
Adv. Appl. Prob. 45, 139–163 (2013)
Printed in Northern Ireland

© Applied Probability Trust 2013

LIVING ON THE MULTIDIMENSIONAL
EDGE: SEEKING HIDDEN RISKS USING
REGULAR VARIATION

BIKRAMJIT DAS,∗ ETH Zürich

ABHIMANYU MITRA ∗∗ ∗∗∗ and

SIDNEY RESNICK,∗∗ ∗∗∗∗ Cornell University

Abstract

Multivariate regular variation plays a role in assessing tail risk in diverse applications such
as finance, telecommunications, insurance, and environmental science. The classical
theory, being based on an asymptotic model, sometimes leads to inaccurate and useless
estimates of probabilities of joint tail regions. This problem can be partly ameliorated by
using hidden regular variation (see Resnick (2002) and Mitra and Resnick (2011)). We
offer a more flexible definition of hidden regular variation that provides improved risk
estimates for a larger class of tail risk regions.
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1. Introduction

Daily we observe environmental, technological, and financial phenomena possessing
inherent risks. There are financial risks from large investment losses; environmental risks from
health hazards resulting from high concentrations of atmospheric pollutants; and hydrological
risks from river floods. Risk analysis requires estimation of tail probabilities that provide
measures of such risks. The mathematical framework of multivariate regular variation provides
tools to compute tail probabilities associated with such risks; see [3], [11], and [21, Chapter 6].
These tools have limitations which we begin to address in this paper.

Consider a nonnegative random vector Z = (Z1, Z2, . . . , Zd) called a risk vector. The
distribution of Z has multivariate regular variation if there exist a function b(t) ↑ ∞ and a
nonnegative, nondegenerate Radon measure µ(·) on E = [0,∞]d \ {(0, 0, . . . , 0)} such that

t P

[
Z

b(t)
∈ ·

]
v−→ µ(·) as t →∞, (1.1)

where ‘
v−→’ denotes vague convergence in M+(E), the set of Radon measures on E

[21, p. 172]. Note that (1.1) effectively assumes tail equivalence of the marginal components
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[21, Section 6.5.6], so while (1.1) is valuable as a theoretical foundation, it must be modified
for applications.

The asymptotic relation (1.1) allows the limit measure µ(·) to be used for approximating
tail probabilities. For example, approximation of the probability of the event {Zi > xi

for some i} for large thresholds xi, i = 1, 2, . . . , d, requires the ability to compute the quantity
µ({(z1, . . . , zd) ∈ E : zi > wi for some i}) for wi > 0, i = 1, 2, . . . , d. Such approximations
of tail probabilities are sensitive to degeneracies in the limit measure µ(·). For example, when
asymptotic independence is present as in Gaussian copula models, the limit measure µ(·) in (1.1)
concentrates on the coordinate axes Li := {x ∈ R

d : xj = 0 for all j �= i}, i = 1, . . . , d,

and µ({(z1, z2, . . . , zd) ∈ E : zi > w1, zj > w2}) = 0 for any 1 ≤ i < j ≤ d and
w1, w2 > 0. Consequently, for large x1 and x2, we approximate the joint tail probability
P[Zi > x1, Zj > x2] ≈ 0 and conclude that risk contagion is absent. This conclusion may be
naive and building on the seminal concept of coefficient of tail dependence [13], [14], hidden
regular variation (HRV) [20] was introduced as a refinement of the approximation; see [7],
[15], and [17].

HRV offers some advantages, but also has weaknesses. The existing definition provides
insight into only the presence of a restricted class of degeneracies in the limit measure µ(·)
in (1.1); namely when µ(·) concentrates either on the coordinate axes, or the coordinate planes
or similar coordinate hyperplanes in higher dimensions. However, other degeneracies in µ(·)
are possible; for example, µ(·) may concentrate on the diagonal {(z1, z2, . . . , zd) ∈ E : z1 =
z2 = · · · = zd}, a condition called asymptotic full dependence. To deal with situations where
µ puts zero mass on large portions of the state space, in Section 3 we define HRV on cones.
(We define set C ⊂ R

d to be a cone if x ∈ C implies that tx ∈ C for t > 0.) The basic idea is
to seek a lower-order regular variation property on the complement of the support of µ and our
claim is that the complement of the support offers the possibility of further tail modeling.

In practice, different risk assessment problems require calculating tail probabilities for
different kinds of events. Hidden regular variation, as originally defined, may be a natural
choice for some calculations but not for others. For example, suppose that (Z1, Z2) ∈ R

2+ is
a risk vector and we must calculate risk probabilities of the form P[|Z1 − Z2| > w] for large
thresholds w > 0. If we use multivariate regular variation when the limit measure µ(·) in (1.1)
is concentrated on the diagonal {(z1, z2) ∈ E : z1 = z2}, the tail probability P[|Z1 −Z2| > w]
must be approximated as 0 for large thresholds w > 0. The existing notion of HRV designed
to help when µ concentrates on the axes offers no assistance in this case. In Example 5.2 we
illustrate how a more general theory overcomes this difficulty. Along with other examples in
Section 5, we see that there is a need for HRV on general cones.

The conditional extreme value (CEV) model [4], [8], [9] provides one alternative approach to
multivariate extreme value modeling. In standard form, the CEV model can also be formulated
as regular variation on a particular cone in E and this is discussed in Section 4. In Section 4
we also consider nonstandard regular variation from the point of view of regular variation on a
sequence of cones. Nonstandard regular variation is essential in practice since in applications
we cannot assume tail equivalence of all marginals in a multivariate model, as is done in (1.1).

In Section 6 we discuss how to fit our model of HRV on cones to data as well as estimation
techniques of tail probabilities using our model. We have adapted ideas previously used in
multivariate heavy tail analysis; this discussion is not comprehensive, merely a feasibility
display. In particular, we have not performed data analyses. We close our discussion with
concluding remarks in Section 7 and give some deferred results and proofs in Appendix A.
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Our definition of HRV relies on a notion of convergence of measures called M
∗-convergence

that is similar to the M0-convergence of [10]. We review M
∗-convergence in Section 2 and also

discuss reasons to abandon the standard practice of defining regular variation through vague
convergence on a compactification of R

d .

1.1. Notation

We briefly discuss some frequently used notation and concepts.

1.1.1. Vectors, norms, and topology. Bold letters are used to denote vectors, with capital letters
reserved for random vectors and small letters for nonrandom vectors, e.g. x = (x1, x2, . . . ,

xd) ∈ R
d . We also define 0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1), and ∞ = (∞,∞, . . . ,∞).

Operations on and between vectors are understood componentwise. For example, for vectors
x and z, x ≤ z means that xi ≤ zi, i = 1, . . . , d. For a set A ⊂ [0,∞)d and x ∈ A, we use
[0, x]c to mean [0, x]c = A \ [0, x] = {y ∈ A : ∨d

i=1 yi/xi > 1}. When we use the notation
[0, x]c, the set A should be clear from the context.

For the ith largest component of x, we write x(i), that is, x(1) ≥ x(2) ≥ · · · ≥ x(d). Thus, a
subscript i denotes the ith component of a vector, whereas a subscript (i) denotes the ith largest
component in the vector.

Operations with∞ are understood using the conventions

∞+∞ =∞, ∞−∞ = 0, ∞+ x = ∞− x = ∞ for x ∈ R,

0 · ∞ = 0, x · ∞ = ∞ for x > 0, x · ∞ = −∞ for x < 0.

Fix a norm on R
d , and denote the norm of x as ‖x‖. Let dist(x, y) = ‖x − y‖ be the

metric induced by the norm and, as usual, for A ⊂ R
d , set dist(x, A) = infy∈A dist(x, y).

When attention is focused on the set C, and A ⊂ C, the δ-dilation or swelling of A in C is
Aδ := {x ∈ C : dist(x, A) < δ}. The topology on R

d is the usual norm topology referred to as
the Euclidean topology and the topology on a subset of R

d is the relative topology induced by
the Euclidean topology.

Two sets A and B in R
d are bounded away from each other if Ā ∩ B̄ = ∅, where Ā and B̄

are the closures of A and B.

1.1.2. Cones. We denote by E = [0,∞]d \{0} and D = [0,∞)d \{0}, the one point puncturing
of the compactified and uncompactified versions of R

d+. The notation E and D may appear
with superscripts denoting subsets of the compactified and uncompactified R

d+, respectively.
For example, E

(l) = {x ∈ [0,∞]d : x(l) > 0} and D
(l) = {x ∈ [0,∞)d : x(l) > 0}, where x(l)

is the lth largest component of x. Note that E
(1) = E.

A set C ⊂ R
d is a cone if x ∈ C implies that tx ∈ C for all t > 0. Cones in Euclidean space

are usually denoted by the blackboard bold symbols C, D, E, F, etc. Since one often deals with
nonnegative risk vectors, we focus on the case where C ⊂ [0,∞)d . We call a subset F ⊂ C a
closed cone in C if F is a closed subset of C as well as a cone, e.g. F = {0} or, when d = 2,
F = {(t, 0) : t ≥ 0}. The complement of the closed cone F in C is an open cone in C; that is,
the complement of F is an open subset in C as well as a cone.

