that F has a density f {x) in (JC\ oo)
which satisfies SK(f), then F is S-indet.

PROOF. The random variable Y constructed above has a symmetric density fy(y) =
\y\f (y2) (\y\ > y' = -Jx~') which satisfies HK(fY). Hence there is a random variable
Z which has a DF G ^ FY but which has the same moment sequence as FY. Conse-
quently E(Z2n) = ixn, that is, Z2 > 0 has the moment sequence {fin} and a DF which
differs from F. D

A law or DF which is S-indet by virtue of SK(f) is said to be SK-indet. It is clear
now that Theorem 1 and Theorem 2 with c — 1/2 give the following converse forms
of the Stieltjes versions of the Carleman and Krein criteria.

THEOREM 3 (Converse Carleman Criterion). Suppose F is a DF supported in M.+
and having a density function which satisfies Conditions (a) and (b) of Theorem 1.
Then F is SK-indet ifos{J?) = £ fi'^2" < oo.

THEOREM 4 (Converse Krein Criterion). Suppose F is a DF supported in K+ and
having a density function which satisfies Conditions (a), (A)-(C), and also that
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fx x~V2n(x) dx < oo. Then F is SC-det if f°? x~3/2R(x)dx = oo, or equivalently,

EXAMPLE 1. Condition (b) is satisfied by the general log-normal distribution since
rjr(y) is then a convex quadratic function. Since the moment sequence has the generic
form y"2£", / > 1 and £ e K, we see that os{J() < oo and hence any log-normal
law is SK-indet.

More generally, suppose f (x) = exp(—xAL(x)) (x > 0), where A > 0 and L(-)
is a normalized slowly varying function. Condition (b) is satisfied if A > 0, and also
if A = 0 and the index function in the representation of /.(•) is itself a differentiable
normalized slowly varying function. The Carleman condition is both necessary and
sufficient for F to be S-det. See Pakes et al. [11] for a more detailed discussion of
this case.

EXAMPLE 2. Pakes et al. [ 11 ] consider a density of the form

(7) f(x;Q,X)=\K°Q

[0 if x < 0,

where Q(x) < ma.x(xs~\ xk) for constants k > 1 and 0 < 8 < 1. This growth
constraint was selected to ensure that KQ can be chosen to make the right-hand side a
density function. Clearly SK(f) is satisfied if and only if /x°° x~

3/2+l/k dx < oo, that
is, k > 2.

Theorem 4 cannot be applied without further restricting the form of Q(-). We
suppose that Q(x) = xy, (y > 0) for x > x' at least. Then (A) is satisfied with
R(x) = cxl/k - y logx, giving S(x) = xR'(x) = (c/X)xl/k - y. This satisfies (C) if
x' is sufficiently large. Consequently (F) is satisfied if and only if A. < 2, and then F
is S-det. Corollary 2 in Pakes et al. [ 11 ] shows this conclusion extends to all densities
of the form (7).

Now let F be an arbitrary DF on K+ with moment sequence M. For each r > 0
we induce a DF Fr with moment sequence ^tLB{r) = (nr(n)} by length biasing of
order r (Pakes [10]) via

Fr(x) = AC1 / vrdF{v) and /xB(r) = fir+n/fir (n e N).

Obviously ^ is S-determining if and only if ^x B ( r ) is. In addition, if the density
/ (JC) exists, then it satisfies Condition (b) if and only if fr(x) = xrf 00/Mr satisfies
the corresponding condition. Similarly f (x) 6 #/?_<*, if and only if fr(x) e KR_X.
Thus applying Theorem 3 or Theorem 4 to f (x) is equivalent to applying them to
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Next, let F(x) = 1 — F(x) and define a density function gr(x) — rxr~l F(x)/nr

(r > 0). We can define go(x) = / ( * ) , if it exists. The corresponding moment
sequence J%SE(r) = {/!„(/•)} is given by

H(r) J ^ l i ( r ) (n € N).
r + n nr r + n

The operation giving this law and moment sequence is called the stationary-excess
operation of order r. See Pakes [9, Section 1 and Section 4], but beware the different
nomenclature.

Let P(r) denote a random variable having the beta(r, 1) law. Clearly E[(j3(r))n] =
r/(r + n). If X is a random variable with the DF F, then Xr and Xr denote its
length-biased and stationary-excess version, respectively, both of order r. We see that

Xr = /3(r)Xr,

where the factors on the right-hand side are independent. Hence there is a bijection
between the sets of DF's &', J?LB(r) and ̂ SEW which have, respectively, the moment
sequences jft, ^LB^) and ^sE(r). In addition, the set ^SE(^) is obtained from
^ S E ( I ) by length biasing of order r — 1.

