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On Benson’s Definition of Area in Minkowski
Space

A. C. Thompson

Abstract. Let (X, ‖ . ‖) be a Minkowski space (finite dimensional Banach space) with unit ball B. Various
definitions of surface area are possible in X. Here we explore the one given by Benson [1], [2]. In particular,
we show that this definition is convex and give details about the nature of the solution to the isoperimetric
problem.

1 Introduction

In [14, Chapter 5] several possible definitions of n−1-dimensional content in an n-dimen-
sional space are given. “Possible” here means definitions that satisfy a minimal set of ax-
ioms. Questions that arise are: how large is the set of possible definitions? can some sort
of structure be imposed on them to make sense out of the variety? and, what extra axioms
might sensibly be imposed to reduce the variety?

A first step towards answers to these questions, especially the last one, is to undertake a
detailed study of each of the reasonable definitions. In [14, Chapters 6, 7] this was done for
two of them. The purpose of this note is to do the same for a third, due to R. V. Benson [1],
that received only a brief mention (pp. 140 and 170) in [14]. We give a complete proof
(different from Benson’s) of the convexity of the definition (see below for the meaning of
undefined terms). We also give a description of the isoperimetrix, an aspect that is not
treated in Benson’s work [1], [2]. In particular, if I denotes the map that assigns to each
unit ball the corresponding solution to the isoperimetric problem, the isoperimetrix, then
we show that I maps polytopes to polytopes, and that I is not injective. Moreover, there are
balls in R3, other than ellipsoids, that are fixed points of I and yet others that, while not
fixed by I, are invariant under I2.

The fact that for Benson’s definition the mapping I is not one-to-one is shared by several
similar definitions. If this is thought to be a disadvantage, then such definitions can be ruled
out by imposing the extra axiom that I be injective.

The background, terminology and notation will all be consistent with [14] except that
we shall use n (rather than d) to denote the dimension of the ambient space X. For the
background in convexity theory, see Schneider [12]. However, to make the discussion self-
contained we begin with a brief introduction of the main ideas.
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2 Background

The situation is an n-dimensional Minkowski space (i.e., a real normed space (X, ‖ . ‖))
with unit ball B. We can think of X as Rn and B as a centrally symmetric convex body.
Since translations are isometries, in order that measures (like length, area, volume) be ge-
ometrically meaningful, we require that they be translation invariant which implies that
they are all Haar measures. Thus, n − 1-dimensional content (which we shall describe
as area) should be a Haar measure on each hyperplane in X and the same Haar measure
on parallel hyperplanes. Therefore, given a direction on X (i.e., a linear functional f in
the dual space X∗) we need some way of normalizing Haar measure in the hyperplanes
H( f , α) := {x : f (x) = α}. There are two equivalent ways of doing this. The first is
geometrical and basis free; the second requires the introduction of a coordinate system and
thereby an inner product and Lebesgue measure. The first method is to specify a number
µ(B ∩ f⊥) to be assigned as the area of B ∩ f⊥ where f⊥ := H( f , 0). Then, for all Borel
subsets A of all hyperplanes H( f , α), we have

µ(A) := µ(B ∩ f⊥)
λ(A)

λ(B ∩ f⊥)
,(1)

where λ is an arbitrary (but fixed) Haar measure on f⊥. Since all such measures differ only
by a multiplicative constant the ratio in (1) is independent of λ. The second method, given
Lebesgue measure λ on f⊥, requires that we specify a number σ( f ) to be the ratio of the
desired measure µ to λ in all the hyperplanes H( f , α). Then we have

µ(A) := σ( f )λ(A).(2)

Evidently, (1) and (2) are related by using the same measure λ in both and setting

σ( f ) = µ(B ∩ f⊥)/λ(B ∩ f⊥).

The first method is preferable because it is coordinate free and independent of any Eu-
clidean construction. The second is more practical for computational purposes. The var-
ious definitions of area alluded to in Section 1 are different ways of assigning the number
µ(B ∩ f⊥) or, equivalently, of defining σ.