Fix a closed cone C ⊂ [0,∞)d containing 0, and suppose that F ⊂ C is a closed cone
in C containing 0. Then O := C \ F is an open cone, and C and F are complete separable
metric spaces under the metric dist(·, ·). Let C denote the Borel σ -algebra of C. Clearly,
O is again a separable metric space (not necessarily complete) equipped with the σ -algebra
Ø = {B ⊂ O : B ∈ C}.
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Some examples include

• C = [0,∞)d , F = {0}, and then O = D = [0,∞)d \ {0},
• C = [0,∞)2 (d = 2), F = {(0, x) : x ≥ 0} ∪ {(y, 0) : y ≥ 0}, and then O = (0,∞)2,

• C = [0,∞)2 (d = 2), F = {(x, 0) : x ≥ 0}, and then O = D� := [0,∞)× (0,∞).

1.1.3. Regularly varying functions. A function U : [0,∞) �→ [0,∞) is regularly varying with
index β ∈ R if, for all x > 0,

lim
t→∞

U(tx)

U(t)
= xβ.

We write U ∈ RVβ . See [2], [5], and [22].

1.1.4. Vague convergence of measures. We express the vague convergence of Radon measures
as ‘

v−→’ (see [12] and [21, p. 173]) and the weak convergence of probability measures as ‘⇒’
[1, p. 14]. Denote the set of nonnegative Radon measures on a space S as M+(S) and the set of
all nonnegative continuous functions with compact support from S to R+ as C+K(S). Moreover,
for any element x ∈ S, the point measure at x is defined as

εx(A) =
{

1 if x ∈ A,

0 if x /∈ A,
A ⊂ S.

Vague convergence on E has traditionally been used for defining multivariate regular
variation. We now explain why continuing this practice is problematic and what should be
done.

2. MMM
∗-convergence of measures and regular variation on cones

In this paper we require a definition of multivariate regular variation on cones in Euclidean
space which differs from the traditional definition using vague convergence of measures.
Following [10], we define regular variation based on a notion of convergence of measures
we call M

∗-convergence.

2.1. Problems with compactification of RRR
d

Multivariate regular variation on [0,∞)d is usually defined using vague convergence of
Radon measures on E = [0,∞]d \ {0} [21, Section 6.1.4]. The reason for compactifying
[0,∞)d and then removing 0 is that this makes sets bounded away from {0} relatively compact
(cf. [21, Section 6.1.3]), and since Radon measures put finite mass on relatively compact sets,
this theory is suitable for estimating probabilities of tail regions.

A theory of HRV may require removal of more than just a point. Furthermore, compactifying
from [0,∞)d to [0,∞]d introduces problems. For one thing, it is customary to rely heavily
on the polar coordinate transform x �→ (‖x‖, x/‖x‖) which is defined only on [0,∞)d \ {0},
and if the state space [0,∞]d \ {0} is used, an awkward kluge [21, p. 176] is required to
show the equivalence of regular variation in polar and Cartesian coordinates. A workaround
is only possible because the limit measure µ in (1.1) puts zero mass on lines through infinity
{x : ∨d

i=1 xi = ∞}, but absence of mass on lines through ∞ does not necessarily persist for
regular variation on other cones [17].
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Also, compactification introduces counterintuitive geometric properties. For example, the
topology on [0,∞]d can be defined through a homeomorphic map [0,∞]d �→ [0, 1]d , such as

z = (z1, z2, . . . , zd) �→
(

z1

1+ z1
, . . . ,

zd

1+ zd

)
.

Restrict attention to d = 2, and consider two parallel lines in [0,∞]2 with the same positive
and finite slope. These lines both converge to the same point (∞,∞) and, therefore, in the
compactified space, these two parallel lines are not bounded away from each other. Interestingly,
this is not the case if the lines are horizontal or vertical.

To see the impact that parallel lines not being bounded away from each other can have,
recall one of the motivational examples from Section 1 with d = 2, where the limit measure
µ(·) in (1.1) is concentrated on the diagonal DIAG := {(z1, z2) ∈ E : z1 = z2} and we need to
approximate the tail probability P[|Z1−Z2| > w] for a large threshold w > 0. Of course, if we
use multivariate regular variation as in (1.1) to approximate P[|Z1−Z2| > w], we approximate
P[|Z1 − Z2| > w] as 0. If P[Z1 = Z2] < 1, this approximation is crude. Following the usual
definition of HRV, we remove the diagonal DIAG and define regular variation on the subcone
(DIAG)c := {(z1, z2) ∈ E : z1 �= z2}. Since we seek to approximate P[|Z1 − Z2| > w],
we are interested in the set A>w := {(z1, z2) ∈ E : |z1 − z2| > w}. If we define HRV on
the subcone (DIAG)c as an asymptotic property using vague convergence, we need the set
A>w to be relatively compact in the subcone (DIAG)c. However, if the subcone (DIAG)c

is endowed with the relative topology from the topology on [0,∞]2, A>w is not relatively
compact since the boundaries of A>w are the two parallel lines {(z1, z2) ∈ E : z1 − z2 = w}
and {(z1, z2) ∈ E : z1 − z2 = −w}, which are both parallel to the diagonal DIAG. In the
topology of [0,∞]d , the boundaries of the set A>w are not bounded away from the diagonal
DIAG and, hence, by Proposition 6.1 of [21, p. 171], the set A>w is not relatively compact
in (DIAG)c.

As already observed, horizontal or vertical parallel lines are bounded away from each other
in [0,∞]2. If the limit measure µ(·) in (1.1) concentrates on the axes, the traditional definition
of HRV [20] removes the axes and defines HRV on the cone (0,∞]2. However, risk regions of
interest of the form (z1,∞] × (z2,∞] are still relatively compact and we do not encounter a
problem as above.

We conclude that a flexible theory of HRV on general cones of [0,∞)d requires considering
the possibility that compactification and vague convergence be abandoned. However, without
compactification, how do we guarantee that risk sets corresponding to tail events are relatively
compact and that their probabilities can be approximated by asymptotic methods? A theory
based on M

∗-convergence of measures sidesteps many difficulties.

2.2. MMM
∗-convergence of measures

We follow the ideas of Hult and Lindskog [10], who removed only a fixed point from a
closed set, whereas we remove a closed cone.

As in Section 1.1.2, we fix a closed cone C ⊂ [0,∞)d containing 0 and F ⊂ C is a
closed cone in C containing 0. Set O := C \ F, which is an open cone in C. Let C be the
Borel σ -algebra of C, and let the σ -algebra in O be Ø = {B ⊂ O : B ∈ C}. Denote by
CF the set of all bounded, continuous, real-valued functions f on C such that f vanishes on
F

r := {x ∈ C : dist(x, F) < r} for some r > 0. The class of Borel measures on Ø that
assign finite measure to all D ∈ Ø which are bounded away from F is denoted by M

∗(C, O).
Equivalently, µ ∈M

∗(C, O) if and only if µ is finite on C \ F
r for all r > 0.
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Definition 2.1. (M∗(C, O)-convergence.) For µ, µn ∈M
∗(C, O), n ≥ 1, µn converges to µ

in M
∗(C, O) if

lim
n→∞µn(B) = µ(B)

for all B ∈ O with µ(∂B) = 0 and B bounded away from F. We write µn
∗−→ µ in M

∗(C, O)

as n→∞.

We can metrize the space M
∗(C, O). One way to metrize the space is to define, for µ, ν ∈

M
∗(C, O),

dM∗(µ, ν) :=
∫ ∞

0
e−r dP(µ(r), ν(r))

1+ dP(µ(r), ν(r))
dr,

where µ(r) and ν(r) are the restrictions of µ and ν to C\Fr , and dP is the Prohorov metric [19].
Following [10], (M∗(C, O), dM∗) is a complete separable metric space and the expected

analogue of the Portmanteau theorem [1] holds. That is, for µn ∈ M
∗(C, O), n ≥ 0, the

following statements are equivalent.

• µn
∗−→ µ0 in M

∗(C, O) as n→∞.

• For each f ∈ CF,
∫

f dµn→
∫

f dµ0 as n→∞.

• lim supn→∞ µn(A) ≤ µ0(A) and lim infn→∞ µn(G) ≥ µ0(G) for all closed sets A ∈ Ø
and open sets G ∈ Ø such that G ∩ F = ∅.

3. Regular and hidden regular variation on cones

We define regular variation on a nested sequence of cones, where each cone is a subset of the
previous one. Each cone in the sequence possesses a different regular variation, which remains
hidden while studying regular variation on the bigger cones in the sequence.

3.1. Regular variation

We use the concepts of Section 2 to define regular variation.

Definition 3.1. Suppose that F ⊂ C ⊂ [0,∞)d , and that F and C are closed cones containing 0.
A random vector Z ∈ C has a distribution with a regularly varying tail on O = C \ F if there
exist a function b(t) ↑ ∞ and a nonzero measure ν(·) ∈M

∗(C, O) such that, as t →∞,

t P

[
Z

b(t)
∈ ·

]
∗−→ ν(·) in M

∗(C, O). (3.1)

When there is no danger of confusion, we sometimes use the notation M
∗(O) to mean M

∗(C, O)

and say (in an abuse of terminology) that the distribution is regularly varying on O.

Definition 3.1 implies that there exists α > 0 such that b(·) ∈ RV1/α and that ν has the
scaling property

ν(c·) = c−αν(·), c > 0. (3.2)

This can be derived as in [10, Theorem 3.1]. We define standard multivariate regular variation,
HRV, and the conditional extreme value model in terms of Definition 3.1, and attempt to relate
each to the way these ideas were first proposed on modifications of compactified spaces.