In particular JM is S-determining if and only if MSE^X) is, giving the following
result.

THEOREM 5. The distribution function F is S-indet if J™ JC" 3 / 2 ( - log F{x)) dx <oo.
Conversely, if F 6 KR^^ then F is S-det provided f™ x~V2(- log F(x))dx = oo
and the other conditions of Theorem 2 are satisfied.

We now make good our claim that Lin's converse Krein criterion for the Stieltjes
problem is not quite correct. He asserts that if/ (0) = 0 and f (x) > 0 when x > 0,
then F is S-det provided / s ( / ;0) = oo and his regularity condition is satisfied. The
problem is allowing, even insisting, that / (0) = 0.

EXAMPLE 3. Let/ (JC) be given by (7) with

I exp(-Ax-l/a) if x > 0;

0

where a, A > 0. Then, as we have shown, F is S-indet if and only if k > 2. But in
this case Is(f; 0) = oo if and only if a < 2, contradicting Theorem 4 in Lin [8]. His
assertion is correct if/ (0) > 0.

If/(•) is zero in a bounded interval then obviously / s ( / ;0 ) = oo and the usual
form of the Krein criterion says nothing about the determinacy of F. Example 2
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shows this too is the case if/ (•) is positive everywhere except at the origin near which
its graph is very 'flat'. Similar flat regions occur around x" > 0 if Q() contains a
factor of the form exp(—A\x — x"\'i/a) and a < 2. This underscores the utility of
Pedersen's extended version of the Krein criterion.

Pedersen [12] proves a Krein criterion for the H-indeterminacy of a discrete distribu-
tion. By modifying details of the proof of Proposition 1 we obtain the following Krein
condition for lattice laws supported in [0, oo). By measuring in units of the lattice
spacing we can, and shall, take this to be unity. Hence we assume pj•. = P (X = j) > 0
(j >j' > 0), and fin = E{Xn) < oo.

PROPOSITION 2. / /

(8)

then F is S-indet.

PROOF. Express F as the mixture cFx + (1 — c)F2 where c = ^2j>oPj2 and Ft

allocates mass qj = pp/c to j 2 . Denote by G the symmetric two-sided DF which
places mass qj/2 at ±j. The condition (8) implies that £(—log<ft)/(l + J2) < °°
and we conclude from Corollary 3.4 of Pedersen [12] that G is H-indet. Let Gi be
a different two-sided DF having the same moment sequence as G, and let G{ denote
the DF on [0, oo) obtained from d under the map x (->• x2. Then, reasoning as
in the proof of Proposition 1, G\ has the same moment sequence as Fx, and hence
cG\ + (1 — c)F2 # F has the moment sequence {/J,n}. •

Proposition 2 can be used with SC(^f) to classify any discrete analogue of the
various density families treated by Pakes et al. [11]. For example, if pj oc exp(—L(J'•)),
where L(-) is slowly varying, then F is S-indet. Again, if pt = R(j)exp(—jl/k),
where /?(•) is regularly varying, then F is S-indet if and only if X > 2.

The kernel of the above proof produces a criterion for non-lattice laws under
certain restrictions. Suppose F has an unbounded and countable support A, and
Pi = P(X = I) > 0 (/ e A). If A is closed under squaring, A2 C A, then (8) can
be generalized to 5I/€A(— log/?,:)/(l + I2) < oo. In this case F is S-indet provided
there is a constant h > 0 such that A is relatively /i-dense, meaning that outside
of a bounded set any interval of length h contains at least one element of A. This
condition limits the maximum size of gaps in A. For example, lacunary supports are
not admitted, although they are often used to construct indeterminate discrete laws.
See, for example, Pakes [9] and Stoyanov [17, Section 11.7 and Section 11.8].

This restriction on A can be relaxed to a small extent by applying the mapping
argument directly to F. This shows that F is S-indet if X!;£A(~ l°g/'/)/(! + /) < oo
and {-Jl: / € A} is relatively /i-dense.
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The following discrete analogue of Theorem 2 leads to a criterion for S-deter-
minateness which complements Theorem 4. Denote the atoms of F by a{j) (j =
0 , 1 , . . . ) and suppose they are ultimately ordered, that is, that there exists j ' such that
a(j) < a(j + 1) if j > j ' . We do not assume the atoms are fc-dense, but rather that
a = lim,-,00 a(j)/'a(j — 1) > 1. The atoms comprise a lacunary sequence if a > 1.