The hyperplane f⊥ is unaffected by a scalar change to the direction f . However, in (2),
it is useful to first insist that f be a Euclidean unit vector and that σ be defined initially
on the Euclidean unit ball in X∗ and satisfy σ(− f ) = σ( f ). Then σ may be extended by
non-negative homogeneity to the whole of X∗. If σ defined in this way is a convex function
on X∗ then it is the support function of a convex body I(B) which (up to homothety) is the
solution to the isoperimetric problem (see Busemann [3], [4], or [14]). If σ is convex then
“flat surfaces minimize area”; i.e., if M is a Borel set in f⊥ whose boundary is an n − 2-
dimensional manifold then for all rectifiable n − 1-dimensional manifolds M ′ in X that
have the same boundary as M we have µ(M) ≤ µ(M ′). Thus the question of whether or
not σ is convex is of some importance. Benson’s definition has this property (which is what
was meant in Section 1 by saying that it is convex).
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3 The Function σ Using Benson’s Definition

Let (X, ‖ . ‖) be an n-dimensional Minkowski space with unit ball B. If Y is an n − 1-
dimensional subspace of X then B ∩ Y is a centrally symmetric convex body in Y . Among
all the n − 1-dimensional parallelotopes circumscribed to B ∩ Y there will be at least one
minimal one PY (minimal with respect to all Haar measures on Y ). This statement is a con-
sequence of the Blaschke selection theorem and the fact that parallelotopes form a closed
subset of the space of convex bodies endowed with the Hausdorff metric.

Definition 1 The Benson area µ in Y is the unique Haar measure for which

µ(PY ) = 2n−1.

Remark When n = 2 then B ∩ Y is an interval. Hence, B ∩ Y = PY and the definition
coincides with the usual one.

From now on we shall assume that X is equipped with an auxiliary Euclidean norm
that induces Lebesgue measure (of the appropriate dimension) on each subspace. All these
Lebesgue measures will be denoted by λ (with subscripts if area and volume occur in the
same equation). Therefore, the homogeneous function σ is given by:

σ( f ) :=
2n−1| f |

λ(PY )
(3)

where f ∈ X∗ is a linear functional such that Y = f⊥ and | f | is the Euclidean norm of f .
The following simple lemma from linear algebra will be used repeatedly in what follows.

Lemma 1 If P is a parallelotope centred at the origin and if {u1, u2, . . . , un} are the nor-
mals to the facets of P whose lengths are such that the facets with normal ui are contained
in H(ui ,±1/2) then λ(P) = (det U )−1 where U is a matrix whose rows are the vectors
u1, u2, . . . , un in some coordinate system.

Proof If we translate P so that one vertex is at 0 then the volume is unchanged and the
facets lie in the hyperplanes H(ui , 0) and H(ui , 1). If {b1, b2, . . . , bn} are the edges of P
that emanate from 0 then these vectors form a basis for X and λ(P) = det B where B is
the matrix that has the vectors bi as columns. The vectors ui are a basis for X∗ that is
dual to the basis bi and hence, for the matrices B and U , we have U B = I. Therefore
λ(P) = det B = (det U )−1 as required.

Remark Since volumes are to be positive, we can either suppose that the vectors are or-
dered so that all the determinants we consider are positive, or, wherever a determinant
appears we can insert an absolute value.

Corollary 2 A parallelotope C := {x : |ui(x)| ≤ 1, i = 1, 2, . . . , n} is a minimal parallelo-
tope circumscribed about B if and only if co{0, u1, u2, . . . , un} (where co denotes convex hull)
is a maximal simplex inscribed to B◦ and with one vertex at 0.
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Proof Let S := co{0, u1, u2, . . . , un}, then, from the Lemma, we have

λ(C)−1 = 2−n det[u1, u2, . . . , un] = n! 2−nλ(S).

Moreover, ui ∈ B◦ if and only if the hyperplane H(ui , 1) does not intersect the interior of
B, i.e., S is inscribed to B◦ if and only if C is circumscribed to B. The result is now clear.

Definition 2 (Carathéodory) A vector x in X is said to be normal to y in X, written x a y,
if ‖x + αy‖ ≥ ‖x‖ for all α in R.