Some examples include the following.

1. Let C = [0,∞)d and F = {0}. Then D = O = [0,∞)d \ {0}. Regular variation on D is
equivalent to regular variation defined in (1.1) on E. The definition in (1.1) precludes µ

having mass on the lines through ∞. See Appendix A.1.
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2. Let C = [0,∞)2 (d = 2) and F = {(x, 0) : x ≥ 0}∪{(0, y), y ≥ 0}. Then O = (0,∞)2,
the first quadrant with both the x and y axes removed. This is the restriction to [0,∞)2

of the cone used in the definition of HRV in [20]. For d > 2, other examples of F

are given in [17] and in Subsection A.2 we provide a comparison between the regular
variation defined in (3.1) on D

(l) =[0,∞)d \ {x ∈ [0,∞)d : x(l) > 0} and the regular
variation defined in (1.1) on E

(l) = [0,∞]d \ {x ∈ E : x(l) > 0}, where, recall, x(l) is the
lth largest component of x. The two notions are equivalent provided there is no mass on
E

(l) \ D
(l).

3. Let C = [0,∞)2 (d = 2) and F = {(x, 0) : x ≥ 0}. Then O = {(x, y) ∈ [0,∞)2 : y >

0} = D�, the first quadrant with the x-axis removed. This is the restriction to [0,∞)2 of
the cone used in the definition of the conditional extreme value model [4], [8], [9].

4. Let C = [0,∞)2 (d = 2) and F = {(x, x) : x ≥ 0}. Then O is the first quadrant with the
diagonal removed. This example is suitable for discussing asymptotic full dependence
(see [21, p. 195] and [22, p. 294]) and is considered in Example 5.2.

3.2. Spectral measures, unit spheres, and semiparametric representations

Regular variation on E using the vague convergence definition as in (1.1) allows the polar
coordinate transformation x �→ (‖x‖, x/‖x‖). Assuming that b(·) ∈ RV1/α , the limit measure
has the scaling property, and when this is expressed in polar coordinates, we obtain the following
alternative version of (1.1):

t P

[‖Z‖
b(t)
∈ dx,

Z

‖Z‖ ∈ da

]
v−→ αx−α−1 dx × S∗(da).

Here S∗ is a finite measure on ∂ℵ = {a ∈ E : ‖a‖ = 1}, the unit sphere. Fixing S∗(∂ℵ) = c,
we define S(·) = S∗(·)/c, which becomes a probability measure on ∂ℵ called the spectral or
angular measure. So, in polar coordinates, the limit measure µ in (1.1) has a semiparametric
product structure depending on the parameter α and the measure S.

In E, the unit sphere ∂ℵ = {x ∈ E : ‖x‖ = 1} = {x ∈ E : dist(x, 0) = 1} is compact.
However, this may no longer be true when moving to other subcones. For instance, in (0,∞]2
the usual unit sphere is not relatively compact. While the polar coordinate transformation
still allows this semiparametric representation for other cones, the analogue of S is no longer
necessarily finite and this is a problem for inference. We explain next how to use a change
of coordinates different from the polar coordinate transformation to always produce a finite
spectral measure analogue. Maulik and Resnick [15] and Mitra and Resnick [17] considered
alternatives to the polar coordinate transformation that twist limit measures into a semipara-
metric form.

Proceed using the context of Definition 3.1. Assume that C, F, and O are defined as in
Definition 3.1. Define ℵO = {x ∈ O : dist(x, F) ≥ 1}, so ℵO is a subset of O bounded away
from F and

⋃
{θ>0} θℵO = O. From Definition 3.1, we have 0 < ν(ℵO) < ∞. The scaling

property (3.2) implies that the scaling function b(t) in (3.1) can be chosen so that ν(ℵO) = 1.
Define the related set ∂ℵO = {x ∈ O : dist(x, F) = 1}. Some examples are as follows.

• C = [0,∞)d , F = {0}, and dist(x, F) = ‖x‖. Then ∂ℵO = {x : ‖x‖ = 1}.
• d = 2, ‖x‖ = x1 ∨ x2, C = [0,∞)2, F = {(x, 0) : x ≥ 0} ∪ {(0, y), y ≥ 0}, and

O = (0,∞)2. Then ∂ℵO = {x : dist(x, F) = 1} = {x : x1 ∧ x2 = 1}.
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• d = 2, ‖x‖ = x1 ∨ x2, C = [0,∞)2, and F = {(x, 0) : x ≥ 0}. Then ∂ℵO =
{x : dist(x, F) = 1} = {(x, y) : x ≥ 0, y = 1}.

We transform to an appropriate coordinate system in which the limit measure ν in (3.1) is
a product of two components: a one-dimensional Pareto measure and a probability measure
defined on ∂ℵO called the hidden spectral or angular measure. To this end, we first note the
following two properties of the distance function dist(·, F).

• Since F is a closed subset of C, dist(x, F) > 0 for all x ∈ O (otherwise, x ∈ F).

• Since F is a cone, θ ·F = F for θ > 0. Hence, dist(θx, F) = dist(θx, θF) = θ dist(x, F),
that is, dist(·, F) is homogeneous of order 1.

A lemma is necessary for the decomposition of the limit measure ν(·). For a set A ∈ [0,∞)d ,
we set (A)1 = {x1 : x ∈ A}.
Lemma 3.1. Suppose that h : O �→ (0,∞)× ∂ℵO is a continuous bijection such that

• for every measurable A ⊂ (0,∞)×∂ℵO with (A)1 ∩ {0} = ∅, h−1(A) is bounded away
from F,

• for every measurable B ⊂ O with B bounded away from F, (h(B))1 ∩ {0} = ∅.

Then the following statements are equivalent for measures µt , µ ∈M
∗(C, O).

(i) As t →∞,
µt(·) ∗−→ µ(·) in M

∗(C, O).

(ii) For all measurable A ⊂ (0,∞)× ∂ℵO such that (A)1 ∩ {0} = ∅ and µ ◦h−1(∂A) = 0,

µt ◦ h−1(A)→ µ ◦ h−1(A).

Proof. The proof follows the proof of Theorem 2.5 of [10].

Applying Lemma 3.1 with h : x �→ (dist(x, F), x/dist(x, F)), we are able to decompose ν.

Proposition 3.1. Regular variation on O as given in (3.1) is equivalent to

t P

[(
dist(Z, F)

b(t)
,

Z

dist(Z, F)

)
∈ A

]
→ cν(α) × SO(A) (3.3)

for all measurable A ⊂ (0,∞)× ∂ℵO such that (A)1 ∩ {0} = ∅ and ν ◦ h−1(∂A) = 0, where
c > 0, SO(·) is a probability measure on ∂ℵO, and ν(α)(·) is the Pareto measure given by
ν(α)((x,∞)) = x−α for x > 0. Call SO(·) the spectral measure on O; it is related to ν(·) via

SO(	) = ν({x ∈ O : dist(x, F) ≥ 1, x/dist(x, F) ∈ 	})
ν(x ∈ O : dist(x, F) ≥ 1)

.

Since (0,∞) × ∂ℵO is not a cone, we have not phrased the convergence in (3.3) as
M
∗-convergence, as in (3.1). To do so requires reworking the convergence theory in [10].

Corollary 3.1. The convergence in (3.1) can be equivalently given by the following two
conditions.

(i) The distribution of dist(Z, F) is regularly varying on (0,∞) following Definition 3.1
with C = [0,∞).
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(ii) The conditional distribution of Z/ dist(Z, F) given dist(Z, F) > t converges weakly, i.e.

P

[
Z

dist(Z, F)
∈ ·

∣∣∣∣ dist(Z, F) > t

]
⇒ SO(·) as t →∞.

Some remarks about Proposition 3.1 are in order.

Remarks 3.1. (i) The role of the distance function. Proposition 3.1 emphasizes that the
spectral probability measure SO(·) is dependent on the choice of distance function dist(·, ·).
Corollary 3.1 allows us to use the distance function dist(·, ·) to detect regular variation on O; see
Section 6. However, extending the distance function to a compactified space such as [0,∞]d
is difficult and this provides another reason why we deviated from the standard discussion of
regular variation using compactified spaces and vague convergence.

(ii) Connections to prior treatments.

(a) Proposition 3.1 of [17] decomposes the limit measure µ(l)(·) on E
(l) (see (A.1) below)

by applying the transformation T : x �→ (x(l), x/x(l)), where x(l) is the lth largest
component of x. If we choose C = [0,∞)d , F = {x ∈ C : x(l) = 0}, and O = {x ∈
C : x(l) > 0}, and choose the L∞-norm when defining dist(·, ·), then dist(x, F) = x(l)

and our Proposition 3.1 gives a version of Proposition 3.1 of [17].

(b) When considering regular variation on the cone E� : = [0,∞] × (0,∞], Heffernan
and Resnick [8, Proposition 4] gave a decomposition of their limit measure µ∗(·) by
applying the transformation T : (x, y) �→ (y, x/y). If we choose C = [0,∞)2, F =
[0,∞)×{0}, and O = [0,∞)× (0,∞) =: D�, and define dist(·, ·) using the L∞-norm,
then d

(
(x, y), F

) = y and our Proposition 3.1 connects with [8, Proposition 4].