Discrete rapidly varying laws are defined by

( I D ) Pj = Aj e x p [ - r , ; - Y!M> t i l ' ] (j > j ' > 0 ) ,
where A7 —> A e (0, oo), {^} is a positive and non-decreasing sequence, and
0 < £,- —• oo.

Let pj = log(a(j )/a(j — 1)) and assume further that

(2D) jxn = J2j(a(J))"Pj < oo (n € N).
(3D) For a constant c > 0, J2J>J'1J HaU)Y < °°-
(4D) There exists a constant m > 1 such that ]£y>/'(a(/))~m < oo.
(5D) There exist N e N and integers xn (n > N) such that xn t oo and

« < ^ /jPj <n if and only if xn < j < xn+l.

These conditions are essentially the lightest for which the following proof will work.
We comment below on circumstances under which (3D)-(5D) are satisfied.

THEOREM 6. Suppose conditions (1D)-(5D) are satisfied. Then o{^£; c) = oo if

(J))'cJ~^j =oo .

PROOF. AS in the proof of Theorem 2, let pj — Apj/Aj and define <pn(J) =

(a(/'))>VThen

- log[<pn(j)/<pn(j - 1)] = r)j - rjj-i + Zj/j - npj.

It follows from (5D) that 4>n(J) <s non-increasing forj > xn (n > N). Using (4D) it
follows that

fin < 2 (a{xn))n +<pn+m(xn)

= 2{a(xn))
n (a(xn))

mpXn

The assertion follows if ]T(a(jr,,))~< = oo. But
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Observing that for a < b,

crclog(Z>AO = a~c I *-' dx < [ x~l~cdx = (a~c - b~c)/c,
J a J a

we have that

lY Yl [(*(/ -0)~c-(«(/))"']
n>N j=i+xn-i

[ ] ' 5^(a(JtB))-f + 0(1). •
n>N

Condition (3D) is imposed to ensure that the infinitude of a(^#; c) is controlled by
the index sequence {£)}. Condition (4D) is satisfied with m = 1 when a > 1 and with
possibly larger values of m when

(9) a(j)=j*l(j),

A > 0, and /(•) is slowly varying at infinity. Lattice laws correspond to the case
A = 1 and /(•) a constant, the lattice spacing. If (9) holds, then jpj = A + o(l)
(J -*• oo), and hence Condition (5D) holds provided £,- is eventually increasing to oo.
Condition (5D) is also satisfied if 1 < a < oo and £,- /j is eventually increasing to oo.

Theorem 6 implies the following sufficient condition that a discrete distribution F
be S-det.

COROLLARY 3. IfF satisfies Conditions (1D)-(5D) with c= 1/2, then it is SC-det
provided a (F; 1/2) = oo.

EXAMPLE 4. Suppose A, = A, r]! = 0, £, = jft and a(J) = aj, where or, p > 1.
Then F is S-det provided £ > y/a. It seems likely that F is S-indet when the
inequality is reversed. However a Krein criterion is not applicable because the atoms
do not satisfy the h-density condition.

EXAMPLE 5. This is the same as Example 4 but now with a(j) = j and £; = j i/k,
X > 0. Then — log ps ~ Xj l/k and we see that (8) is satisfied if X > 2, that is, F is
S-indet. Conversely CT(F; 1/2) = oo if X < 2, so F is S-det. If instead a(j) = j 2

then £( - log /? y ) / ( l + a(j)) < oo if and only if X > 1, and cr(F; 1/2) = oo if and
only if X < 1.

4. The Hamburger problem

In this section we assume that F is a two-sided DF. Before discussing applications
of Theorem 1 and Theorem 2 to the Hamburger problem we summarize some known
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work relevant to our theme. Sjodin [14] shows that HC(^) is 'sharp in a certain
sense'. Let f52n = sup;>n /M^1/2;' . Another criterion of Carleman is that F is H-det if
]Cn P\n — oo. Sjodin [14] shows there is a non-determining moment sequence {kn}
satisfying limn_0O(A.2n//x2n)

l/" = 0 if and only if £ Pin < oo. This assertion implies
that YJ Phll2n < oo, but since Carleman's condition is not necessary, it can be that
[lin} is determining.