Geometrically, this means that the line {x + αy : α ∈ R} is tangent to the ball {x ′ :
‖x ′‖ = ‖x‖} at x.

Theorem 3 (Benson) If (X, ‖ . ‖) is an n-dimensional normed space with unit ball B and if
P0 is a minimal parallelotope circumscribed to B and if {±x1,±x2, . . . ,±xn} are the centres
of the facets of P0 then ‖xi‖ = 1 and xi a x j for all i, j, i 6= j.

Proof Since Blaschke’s theorem assures us that a minimal parallelotope exists, we can prove
the theorem by showing that a parallelotope circumscribed to B and having a facet that
does not touch B at its centre is not minimal. Suppose, then, that P is circumscribed to
B, that its facets are ±Fi , i = 1, 2, . . . , n, with corresponding normals ui and contained in
hyperplanes ±Hi := H(ui ,±1/2). Suppose, further, that F1 does not touch B at its centre
x1. We have u1(x1) = 1/2; the key to the proof is to observe that for i ≥ 2, ui(x1) = 0
and therefore x1 = αu2 × u3 × · · · × un, the generalized cross-product of these normals
suitably scaled by α. Since F1 does not touch B at x1 we have ‖x1‖ > 1. Let x ′1 := x1/‖x1‖
and let H ′1 be a hyperplane that touches B at x ′1. Let u ′1 be the normal to H ′1 such that
x ′1 ∈ H ′1 = H(u1, 1/2). Now, from Lemma 1, we have:

λ(P)−1 = det[u1, u2, . . . , un] = u1(u2 × u3 × · · · × un)

= u1(α−1x1) = 1/(2α)

= u ′1(α−1x ′1)

< u ′1(α−1‖x1‖ x ′1)

= u ′1(u2 × u3 × · · · × un)

= det[u ′1, u2, u3, . . . , un] = λ(P ′)−1

where P ′ is the parallelotope enclosed by ±H ′1,±H2,±H3, . . . ,±Hn. Now P ′ circum-
scribes B and has volume strictly less than that of P, hence P is not minimal which es-
tablishes the theorem.

Thus the centres of the facets of a minimal circumscribing parallelotope form a mutually
normal system of unit vectors. For this reason we shall call such a parallelotope a hypercube
in X, (a hypercube will always have edges of length 2). In [13], Taylor showed that among
all n-simplices with one vertex at the origin and the others in B, a maximal one is also
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characterized by the non-zero vertices forming an “orthonormal” system. Corollary 2 and
Theorem 3 give an alternative proof of Taylor’s result. It is this connection and the theorem
of Busemann, Ewald and Shephard [6, Corollary 10] on the convexity of the volume of
maximal simplices inscribed in projections of a convex set, that Benson [1] used to prove
the convexity of his area function. Note that in [2] he refers to Busemann and Straus [5]
for the proof, a reference that seems to be misleading.

Proposition 4 If B is a polytope then there is a hypercube whose facets contain facets of B.

Proof The proof is the same as the central part of the previous one. Let C be a hyper-
cube circumscribed to B and let the facets ±Fi of C be contained in hyperplanes ±Hi :=
H(ui ,±1/2) i = 1, 2, . . . , n, and let xi be the centre of Fi as before. If x1 is in the (relative)
interior of a facet F of B then F1 ⊇ F. On the other hand, if x1 is on the boundary of a facet F
of B with normal u, one can suppose that F is contained in the hyperplane H := H(u, 1/2).
Then, as previously,

λ(C)−1 = det[u1, u2, . . . , un] = u1(α−1x1)

= 1/(2α) = u(α−1x1)

= det[u, u2, u3, . . . , un] = λ(C ′)−1

where C ′ is the parallelotope enclosed by ±H,±H2, . . . ,±Hn. Hence, C ′ is also a hyper-
cube and the facets of C ′ that contain±x1 also contain the facets±F of B. We may continue
this process with x2, x3, . . . xn to obtain the required hypercube.

Theorem 5 If B is a polytope then the function σ defined by Equation (3) is convex.