(c) Proposition 3.1 also relates to the usual polar coordinate characterization of multivariate
regular variation on E as in [21, p. 173]. Set F = {0}, which is a closed cone in
C = [0,∞)d , and dist(x, {0}) = ‖x‖. See also Proposition A.1.

3.3. Hidden regular variation

As in Definition 3.1, consider F ⊂ C ⊂ [0,∞)d with F and C closed cones containing {0}.
Suppose that F1 is another subset of C that is a closed cone containing {0}. Then F∪F1 is also
a closed cone containing {0}. Set O = C \ F and O1 = C \ (F ∪ F1).

Definition 3.2. The distribution of a random vector Z ∈ C that is regularly varying on O with
scaling function b(t) in (3.1) possesses HRV on O1 if

• the distribution of Z is also regularly varying on O1 with scaling function b1(t) and limit
measure ν1, and

• b(t)/b1(t)→∞ as t →∞.

Observe that the condition b(t)/b1(t)→∞ implies that ν puts zero mass on O1 [20]. From
Definition 3.2 and (3.2), it follows that there exists α1 ≥ α such that b1(·) ∈ RV1/α1 , and on
O1, the limit measure ν1(·) in (3.1) satisfies the scaling property

ν1(c·) = c−α1ν1(·), c > 0.

Example. Let Z = (Z1, Z2) be independent and identically distributed (i.i.d.) unit Pareto
random variables. Then the distribution of Z is regularly varying on D with b(t) = t and
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possesses HRV on (0,∞)2 with b1(t) = √t . In general, if Z = (Z1, Z2) has regular variation
on D = [0,∞)2 \ {0} with asymptotic independence, the regular variation on D estimates joint
tail probabilities P[Z1 > x, Z2 > y] for large thresholds x, y > 0 as 0, while HRV offers the
possibility of nonzero estimates. Other examples are considered in Section 5.

Some remarks about Definition 3.2 are in order.

Remarks 3.2. (i) There is flexibility in choosing O1 and this flexibility is useful for
defining HRV on a sequence of cones. Cones can be chosen based on the risk regions whose
probabilities are required. For example, if d = 2, we choose the cones D and D

(2) :=
{z ∈ [0,∞)2 : z1 ∧ z2 > 0} if we need the probability that components of the risk vector
simultaneously exceed thresholds.

(ii) Differences with existing notions of HRV. Previous considerations of HRV relied on vague
convergence and compactification and were applied to specific choices of cones. In [7], [15],
and [20] HRV on (0,∞]2 was considered and in [17] the cone E

(l) = {x ∈ [0,∞]d : x(l) > 0}
was considered. The choice of these specific cones may not provide sufficient flexibility and
generality. For example, to estimate P[|X − Y | > x] when asymptotic full dependence is
present, such cones considered previously are of no help. See Example 5.2 below.

3.3.1. Where to seek HRV? Suppose that the distribution of Z is regularly varying on O and
that the limit measure ν in (3.1) gives zero mass to a subset R of O. Using the asymptotic
property of regular variation to estimate P[Z ∈ tR] for large t means that such an estimate is 0.
So we seek another regular variation on a subset of R which is of lower order.

When seeking HRV our focus is thus on subsets of O where the limit measure ν(·) gives
zero mass. A systematic way to find HRV is facilitated by the following simple proposition.

Proposition 3.2. In Definition 3.1, the support of the limit measure ν is a closed cone Fν ⊂ C

containing 0.

Proof. Let supp(ν) denote the support of ν. By definition, supp(ν) is closed. Let x ∈
supp(ν). We show that, for t > 0, tx ∈ supp(ν). For small δ, by (3.2),

ν((tx − δ1, tx + δ1) ∩ C) = ν

(
t

((
x − δ

t
1, x + δ

t
1
)
∩ C

))

= t−αν

((
x − δ

t
1, x + δ

t
1
)
∩ C

)
> 0,

since x ∈ supp(ν).

So, Fν = supp(ν) is a union of rays emanating from the origin. It is also true that

supp(ν) = {t · supp(SO), t ≥ 0}.

When seeking HRV on a cone smaller than O, we conclude that Oν := C \ (F ∪ Fν) is the
largest possible subcone of O where we might find a different regular variation. In practice,
guided by the type of risk region whose probability is required, we find a closed cone F1 ⊂ C

containing 0 such that F1 ⊃ Fν , set O1 = C \ (F∪ F1), and then seek regular variation on O1.
Possibly, but not necessarily, F1 = supp(ν). Examples are given in [17] and Section 5.
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3.3.2. Regular variation on a sequence of cones. Having found regular variation on O with
HRV on O1, we ask: should we stop here? There might be a subcone O2 of O1, where ν1(·)
gives zero mass and, hence, there might exist a different regular variation on O2.

To proceed further, remove the support of ν1 from O1 and let Oν1 := O1 \ supp(ν1) be the
largest possible subcone of O1 where we might find a different regular variation. So we choose
F2 ⊃ supp(ν1), set O2 = C \ (F ∪ F1 ∪ F2), and seek regular variation on O2 with scaling
function b2(t) such that b1(t)/b2(t) → ∞ as t → ∞. This last condition guarantees that
the regular variation on O2 is of lower order than the regular variation on either O or O1 and
hidden from both higher-order regular variations. This process of discovery may be continued
as long as on each new cone regular variation is found. Example 5.3 below shows this discovery
process may lead to an infinite sequence of cones.

From our definition of HRV, at each stage of the discovery process we have some flexibility in
choosing the next cone where we seek HRV. Example 5.3 below shows that it may be impractical
to analyze HRV on every possible cone as the discovery process may lead to an infinite sequence
of cones. A more practical approach is to decide on a particular finite sequence of cones based on
the risk regions of interest; see Remarks 3.2(i). For example, if we are interested in estimating
joint tail probabilities, we might consider only the sequence of cones

D = [0,∞)d \ {0} ⊃ D
(2)

= {x ∈ [0,∞)d : x(2) > 0} ⊃ · · · ⊃ D
(d)

= {x ∈ [0,∞)d : x(d) > 0};

cf. [17].

4. Remarks on other models of multivariate regular variation

Despite the fact that most common examples in heavy tail analysis start by analyzing
convergence on the cone [0,∞)d \ {0}, this need not always be the case. For example, the
standard case of the conditional extreme value (CEV) model [4], [8] is regular variation (3.1)
with b(t) = t on the cone D� := O = [0,∞)×(0,∞) with C = [0,∞)2 and F = [0,∞)×{0}.
4.1. The CEV model

The CEV model, introduced in [9], is an alternative to classical multivariate extreme value
theory (MEVT). In contrast with classical MEVT which implies that all marginals are in a
maximal domain of attraction, in the CEV model only a particular subset of the random vector
is assumed to be in a maximal domain of attraction. For convenience, we restrict attention
to d = 2.

The CEV model as formulated in [4] and [8] allows variables to be centered as well as scaled.
To make comparisons with models of regular variation on the first quadrant easy, we recall the
vague convergence definition using only scaling functions.

Definition 4.1. Suppose that Z := (Z1, Z2) ∈ R
2+ is a random vector, and that there exist

functions a1(t) and a2(t) > 0 and a nonnull Radon measure µ on Borel subsets of E� :=
[0,∞] × (0,∞] such that, in M+(E�),

t P

[(
Z1

a1(t)
,

Z2

a2(t)

)
∈ ·

]
v−→ µ(·). (4.1)
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Additionally, assume that µ satisfies the following nondegeneracy conditions:

(i) µ([0, x] × (y,∞]) is a nondegenerate distribution in x,

(ii) µ([0, x] × (y,∞]) <∞.

Also, assume that

(iii) H(x) := µ([0, x] × (1,∞]) is a probability distribution.

Then Z satisfies a CEV model and we write Z ∈ CEV(a1, a2).

The general CEV model, provided the limit measure is not a product, can be standardized to
have standard regular variation on the cone E� [4, p. 236]. Following the theme of examples 1
and 2 at the beginning of Section 3, if no mass exists on the lines through ∞, and a1 = a2, then
the vague convergence definition of the CEV model on E� is the same as the M

∗ definition on
regular variation D�.

The issue of mass on the lines through ∞ is significant since if mass on these lines is
allowed, there is a statistical identifiability problem in the sense that in E� it is possible to have
two different limits in (4.1) under two different normalizations: one limit puts mass on the
lines through ∞ and the other does not. Restricting to D� resolves the identifiability problem
because in this space, limits are unique. See Example 5.4 below.

4.2. Nonstandard regular variation

Standard multivariate regular variation on E requires the same normalizing function to scale
all components and is a convenient starting place for theory, but unrealistic for many applications
as it makes all one-dimensional marginal distributions tail equivalent. Nonstandard regular
variation [21, Section 6.5.6] allows different normalizing functions for vector components
and, hence, permits each marginal distribution tail to have a different tail index. When the
components of the risk vector have different tail indices, nonstandard regular variation is
sensitive to the different tail strengths. On E or D, nonstandard regular variation takes the
form

t P

[(
Zi

ai(t)
, i = 1, . . . , d

)
∈ ·

]
→ ν(·)

for scaling functions ai(t) ↑ ∞, i = 1, . . . , d, where convergence is vague for E and in M
∗

for D. If convergence is in E and there is no mass on the lines through ∞, the difference
between convergence in E and D vanishes.