An integral condition similar in form to the Krein criterion, and due to M. Riesz
(Koosis [7, pages 132-142]) is necessary and sufficient for Jt to be determining.
Let ^ be the set of all polynomials P(x) = £>lo cjx

i (N = 1 ,2 , . . . ) where the
coefficients are arbitrary complex numbers. Then

N

\P(x)\2dF(x) = ^fii+jCiCj.

Define Riesz' function
@!{x) = sup | \P(x)\2 : / \P(x)\2dF(x) < 1

Riesz' theorem asserts that F is H-det if and only if

dx = oo.
l+x>

Of course obtaining the functional form of &(•) in any particular case is virtually
impossible. Koosis shows that both the Carleman and Krein criteria follow from this
result.

It is worth recalling that the classical Krein condition (1) makes a very strong
analytical assertion about the functional form of the density function / (•) since (1)
holds if and only if f (x) = \h(x)\ a.e. where the function h{z), %z > 0, belongs to
the Hardy space Hl (Garnett [4, page 66]). Lin [8] uses this fact in his proof of the
Krein criterion, together with the fact that /R h{x)e'9x dx = 0 for all 9 > 0.

Gabardo [3, Theorem 2.4] proved a converse version of the Krein criterion by
showing that if a moment sequence ^ is not H-determining then there are distinct
density functions wk(x), indexed by all complex k with 3k > 0, which have this
moment sequence and / ( u / ; 0 ) < oo.

Corollary 1 with c = 1 /2 and 1 = 2 yields a small extension of Koosis' [7] converse
Carleman criterion for laws which have a symmetric density function, more precisely,
if / (—x) = f (x) when x > x'. The symmetry assumption can be relaxed provided
certain balance conditions are imposed on the extreme tails of F. See Pakes et al. [ 11 ]
for examples of the classification of some non-symmetric distributions.

We assume

oH(^?) =
n>0

https://doi.org/10.1017/S1446788700002731 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002731


98 Anthony G. Pakes [18]

and our task is to find additional conditions which ensure that H K(f) holds. The first
such result does this through a condition on the density function.

THEOREM 7. Suppose there exists y' > —oo such that

(HI) - \og[f {ey) + f {-ey)\ is convex in [/, oo); and

(H2) there exist constants x' > 0, 0 < A, B < 1 and 0 < c, < c2 < oo such that

cxexp(-xA) <f(-x)/f(x) <c2exp(xB) (x >* ' ) .

Then F is HK-indet ifoH(J() < oo.

PROOF. Let X be a random variable whose density function is / (•) Then Y = X2

has the moment sequence {ix2n\ and its DF //(•) has the density function

2-Jx

Condition (HI) ensures that h(-) satisfies the conditions of Theorem 3, and H is
SK-indet. But SK(h) can be expressed as

f.
Jx'

x-z[-\og(f (x) + f (-x))]dx <oo.

However, (H2) implies that for* > x',

- log/(JC) < log (1 + c2 expCxB)) - log</(x

and hence f™x~2(— \ogf (x))dx < oo. Finitude of the integral over (-oo, —x']
follows in a similar manner, and hence HK{f) is satisfied. •

The last part of the proof establishes that under the balance condition (H2), the
distribution of the two-sided random variable X is HC-det if and only if the distribution
of X2 is SC-det. This strengthens Theorem 3 in Pakes et al. [11].

EXAMPLE 6. Denote the generalized gamma density function by

I it-'jtfl-'exp(-jc1A) if JC > 0;

0 if JC < 0,

where a,X > 0 and ka — V{ak). Its ;?-th order moment is v(n;a,k) = F(k(n +
a))/ T(ak). Now let 0 < p = 1 — q < 1 and define the two-sided density

qg(-x;b,k) if JC < 0,
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where b > 0. Conditions (HI) and (H2) are both satisfied. Supposing a > b,we find
from

p.ln = pv(2n;a, X) + qv(2n; b, X)

that M2n'/2" ~ const • n~x, and hence F is HK-indet if X > 1. This is an alternative to
the treatment outlined by Pakes et al. [11].

EXAMPLE 7. Example 6 can be extended by defining

\pg(x;a,X+) ifx > 0;
/(•*•) = 1

\qg(-x;b,X_) if JC < 0,

where X+ ^ A._. The convexity condition is still satisfied for all positive X±. However
the balance condition requires that X± > 1 and then aH{^() < oo, showing that F
is HK-indet under this condition. However it is not clear that the converse Carleman
condition can handle other combinations of A.±. For example, Pakes et al. [ 11 ] observe
that F is HK-indet if A.+ > 2orA._ > 2. The Carleman condition is satisfied if k± < 1,
leaving the cases X+ < 1 < A_ < 2 and X_ < 1 < A.+ < 2 undecided.