Proof Let f be a Euclidean unit linear functional on X and let P f be an (n− 1)-hypercube
circumscribed to B ∩ f⊥. Then, by Proposition 4, we may assume that the facets of P f

contain facets of B ∩ f⊥ which we will denote by ±F1,±F2, . . . ,±Fn−1. For each i, there
is a facet F̂i of B such that Fi = F̂i ∩ f⊥; (it is possible that Fi is the intersection of two
adjacent facets of B in which case choose one of them as F̂i). As usual, choose ui so that the
hyperplane that contains F̂i is Hi = H(ui , 1/2). These 2n−2 hyperplanes bound a cylinder

C f := {x : −1/2 ≤ ui(x) ≤ +1/2, i = 1, 2, . . . , n− 1}

such that B ⊆ C f and P f = C f ∩ f⊥.
In order to calculate the area, λ(n−1)(P f ), of P f consider a parallelotope P ′f of (Euclidean)

height 1 in the direction f and bounded by the cylinder C f . The “top” and “bottom” of
P ′f are at ± f /2 ( f is of Euclidean length 1) and the hyperplanes that determine these two
surfaces are H( f ,±1/2). Therefore, by using Lemma 1 again,

λ(n−1)(P f ) = λ(n)(P ′f ) = det[ f , u1, u2, . . . , un−1]−1.(4)

Conversely, for every choice of n − 1 pairs of opposite facets of B ±G1,±G2, . . . ,±Gn

with normals w j chosen so that G j ⊂ H(w j , 1/2) there is a corresponding cylinder C :=
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{x : −1/2 ≤ w j(x) ≤ 1/2, j = 1, 2, . . .n − 1} that circumscribes B. Hence, C ∩ f⊥ is
an n − 1-dimensional parallelotope P (possibly unbounded) that circumscribes B ∩ f⊥.
Moreover, the same calculation as the one just done, shows that

λ(n−1)(P) = det[ f ,w1,w2, . . .wn−1]−1.

Thus, among all such parallelotopes, the minimal one, P f , is characterized by choosing
u1, u2, . . . , un−1 so that

det[ f , u1, u2, . . . , un−1] = max{det[ f ,w1,w2, . . . ,wn−1]}.

Here the maximum is taken over all possible choices of n− 1 normals from the facets of B.
Finally,

σ( f ) =
2n−1| f |

λ(P f )
= 2n−1 max{det[ f ,w1,w2, . . . ,wn−1]}

= max{det[ f , v1, v2, . . . , vn−1]}

= max{ f (v1 × v2 × · · · × vn−1)}(5)

where v j := 2w j is precisely the vertex of B◦ corresponding to the facet of B with normal w j .
Hence the function σ is the supremum of finitely many linear functionals and is convex.

Corollary 6 (Benson) If (X, ‖ . ‖) is an arbitrary normed space then σ defined by Equa-
tion (3) is convex.

Proof An examination of the previous proof shows that with only slight modifications it
can be used to show that in the general case σ( f ) is given by Equation (5) except that now
the v j ’s are to be interpreted as arbitrary points of B◦. (It is clear that the maximum will
occur when they are chosen on the boundary, and when they are chosen to be linearly inde-
pendent and oriented so the determinant is positive.) The compactness of B◦ shows that it
is an attained maximum in (5). Alternatively, one may use an argument that approximates
B by polytopes and then use the continuity of σ.

Remarks 1. Equation (5) for σ is very simple. It is especially gratifying that all the extra
factors of 2 disappear.

2. In the discussion f was assumed to be of Euclidean length 1 but that is no longer
necessary in the final Equation (5).

3. Likewise, we used Euclidean constructions and arguments freely throughout the
proof but in (5) the vectors v j are in X∗ and so v1× v2× · · · × vn−1 is in X and f (v1× v2×
· · · × vn−1) makes no use of an inner product.

4. Equation (5) may be viewed as follows. The right hand side of (5) is the volume of a
parallelotope with one vertex at 0, and spanned by the vectors f and v1, v2, . . . , vn−1. Up to
a factor of n!, this is also the volume of an n-simplex with vertices at 0, f , v j . Thus, σ( f )/n!
is the volume of a maximal simplex with one vertex at 0, another at f and the rest in B◦.