In cases where ai(t)/ai+1(t)→ 0, it is sometimes possible to compare the information from
nonstandard regular variation with what can be obtained from HRV. Sometimes HRV provides
more detailed information. Consider the following example.

Example 4.1. Suppose that X1, X2, and X3 are independent random variables, where X1 is
Pareto(1), X2 is Pareto(3), and X3 is Pareto(4). Furthermore, assume that B is a Bernoulli( 1

2 )

random variable independent of X1, X2, and X3. Define

Z = (Z1, Z2) := B(X1, X3)+ (1− B)(X2, X2).

Nonstandard regular variation on E or D is given by

t P

[(
Z1

t
,

Z2

t1/3

)
∈ dx dy

]
→ 1

2
x−2 dxε0(dy)+ 1

2
ε0(dx)3y−4 dy,

where ε0 indicates the point measure at 0 and the limit measure concentrates on the two axes.

https://doi.org/10.1239/aap/1363354106 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1363354106


Seeking hidden risks 151

The standardized version on E or D is

t P

[(
Z1

t
,
Z3

2

t

)
∈ dx dy

]
→ 1

2
x−2 dxε0(dy)+ 1

2
ε0(dx)y−2 dy.

Now HRV can also be sought and we obtain

t P

[(
Z1

t3/7 ,
(Z2)

3

t3/7

)
∈ dx dy

]
→1

2
x−2 dx 4y−5 dy

on the space E
(2). Note that this form of regular variation completely ignores the existence

of the completely dependent component of Z given by (X2, X2). Alternatively, if we pursue
regular variation and HRV on a sequence of cones as defined in this paper then we observe the
following convergences as t →∞.

• On D, we have

t P

[
Z

t
∈ dx dy

]
→ 1

2
x−2 dx ε0(dy).

• On D \ {x-axis}, we have

t P

[
Z

t1/3 ∈ dx dy

]
→ 3

2
x−4 dx εx(dy).

• On D \ [{x-axis} ∪ {diagonal}], we have

t P

[
Z

t1/4 ∈ dx dy

]
→ 1

2
ε0(dx) 4y−5 dy.

• Finally, on D \ [{x-axis} ∪ {diagonal} ∪ {y-axis}], we have

t P

[
Z

t1/5
∈ dx dy

]
→ 1

2
x−2 dx 4y−5 dy.

This analysis provides more detailed information compared with first standardizing and then
seeking HRV on (0,∞)2. However, this is not always the case and sometimes nonstandard
regular variation is better suited to explaining the model structure.

Example 4.2. Suppose that X is a standard Pareto random variable and that Z = (X, X2) [21,
Example 6.3]. Using the obvious nonstandard scaling for the coordinates leads to

t P

[(
X

t
,
X2

t2

)
∈ ·

]
v−→ ν(1) ◦ T −1 as t →∞, (4.2)

where T : (0,∞] → (0,∞] × (0,∞] is defined by T (x) = (x, x2) and ν(1)(dx) = x−2 dx,

x > 0. The limit measure concentrates on {(x, x2) : x > 0}. Using the same normalization
on both coordinates is not so revealing. With the heavier normalization, we have, on
M
∗([0,∞)2, [0,∞)2 \ {0}),

t P

[
Z

t2 ∈ ·
]
∗−→ ε0 × ν(1) as t →∞, (4.3)
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and with the lighter normalization, for x > 0 and y > 0,

t P

[
X

t
> x,

X2

t
> y

]
→ x−1 for all y > 0,

so that

t P

[
Z

t
∈ ·

]
v−→ ν(1) × ε∞ on E. (4.4)

Neither (4.3) nor (4.4) approach the explanatory power of (4.2). Moreover, since our modeling
excludes points at∞, the convergence in (4.4) is not equivalent to any M

∗-convergence.

5. Examples

The definition of HRV given in this paper changes the definition of convergence, but, more
importantly, allows general cones compared with the original definition of HRV [17], [20];
see Remarks 3.2 and (A.2) below. Here we provide examples to illustrate use and highlight
subtleties, and give risk sets, whose probabilities can be approximated using our general concept
of HRV but not the existing notion.

Example 5.1. (Diversification of risk.) Suppose that we invest in two financial instruments I1
and I2, and, for a given time horizon, let Z1 and Z2 denote future losses associated with each
unit of I1 and I2, respectively. Let Z = (Z1, Z2) be regularly varying on O = D = [0,∞)2\{0}
with limit measure ν(·). We earn risk premia of $l1 and $l2 for investing in each unit of I1
and I2.

Suppose that we invest in a1 units of I1 and a2 units of I2. A possible risk measure for
this portfolio is P[a1Z1 > x, a2Z2 > y] for two large thresholds x and y. This risk measure
quantifies the tail dependence of Z1 and Z2. The greater the tail dependence between Z1 and
Z2, the greater should be our reserve capital requirement so that we guard against the extreme
situation that both investments go awry. For this risk measure, the best circumstance is if risk
contagion is absent; that is, Z1 and Z2 are asymptotically independent so that the measure ν(·)
is concentrated on the axes [21, p. 192], since then P[a1Z1 > x, a2Z2 > y] is estimated to be
0 if HRV is absent and even if HRV exists on the cone (0,∞)2 according to Definition 3.2, the
estimate of P[a1Z1 > x, a2Z2 > y] for large thresholds x and y should be small compared to
the case where Z1 and Z2 are not asymptotically independent.

In place of asymptotic independence, suppose instead that Z is regularly varying on D as in
Definition 3.1 with limit measure ν(·), whose support is

{(u, v) ∈ D : 2u ≤ v} ∪ {(u, v) ∈ D : u ≥ 2v}
so that ν(·) puts zero mass on

CONE := {(u, v) ∈ D : 2u > v, 2v > u} =
⋃

x>0, y>0

{(u, v) : 2u− v > x, 2v − u > y}.

Though this Z does not possess asymptotic independence, we can still build a portfolio of two
financial instruments that have asymptotically independent risks.

Define two new financial instruments W1 = 2I1 − I2 (buy two units of I1 and sell a unit of
I2, assuming such transactions are allowed) and W2 = 2I2 − I1. The loss associated with W1
is LW1 := 2Z1 − Z2 and the loss associated with W2 is LW2 := 2Z2 − Z1. We earn the same
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risk premium a1l1 + a2l2 in the following two cases.

Case 1: invest in a1 units of I1 and a2 units of I2.

Case 2: invest in c1 = (2a1 + a2)/3 units of W1 and c2 = (a1 + 2a2)/3 units of W2.

A measure of risk of the portfolio in case 1 is P[a1Z1 > x, a2Z2 > y]. Since asymptotic
independence is absent,

t P

[
a1Z1

b(t)
> x,

a2Z2

b(t)
> y

]
→ ν(((x, y), ∞)) > 0 as t →∞,

and we expect the risk probability to be not too small. However, the risk measure for case 2
should be rather small. Let T (u, v) = (2u− v, 2v − u). Then the risk measure for case 2 is

P[c1(2Z1 − Z2) > x, c2(2Z2 − Z1) > y] = P

[
T (Z1, Z2) >

(
x

c1
,

y

c2

)]
.

Since, as t →∞,

t P

[
T (Z1, Z2) >

(
b(t)x

c1
,
b(t)y

c2

)]
→ ν

(
T −1

(((
x

c1
,

y

c2

)
, ∞

)))

and T −1(((x/c1, y/c2), ∞)) ⊂ CONE, the risk measure for case 2 is small and the losses
are asymptotically independent. Hence, the investment portfolio in case 2 achieves more
diversification of risk than the portfolio in case 1, and both earn the same amount of risk
premium.

How do we construct a risk vector Z whose distribution is regularly varying and whose limit
measure ν concentrates on D \ CONE? Suppose that R1, R2, U1, U2, and B are independent,
and that R1 is Pareto(1), R2 is Pareto(2), U1 ∼ U((0, 1

3 ) ∪ ( 2
3 , 1)), U2 ∼ U( 1

3 , 2
3 ), and B is a

Bernoulli random variable taking the values 0 and 1 with equal probability. Define

Z = BR1(U1, 1− U1)+ (1− B)R2(U2, 1− U2).

Because of Proposition 3.1 applied with the L1 metric, Z is regularly varying on D with index 1
and angular measure concentrating on [0, 1

3 ] ∪ [ 23 , 1]. Hence, the limit measure ν concentrates
on D \ CONE. At scale t1/2, Z is also regularly varying on CONE with uniform angular
measure.

Example 5.2. (Asymptotic full dependence.) For convenience, in this example we restrict
attention to d = 2. HRV [20] was designed to deal with asymptotic independence [21, p. 322]
where ν(·) concentrates on the axes. For asymptotic full dependence, the limit measure ν(·)
concentrates on the diagonal DIAG := {(z, z) : z≥ 0} [21, p. 195] and previous treatments did
not deal with this or related degeneracies where the limit measure ν(·) concentrates on a finite
number of rays other than the axes.

Consider the following example. Suppose that X1, X2, and X3 are i.i.d. with common
distribution Pareto(2). Let B be a Bernoulli random variable independent of {Xi : i = 1, 2, 3},
and let P[B = 0] = P[B = 1] = 1

2 . Construct the random vector Z as

Z = (Z1, Z2) = B((X1)
2, (X1)

2)+ (1− B)(X2, X3).
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So, Z is regularly varying on O = D with scaling function b(t) = t and limit measure

ν([0, (u, v)]c) = 1
2 (u ∧ v)−1, (u, v) ∈ D.