Our second approach assumes information is available to compare the partial mo-
ments

/•C — / x"f (x)dx and fi~ = fin — n*.
Jo

THEOREM 8. Suppose f (x) andf (—x) (x > 0) each satisfy the convexity condition

(b) of Theorem 1, and that there are constants 0<b<l<B<oo and n' G N such

that

(H3) b2"/j.l, < ixjn < S2'V2
+

n.

r/ie« F w HK-indet ifaH (JK) < oo.

PROOF. The assumptions imply that

~S~^(uf )" l / 2" < oo,
n>_n'

thus fulfilling the conditions of Corollary 2 for each of / (x) and / (— x) and hence
satisfying HK(f). •

Example 6 satisfies the conditions of Theorem 8 since /zj,/'/x^,, ~ const • nM"~b).
On the other hand, Example 7 does not satisfy (H3) because

/4,/M2~,, ~ c o n s t • naK~hk-{n/e)a+-k-)n.
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Taking the 1 /2n root leaves a factor nk+~k- which could upset the convergence of one or
other of the series En>n-(M*n)"

1/2n. More generally, if Ln>n.04,)~1/2" < oo say, then
Hn>n' ^y2" wiH converge even if £„>,,. (M2n)~l/2n = °°. Of course, convergence of
both partial moment series could possibly be established from other information.

The next result states two versions of the converse Krein criterion for the Hamburger
problem. Its proof permutes steps in the two previous proofs and hence it is omitted.
Just note that each of the conditions (I) and (II) below is a substitute for (HI).

THEOREM 9. Let f (•) be a two-sided density function with finite moments of all

orders and suppose that for some x' > 0,

x-2(-\ogf(x))dx = oo or / x-2(-logf(-x))dx = 00.

' Jx'

Suppose also that either.

(I) (H3) holds, and (see (9)) h(x) e A'/?_0O satisfies the conditions of Theorem 2;
or that

(II) (H2) holds and either f (x) or f (~x) (x > x') are in KR_OO and satisfy the
conditions of Theorem 2. Then F is HC-det.

5. Logarithmic and exponential transformations

Logarithmic transformations are often used to stabilize the variance of data sets.
Exponentiation is used to obtain one-sided distributions with long tails, such as the
log-normal and log-gamma laws. In this section we round off our account with a
quick look at how these transformations affect moment determinateness.

Let Y > 0 be a random variable with DF H and a density function h{y) positive
for all sufficiently large y. This is related to the density function / (x) of X = log Y
through the relation h(y) = y~{f (log y). Applying the Krein criterion t o / (JC) shows
that F is HK-indet if there are constants 0 < d, S < 1 and slowly varying functions
L(x) and M(x) such that

1./ ^ \y-iP(y,8,L)=y-]exp[-(\ogy)l-sL(logy)} ify>y' = e*';
h(y) > {

\y~lP(y~\d,M) ifO < y < y" = e~x .

Thus F can be H-indet only if H allocates large mass in the region of zero and +00.
Conversely, IH(f;x') = ooif

u< ^ b M y > l < L ) if;v
n(y) < {

~ :r ' /3(y- ' , i ,M) ifo
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and either f™ L(x)dx/x = oo or f™ M(x)dx/x = oo. Satisfaction of the auxilliary
conditions of Theorem 9 is problematic. However if M(x) = L(x) (x > x') and L()
is a normalized slowly varying function, then F is HC-det.

Now let Y take values in K and X = eY, giving f (x) = x"'/j(logx). Also,
/xn = 0(«) where (j>{9) = £(exp(#y)) is the moment generating function of Y,
assumed finite if 0 > 0. Then F is SC-det if £ ( 0 ( r t ) r 1 / 2 " = oo, and it is SK-indet
if this sum is finite and \J/(y) = y — log h(y) is convex in ( / , oo). Alternatively, F is
SK-indet if f™ e-iyl2{-\ogh{y))dy < oo.

Suppose

h(y) = eMOOexp \-fj(y) - I $(ev)dv\ (y > y'),

where A{y) -*• A e (0, oo), fj(-) is non-decreasing and f™ e~3y/2f)(y) dy < oo, and

£(JC) > Oand (log *)£(*) t oo. Then F is S-det if and only if f^ x~5/2^(x)dx.
We end with an example which imbeds the indeterminate log-normal distribution

as a boundary point of a larger family of distributions. Let S(a) denote a random
variable having the extreme, or spectrally positive, stable law with index a e (0, 2].
We use the normalization giving the Laplace transform

|exp(rlogO if a = 1.

These expressions can be obtained from the form of the characteristic function of S(a)
as given by Zolotarev [19, page 75], for example.

Now let X = e~Sia\ whose distribution may be called a log-stable law. More
precisely it is a log-(spectrally-positive stable) distribution since the Levy measure of
S(a) is carried on K+. These distributions arise as interesting cases in a characteriza-
tion problem involving a generalized form of length biasing (Pakes [10]). According
to Samorodnitsky and Taqqu [13, page 52], they are used in modelling multifractals.
A question of interest is for which values of r > 0, if any, is the distribution Fr of X'
S-det? The parameter r is effectively a scale constant for the distribution Ha of S(a).
No extra generality is gained by including a location parameter.

The case a = 2 gives the log-normal distribution, and then Fr is SK-indet for all
r. If a < 1 then S(a) is positive, whence 0 < Xr < 1 and Fr is SC-det for all r. The
outcome for the cases 1 < a < 2 is described by the following result.

THEOREM 10. Suppose X has the log-stable law described above. If 1 < a < 2

then Fr is SK-indet for all r > 0. If a — 1 then Fr is SC-det if r < 2 and it is SK-indet
ifr > 2.
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PROOF. The proof follows similar lines to the case a = 1 discussed by Pakes [10,
Lemma 5.1 and Lemma 5.2]. The density function of Xr is

/ ,(*) = (rjt)-'A(- Iog;c1/r;a) (* > 0),

where h(y; a) is the density function of S(a). This shows that we need only consider
the form of h(y;a) for y < 0. In this case we have when 1 < a < 2 the integral
representation (Zolotarev [19, page 74]): For y > 0,

avl/(or-l) fi

h(-y,a) = -f / U(p)exp[-U(p)ya/ta-l)]dp,
2(a - 1) ./_<,

where 6 = (2 — a)/a and

[" 2cos(7rp/2) r ' " - 0 cos[7r((a-l)p + 2-a) /2]
U(p) = I • .

|_sin(7ra(p+0)/2)J cos(np/2)

This function decreases from infinity at p — — 9 to zero at p = 1. To see this
use logarithmic differentiation of U(p) with respect to p to see that the sign of its
derivative is the same as that of

Rewrite this in terms of x = na{\ —p)/2 and use the symmetry relations cot(jr —x) —
— cot* and tan(7r/2 — JC) = cot JC to obtain

where C = cot(;c/a), D = cotjc and we have used the addition formula cot((l —
a-l)x) = (CD + 1)/(C - D). But 0 < x < n if -0 < p < 1, and hence C > D
since cot* decreases in (0, n) and x/a < x.

The substitution z = U(p) gives the differential relation dp = (a/2)A_(dz)
where A_(z) is a distribution function with support R+. We thus obtain the mixture
representation

h(-y;a) = / zexp(-zya/(a-[))A_(dz).
ot- 1 Jo

[There is a similar representation for h(y;a) when y > 0 but with a different mixing
DF.] This representation yields

Mx) = a~l f f{x\z)A_(dz) (x > 1),
Jo
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where

f(x\z) = -?— • -(log;c)1/(a-1)exp(-Z(logxr/(a-1)).
a — 1 x

This clearly satisfies 5K(f (-|z)) for all z > 0, and hence the mixed DF Fr isSK-indet.
See Pakes et al. [11] for a discussion of the decidability of mixtures. •

Observe that the moment sequence Mr of Xr is given by

|

exp[(rn)«] if 1 < a < 2;

irn)" i f « = l ,

whence as{Mr) < oo if 1 < a < 2 or if a = 1 and r > 2. The convexity
condition required for Theorem 3 is that — log h(—y\a) is convex in (y\ oo) for some
y' > —oo. But the analysis required to prove this certainly exceeds that needed for
a direct application of the Krein criterion. This illustrates the practical difficulties of
using the converse criteria developed in previous sections—usually the direct criteria
supplemented by tail comparisons suffice to resolve the situation for a given family
of distributions. However we have noted cases of two-sided laws with unbalanced
extreme tails where neither direct or converse criteria have been successful.

We close by remarking that there is an obvious Hamburger version of Theorem 10
where r = 1 is the critical value separating determinateness and indeterminateness
when a = 1.
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