The measure ν(·) concentrates on DIAG and satisfies ν({(u, v) ∈ D : |u − v| > x}) = 0 for
x > 0, and, as a result, we estimate risk probabilities like P[|Z1−Z2| > x] for large thresholds
x as 0. We gain precision from HRV.

Define the cone

O1 = [0,∞)2 \ ({0} ∪ DIAG) = {(u, v) ∈ D : |u− v| > 0}.
The distribution of Z has HRV on O1 with scaling function b1(t) = t1/2 and limit measure

ν1(du dv) = u−3 duε0(dv)+ ε0(du)v−3 dv, (u, v) ∈ O1,

the measure that concentrates mass on the axes and which is restricted to O1. This limit results
from the second summand in Z, (1 − B)(X2, X3); the first summand B(X2

1, X2
1) contributes

nothing to the limit due to the restriction to O1. So, for instance, for (u, v) ∈ O1 and x > 0,

ν1([0, (u, v)]c ∩ {(u, v) ∈ O1 : |u− v| > x}) = 1
2 ((u ∨ x)−2 + (v ∨ x)−2)

and, for some large t > 0, letting u ↓ 0 and v ↓ 0, we see that

P[|Z1 − Z2| > x] ≈ t−1
(

x

b1(t)

)−2

.

Statistical estimates of the risk region probability replace b1(t) by a statistic; see Section 6.
The fact that ν1(·) concentrates on the axes suggests seeking a further HRV property on a

cone smaller than O1. If we need risk probabilities of the form P[Z1 − Z2 > x, Z2 > y] for
large thresholds x and y, we seek the HRV property, say, O2 = {(u, v) ∈ O1 : u, v > 0} or a
subcone of O2.

As an example of why risk probabilities like P[Z1 − Z2 > x] arise, imagine investing in
financial instruments I1 and I2 that have risks Z1 and Z2 per unit of investment and suppose
that these risks have asymptotic full dependence.

For anya1, a2, c > 0, asymptotic full dependence ofZ1 andZ2 implies that P[a1Z1+a1Z2 >

x] should be bigger than P[c(Z1 − Z2) > x], provided x is large. So, if l1 > l2, it is less risky
to invest in the financial instrument I1 − I2 rather than investing in both I1 and I2. Obviously,
investing in the financial instrument I1 − I2 requires us to measure risks associated with this
portfolio, which leads to the need to evaluate P[Z1 − Z2 > x] for large thresholds x.

In summary, this example shows how a more flexible definition of HRV possibly allows
computation of risk probabilities in the presence of asymptotic full dependence.

HRV was originally defined for d = 2 and for two cones [20], and then extended to a
finite sequence of cones [17]. In this paper our definition of HRV allows the possibility that
we progressively find HRV on an infinite sequence of cones. We now present an example for
d = 2 where this is indeed the case. An infinite sequence of cones may create problems for
risk estimation which we discuss afterwards.

Example 5.3. (Infinite sequence of cones.) Suppose that {Xi, i ≥ 1} are i.i.d. random variables
with common Pareto(1) distribution. Let {Y1, Y2} be i.i.d. with common Pareto(2) distribution,
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and suppose that {Bi, i ≥ 1} is an infinite sequence of random variables with P[Bi = 1] =
1− P[Bi = 0] = 2−i and

∑∞
i=1 Bi = 1. (For instance, let T be the index of the first success in

an i.i.d. sequence of Bernoulli trials and then set Bi = 1[T=i], i ≥ 1.) Assume that {Xi, i ≥ 1},
{Y1, Y2}, and {Bi : i ≥ 1} are mutually independent. Define the random vector Z as

Z = (Z1, Z2) = B1(Y1, Y2)+
∞∑
i=1

Bi+1((Xi)
1/(2−2−(i−1)), 2i−1(Xi)

1/(2−2−(i−1))).

So, Z has regular variation on the cone O = O0 = D = [0,∞)d \ {0} with index of regular
variation α = 1, scaling function b(t) = t , and limit measure ν(·) concentrating on the diagonal
DIAG := {(x, x) : x ∈ [0,∞)}. This comes from the i = 1 term in the series. We remove the
diagonal and find HRV on O1 = D \ DIAG with b1(t) = t2/3, α1 = 3

2 , and limit measure ν1
concentrating on the ray {(x, 2x) : x ≥ 0}. Progressively seeking HRV on successive cones,
we find at the (i + 1)th step of our analysis that Z has regular variation on the cone

Oi = D

∖ [ i⋃
j=1

{(x, 2j−1x) : x ∈ [0,∞)}
]

(5.1)

with index of regular variation αi = 2− 2−i and limit measure νi(·) concentrating on

{(x, 2ix) : x ∈ [0,∞)}.
Selection of cones must be guided by the type of risk probability needed. Consider trying

to estimate P[Z1 − Z2 > x] for large thresholds x using the cones Oi , i ≥ 0, given in (5.1).
At the (i + 1)th stage, using cone Oi , the limit measure νi(·) puts zero mass on the cone
{(u, v) : u > v}. So, even after a million HRV steps, we will estimate P[Z1−Z2 > x] for large
thresholds x as 0, which is clearly wrong due to the definition of Z since

P[Z1 − Z2 > x] ≥ P[B1 = 1]P[Y1 − Y2 > x] > 0.

An alternative procedure seeks regular variation on the cone {(u, v) : u > v}, and this leads to
somewhat more reasonable estimates of P[Z1 − Z2 > x] for large thresholds x since in this
case the regular variation with the Pareto(2) variables is captured.

This example is not likely to arise in practice, but the moral of the story is that the choice of
sequence of cones when defining HRV must be guided by the kind of risk sets considered. For
example, if we are interested in only joint tail probabilities, a possible choice of sequence of
cones is D = D

(1) ⊃ D
(2) ⊃ · · · ⊃ D

(d), where

D
(l) = {x ∈ [0,∞)d : x(l) > 0}

and x(l) is the lth largest component of x [17].

Example 5.4. (The CEV model and mass on the lines through ∞.) If we consider the CEV
model on E�, there can exist two different limits in (4.1) under two different normalizations.
This problem disappears if we restrict convergence to D�.

Suppose that Y is Pareto(1) and B is a Bernoulli random variable with P[B = 1] =
P[B = 0] = 1

2 . Define

Z = (Z1, Z2) = B(Y, Y )+ (1− B)(
√

Y , Y ).
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Then the following two convergences hold in E�: for x ≥ 0 and y > 0,

ν1([0, x] × (y,∞]) := lim
t→∞ t P

[(
Z1

t
,
Z2

t

)
∈ [0, x] × (y,∞]

]
= 1

2

(
1

y
− 1

x

)
+
+ 1

2y
,

ν2([0, x] × (y,∞]) := lim
t→∞ t P

[(
Z1√

t
,
Z2

t

)
∈ [0, x] × (y,∞]

]
= 1

2

(
1

y
− 1

x2

)
+
. (5.2)

So Z follows a CEV model on E� with two different scalings. Note that ν1 does not put any
mass on lines through ∞, but ν2 does: ν2({∞} × (y,∞]) = 1/2y. If we restrict convergence
to D�, limits are unique and Z is regularly varying on D� with limit measure ν1 given by (5.4)
restricted to D�.

In some cases, our approach may not identify the hidden structure. As pointed out by an
astute referee, this can happen if there are uncountably many distinct indices of regular variation
along distinct rays. We now provide an example in two dimensions.

Example 5.5. (Different tail rates in different directions.) Suppose that (R, U) is a bivariate
random vector with probability density function given by

fR,U (r, u) = 4r−(u+2)((u+ 1) log r − 1), r > 2, 0 < u < 1.

Now define Z = (RU, R(1−U)). We can check that Z is regularly varying on D = [0,∞)2\{0}
by checking this for the polar coordinate version (R, U) as follows. For any r > 2 and
0 ≤ a < b ≤ 1,

P[R > r, U ∈ [a, b]] = 4r−(a+1) − 4r−(b+1).

Thus, if we define ba(t) = t1/(a+1) for 0 ≤ a ≤ 1, we have, for r > 2, ‖(x, y)‖ = x + y and
Ta,b = {(u, 1− u) : a ≤ u ≤ b},

lim
t→∞ t P

( ‖Z‖
ba(t)

> r,
Z

‖Z‖ ∈ Ta,b

)
= 4νa+1(r,∞)× ε(a,1−a)(Ta,b),

where να(r,∞) = r−α for r > 0 and α > 0. Hence, if we choose the cone

Da,b =
{
(x, y) ∈ D : x + y > 0,

x

x + y
∈ [a, b]

}

as our first cone for seeking regular variation then we get Z to be regularly varying on Da,b

with normalizing function ba(t) = t1/(a+1) and limit measure νa+1 × ε(a,1−a) concentrated on
the line La = {(x, y) ∈ D : x/(x + y) = a}. Specifically, Z has regular variation on D = D0,1
with b(t) = t and limit measure concentrated on the y-axis L0.

After finding regular variation on Da,b with limit measure concentrated on La , if in the next
step we take the cone Da,b \La , an HRV cannot be found. This gives an example where we have
a regularly varying tail in any direction and examination of further hidden regularly varying
structure is not possible.

6. Estimating the spectral measure and its support

We have defined regular variation on a big cone O0 ⊂ R
d along with HRV in a nested

sequence of subcones O0 ⊃ O1 ⊃ O2 ⊃ · · · . We now propose strategies for deciding whether
HRV is consistent with a given data set and, if so, how to estimate probabilities of sets pertaining
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to joint occurrence of extreme or high values. We proceed as follows.

• Specify a fixed finite sequence of cones pertinent to the problem and seek HRV
sequentially on these cones. We discuss this in Section 6.1 which follows ideas proposed
in [17, Section 3].

• If the sequence of cones is not clear, proceed by estimating the support of the limit
measure at each step, removing it, and seeking HRV on the complement of the support.
Then estimate the hidden limit measure using semiparametric techniques similar to those
used in Section 6.1.

6.1. Specified sequence of cones

Suppose that Z1, Z2, . . . ,Zn are i.i.d. random vectors in C ⊂ [0,∞)d whose common
distribution has a regularly varying tail on O according to Definition 3.1 with normalizing
function b(·) and limit measure ν(·). Also, assume that we have a specified sequence of cones
O = O0 ⊃ O1 ⊃ O2 ⊃ · · · where we seek regular variation. Such a sequence of cones is
known and fixed.

We provide an estimate for the limit measure of regular variation on O and the same method
can be applied to find limit measures for HRV on the subcones.

Now, according to Corollary 3.1, regular variation on O as above is equivalent to assuming
that P[dist(Z, F) > x] is regularly varying at∞ with some exponent α > 0 and normalizing
function b(t), and

P

[
Z

dist(Z, F)
∈ ·

∣∣∣∣ dist(Z, F) > t

]
⇒ SO(·) as t →∞ (6.1)

in P(∂ℵO), the class of all probability measures on ∂ℵO = {x ∈ O : dist(x, F) = 1}. We take
b(t) := F←d (1− 1/t), where dist(Z, F) has distribution function Fd . Thus, we estimate ν by
estimating α and SO separately. Considering dF

i := dist(Zi , F), i = 1, . . . , n, as i.i.d. from
a regularly varying distribution on (0,∞), the exponent α can be estimated using the Hill,
Pickands, or QQ estimator [5], [21].

We now present an outline of how to obtain an empirical estimator of SO following [21].

Proposition 6.1. Assume that the common distribution of the i.i.d. random vectors Z1, . . . , Zn

satisfies Definition 3.1 and (3.1). As n→∞, k→∞, and n/k→∞, we have, in P(∂ℵO),

Sn(·) :=
∑n

i=1 ε(dF
i /b(n/k),Zi /d

F
i )((1,∞)× ·)∑n

i=1 εdF
i /b(n/k)(1,∞)

⇒ SO(·). (6.2)

Proof. We have {dF

i , 1 ≤ i ≤ n} i.i.d. regularly varying random variables from a distribu-
tion Fd on (0,∞) with regularly varying tail and norming function b(t) = F←d (1− 1/t), by
Theorem A.1. Thus, for x > 0, (n/k) P[dF

i /b(n/k) > x] → cx−α, and from [21, p. 139], this
is equivalent to (1/k)

∑n
i=1 εdF

i /b(n/k)(1,∞)⇒ c, and to prove (6.2), it suffices to show that,
in M+(∂ℵO),

1

k

n∑
i=1

εZi /d
F
i
(·) 1[dF

i /b(n/k)>1] ⇒ SO(·). (6.3)

The counting function in (6.3) only counts Zi/d
F

i such that dF

i /b(n/k) > 1. The distribution
of such random elements is P[Zi/d

F

i ∈ · | dF

i /b(n/k) > 1] [22, p. 212], and (6.1) holds. Using
[21, Theorem 5.3ii, p. 139] and the style of argument in [22, p. 213], we obtain (6.3).
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The estimator Sn of SO in Proposition 6.1 relies on b(t), which is typically unknown, but
b(n/k) can be estimated. Order dF

1 , . . . , dF
n as dF

(1) ≥ · · · ≥ dF

(n), and let dF

(k+1)/b(n/k)
p−→ 1

so dF

(k+1) is a consistent estimator of b(n/k) as n→∞, k →∞, and n/k →∞ [21, p. 81].
Hence, we replace b(n/k) by dF

(k+1) and propose the estimator Ŝn for SO in Sn as follows:

Ŝn(·) :=
∑n

i=1 ε{dF
i /dF

(k+1)
,Zi /d

F
i }((1,∞)× ·)∑n

i=1 ε{dF
i /dF

(k+1)
}(1,∞)

= 1

k

n∑
i=1

1[dF
i /dF

(k+1)
>1]εZi /d

F
i
(·). (6.4)

Proposition 6.2. Define Ŝn as in (6.4). As n → ∞, k → ∞, and n/k → ∞, Ŝn ⇒ SO in
P(∂ℵO).

Proof. Use the continuous mapping theorem and Proposition 6.1 as in, for instance, [6].

Thus, when Z1, Z2, . . . ,Zn are i.i.d. random vectors in C ⊂ [0,∞)d which have a regularly
varying distribution on O, we can estimate both α and the spectral measure SO. If we have a
specified finite sequence of cones O := O0 ⊃ O1 ⊃ O2 ⊃ · · · ⊃ Om, then we sequentially
estimate the limit measure by separately estimating the spectral measure and the index.

6.2. Support estimation

Suppose that Z1, Z2, . . . ,Zn are i.i.d. random vectors in C ⊂ [0,∞)d whose common
distribution is regularly varying on O according to Definition 3.1 with normalizing function
b(·) and limit measure ν(·). Without a sequence of cones where HRV can be sought, the task
of looking for appropriate cones where HRV may exist is challenging. One clear strategy is to
identify the support of ν, which we call supp(ν), and then seek HRV on the complement of the
support. Since

supp(ν) = {t · supp(SO), t ≥ 0},
it suffices to determine the support of SO.

We propose estimating the support of the spectral measure SO with a point cloud, that is, a
discrete random closed set.

Proposition 6.3. Suppose that Z1, Z2, . . . ,Zn are i.i.d. random vectors in C ⊂ [0,∞)d whose
common distribution is regularly varying on O with normalizing function b(·) and limit measure
ν(·). As n→∞, k→∞, and n/k→∞,

suppk,n =
{

Zi

dF

i

: dF

i > dF

(k+1), i = 1, . . . , n

}
⇒ supp(SO). (6.5)

Convergence in (6.5) occurs in the space of closed sets under the Fell topology or the space
of compact sets in the Hausdorff topology [18].

Proof of Proposition 6.3. To show (6.5), from [18, Proposition 6.10, page 87], it suffices to
show that, for any h ∈ C+K(∂ℵO),

E

(
sup

i

{
h

(
Zi

dF

i

)
: dF

i > dF

(k+1), 1 ≤ i ≤ n

})
→ sup

x
{h(x) : x ∈ supp(SO)}. (6.6)

From Proposition 6.2,

Ŝn(·) := 1

k

n∑
i=1

1[dF
i /dF

(k+1)
>1]εZi /d

F
i
(·)⇒ SO,
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and, from the continuous mapping theorem, for any h ∈ C+K(∂ℵO), in P(R), the class of
probability measures on R, we obtain

Ŝn ◦ h−1 = 1

k

n∑
i=1

1[dF
i /dF

(k+1)
>1]εh(Zi /d

F
i )(·)⇒ SO ◦ h−1. (6.7)

If the Fn, n ≥ 0, are probability measures on R with bounded support and Fn ⇒ F0, then

xFn := sup
x
{x : Fn(x) < 1} → sup

x
{x : F(x) < 1} =: xF .

Applying this remark to (6.7) and using the continuous mapping theorem yields, as n → ∞,

k→∞, and n/k→∞,

sup
i

{
h

(
Zi

dF

i

)
: dF

i > dF

(k+1), 1 ≤ i ≤ n

}
⇒ sup

x
{h(x) : x ∈ supp(SO)}.

Since h ∈ C+K(∂ℵO) is always bounded above, use dominated convergence applied to
convergence in distribution to get (6.6).

Proposition 6.3 provides an estimate of supp(SO) and, hence, of supp(ν). In principle, we
can remove the estimated support from O and look for HRV in the complement. How well this
works in practice remains to be seen. For one thing, the estimated support set of SO is always
discrete, meaning that the estimated support of ν is a finite set of rays. With a large data set, we
might be able to get a fair idea about the support of the distribution and where to look for further
HRV. If there was reason to believe or hope that the support of SO is convex, our estimation
procedure could be modified by taking the convex hull of the points in (6.5).

7. Conclusion

Our treatment of regular variation on cones which is determined by the support of the
limit measures unifies under one theoretical umbrella several related concepts: asymptotic
independence, asymptotic full dependence, and the conditional extreme value model. Our
approach highlights the structural similarities of these concepts while making plain in what
ways the cases differ. Furthermore, the notion of M

∗-convergence introduced in Section 2.2
provides a tool to deal with the generalized notion of regular variation given here. Generalizing
this notion of convergence and analyzing its properties admits potential for further research.

It is always an ambitious undertaking to statistically identify lower-order behavior and
this project has not attempted data analysis or tested the feasibility of the statistical methods
discussed in Section 6. It is clear that further work is required, particularly for the case where
the support of the limit measures must be identified from data. One can imagine that, for
high-dimensional data whose dimension is of the order of hundreds, sophistication is required
to pursue successive cones where regular variation exists.

Appendix A

A.1. Regular variation on EEE := [0, ∞]d \ {0} versus DDD = [0, ∞)d \ {0}
We verify that the traditional notion of multivariate regular variation given in (1.1) on E is

equivalent to Definition 3.1 if we choose C = [0,∞)d and F = {0}. This yields O = D.

https://doi.org/10.1239/aap/1363354106 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1363354106


160 B. DAS ET AL.

Theorem A.1. Regular variation on D according to Definition 3.1 is equivalent to the
traditional notion of multivariate regular variation given in (1.1), and the limit measures ν(·)
of (3.1) and µ(·) of (1.1) are equal on D. Moreover, µ(·) puts zero measure on E \ D.

Proof. First we show that the standard notion of multivariate regular variation on E given
in (1.1) implies (3.1) in M

∗(D). Let ν(·) be a measure on D such that ν(·) = µ(·). From [21,
p. 176], we find that µ(E \ D) = 0. So, since µ(·) �= 0 and nondegenerate, ν(·) �= 0 and
nondegenerate.

For B ⊂ D, note that ∂B = B̄ \ Bo is defined with respect to the relative topology on D

and, hence, ∂B ⊂ D. Thus, ν(∂B) = 0 implies that µ(∂B) = 0. Also, since [0,∞]d is a
compact space, any set B ⊂ D bounded away from {0} is a relatively compact set in E [21,
Proposition 6.1, p. 171]. Therefore, by definition, ν(·) ∈ M

∗([0,∞)d , D) and, by (1.1), for
any B ⊂ D bounded away from {0} and ν(∂B) = 0,

t P

[
Z

b(t)
∈ B

]
→ µ(B) = ν(B).

So, (3.1) holds with C = [0,∞)d , O = D, b is the same as in (1.1), and ν is the restriction of
µ to D.

Conversely, we show that Definition 3.1 and (3.1) with O = D implies the traditional notion
of multivariate regular variation on E in (1.1). Define a measure µ(·) on E as µ(·) = ν(· ∩D).
A relatively compact set B of E must be bounded away from {0} [21, Proposition 6.1, p. 171].
So, from the definition of µ(·), it is Radon. Note that ∂B = B̄ \ Bo is defined with respect to
the topology on E, but ∂(B ∩ D) is defined with respect to the relative topology on D. Also,
from the definition of µ(·), µ(∂B) = 0 implies that ν(∂(B ∩D)) = ν(∂B ∩D) = µ(∂B) = 0.
Therefore, from (3.1), for any relatively compact set B of E such that µ(∂B) = 0, as t →∞,

t P

[
Z

b(t)
∈ B

]
= t P

[
Z

b(t)
∈ B ∩ D

]
→ ν(B ∩ D) = µ(B).

The first equality above holds since Z ∈ [0,∞)d . Hence, vague convergence in (1.1) holds
with the same b as in (3.1) and with µ as the extension of ν from D to E.

Regular variation on D can also be expressed in terms of the polar coordinate transformation.
As at the beginning of this section, set C = [0,∞)d , F = {0}, and O = D.

Proposition A.1. Regular variation on O as given in Definition 3.1 is equivalent to the condition

t P

[(‖Z‖
b(t)

,
Z

‖Z‖
)
∈ A

]
→ ν(α) × SO(A)

for all measurable A ⊂ (0,∞) × ∂ℵO such that (A)1 ∩ {0} = ∅ and ν ◦ h−1(∂A) = 0,
where (A)1 is the projection of A on its first coordinate, h(·) is a function defined by h : x �→
(‖x‖, x/‖x‖), ∂ℵO = {x ∈ O : ‖x‖ = 1}, SO(·) is a probability measure on ∂ℵO, and ν(α)(·)
is a Pareto measure given by ν(α)((x,∞)) = x−α for x > 0. The probability measure SO(·) is
called the spectral measure and is related to ν(·) by the relation

SO(	) = ν

({
x ∈ O : ‖x‖ ≥ 1,

x

‖x‖ ∈ 	

})
.

Proof. This is a special case of Proposition 3.1.
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A.2. Regular variation on EEE
(l) = [0, ∞]d \ {x ∈ EEE : x(l) > 0} versus DDD

(l) = [0, ∞)d \ {x ∈
[0, ∞)d : x(l) > 0}

Recall that x(l) is the lth largest component of x, l = 1, 2, . . . , d. HRV using E
(l) is

considered in [16]. Unlike the situation in subsection A.1, here limit measures can put mass
on E

(l) \ D
(l) as found in [16]. We compare regular variation in E

(l) using the traditional
vague convergence definition in which the vague convergence in (1.1) is assumed to hold
in M+(E(l)) with regular variation given in (3.1) in M

∗(C, O), where C = [0,∞)d , F =
{x ∈ [0,∞)d : x(l) = 0}, and O = D

(l) = C \ F.

Theorem A.2. Regular variation on M
∗(D(l)) is equivalent to the traditional vague conver-

gence notion of regular variation in M+(E(l)) if the limit measure µ(·) given in the M+(E(l))

analogue of (1.1) does not give any mass to the set E
(l) \ D

(l). In this case, the limit measures
ν(·) of (3.1) and µ(·) of (1.1) are equal on D

(l).

Proof. Suppose that, for a random vector Z, there exist a function b(l)(t) ↑ ∞ and a
nonnegative, nondegenerate Radon measure µ(l)(·) �= 0 on E

(l) such that, in M+(E(l)),

t P

[
Z

b(l)(t)
∈ ·

]
v−→ µ(l)(·), (A.1)

and the limit measure µ(l)(·) does not give any mass to E
(l) \ D

(l). Define a measure χ(·) on D
(l)

as χ(·) = µ(l)(·). Since µ(l)(·) �= 0 is nonnegative, nondegenerate, and µ(l)(E(l) \ D
(l)) = 0,

the measureχ(·) �= 0 is nonnegative and nondegenerate. The subsets of D
(l) bounded away from

(D(l))
c = [0,∞)d \ D

(l) are relatively compact in E
(l). Therefore, using the fact that µ(l)(·) is

Radon and the definition of χ(·), it follows that χ(·) gives finite measure to sets bounded away
from (D(l))

c
. From the definition of M

∗-convergence, it follows that Z satisfies (3.1) with the
scaling function b(·) = b(l)(·) and the limit measure ν(·) = χ(·).

Conversely, suppose that a random vector Z satisfies (3.1) in M
∗(C, O) with C = [0,∞)d

and O = D
(l). Define a measure µ(·) on E

(l) as µ(·) = ν(· ∩ D
(l)). Since ν(·) �= 0 and is

nonnegative and nondegenerate, so is µ(·). A subset of E
(l) is relatively compact in E

(l) if and
if only if it is bounded away from {x ∈ [0,∞]d : x(l) = 0}. Since ν(·) gives finite mass to sets
bounded away from (D1)

c
, from the definition of µ(·), it follows that µ(·) is a Radon measure.

From the description of the compact sets in E
(l), it follows that Z also satisfies (A.1) with the

scaling function b(l)(·) = b(·) and the limit measure µ(l)(·) = µ(·) [21, Theorem 3.2, p. 52].

The set E
(l) \ D

(l) = {x ∈ E
(l) : ‖x‖ = ∞} is the union of the lines through ∞. We empha-

size that there exist examples of random vectors Z which satisfy (A.1) and the limit measure
µ(l)(·) gives positive measure on the set E

(l) \ D
(l) [17].

A.3. Regular variation on EEE� = [0, ∞] × (0, ∞) versus DDD� = [0, ∞) × (0, ∞)

Recall the CEV model from Section 4.1.

Proposition A.2. The following statements are equivalent.

(i) Z ∈ CEV(b1, b2) with limit measure µ(·) and b1 ∼ b2 with

µ([0,∞] × {∞} ∪ {∞} × (0,∞]) = 0. (A.2)

(ii) Z is regularly varying on D� according to (3.1) with normalizing function b1 and limit
measure ν which does not concentrate on {0} × (0,∞).

Also, if either of (i) or (ii) holds, then µ(·) = ν(·) on D�.
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Proof. (i) implies (ii). Since b1 ∼ b2, (4.1) implies that Z ∈ CEV(b1, b1). Now, (4.1)
implies that, for all relatively compact Borel sets B in D� ⊂ E� with µ(∂B) = 0,

t P

[
Z

b1(t)
∈ B

]
→ µ(B) as t →∞.

Clearly, B is bounded away from F. Also, µ is nonnull and satisfies (A.2). Thus, ν(·) = µ(·)|D�
is nonnegative and nondegenerate on D�. Hence, Z is regularly varying on D� with limit
measure ν. The nondegeneracy condition given in Definition 4.1(i) for the CEV model implies
that µ cannot concentrate on {0}× (0,∞). Conversely, if (ii) implies (i), extend ν to a measure
µ on E� which satisfies (A.2).

Remark A.1. We can drop the condition that µ does not concentrate on {0} × (0,∞) in
statement (ii) of Proposition A.2, if we drop condition (i) from Definition 4.1 of the CEV
model.
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