5. Corollaries 6 and 2 give an alternative proof of the result of Busemann, Ewald and
Shephard [5] mentioned above.
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4 The Isoperimetrix Using Benson’s Definition

As we indicated in Section 2, the isoperimetrix I is the convex body with support function
σ. In this section we will use Equation (5) to obtain information about the isoperimetrix.

Theorem 7 If B is the unit ball in a Minkowski space (X, ‖ . ‖) then

I(B) = co{g1 × g2 × · · · × gn−1 : gi ∈ B◦}.

Proof For brevity let K := {g1 × g2 × · · · × gn−1 : gi ∈ B◦}. The proof of Corollary 6,
Equation (5) and the definition of support function show that σ( f ) is the support function
of co K. The set K need not be convex as can be seen by letting B◦ be an octahedron in R3,
then the basis vectors are in K but (1/3, 1/3, 1/3) is not.

Remarks 1. The extreme points of I(B) are obtained by choosing the gi ’s from among the
extreme points of B◦. We state the polytope case separately.

2. If n = 2 then the cross-product is a unary operation. In Euclidean terms its action
rotates a vector through 90◦. In this case, therefore, I(B) is B◦ rotated through 90◦ as it is
with all valid definitions of σ.

3. To discuss the effect of a linear transformation on I(B) we shall use the language of
coordinates and matrices. Using columns to represent vectors in X and rows to represent
dual vectors in X∗, it is natural to write the matrices of linear transformations on the left
in X and on the right in X∗. With this convention, if B in Rn is transformed by T, then B◦

is transformed by T−1. Moreover, if f1, f2, . . . , fn−1 are vectors in X∗ and if S is an n × n
invertible matrix then

f1S× f2S× · · · × fn−1S = ( f1 × f2 × · · · × fn−1)(adj S)t

= ( f1 × f2 × · · · × fn−1)(det S)S−1.

Combining these we see that I
(
T(B)
)
= (det T)−1T

(
I(B)
)

. To avoid the extraneous factor
of det T one should use a different normalization of I(B). A discussion of this can be found
in [14, Chapter 5].

4. It follows from Remark 3 that all ellipsoids are (up to a scalar multiple) fixed points
of the mapping I.

Theorem 8 If B is a polytope then I(B) is a polytope.

Proof This time let V := {v1 × v2 × · · · × vn−1 : vi vertices of B◦}. Then Equation (5)
shows that I(B) = co V and, because V is finite, this set is a polytope.

Corollary 9 If B is a polytope then each vertex of I(B) is a multiple of a vertex ofΠ(B)◦ where
Π(B) is the projection body of B and, to avoid excessive brackets,Π(B)◦ =

(
Π(B)

)◦
.

Proof Each vertex of I(B) is of the form v1×v2×· · ·×vn−1 where the vi ’s are vertices of B◦.
On the other hand,Π(B) =

∑
[−αi v̂i/2,+αi v̂i/2] where each v̂i := vi/|vi | is a vertex of B◦

normalized to be a Euclidean unit vector, αi is the (Euclidean) area of the corresponding
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facet of B, [x, y] indicates the line segment from x to y and the summation (taken over all
vertices of B◦) is Minkowski addition of convex sets. For details about projection bodies
see, for example, Gardner [9], Goodey and Weil [10] and the references therein. It follows
that each vertex of Π(B) is of the form

∑
±αi v̂i/2 for some suitable choice of signs and

each edge of Π(B) is in the direction of some v̂i . Therefore, the normal to a facet of Π(B)
and, hence, each vertex ofΠ(B)◦ is a multiple of a vector of the form v1×v2×· · ·×vn−1.

Remarks 1. If v1, v2, . . . , vn−1 are linearly independent vertices of B◦ then there is a facet
of Π(B) with edges in these directions and v1 × v2 × · · · × vn−1 as normal. Hence, there is
a vertex of Π(B)◦ in the direction v1 × v2 × · · · × vn−1. This may not be the case for I(B),
i.e., I(B) may have fewer vertices than Π(B)◦.

2. Remark 1 is a special case of the fact that the multiples involved in Corollary 9 are
usually not all the same. In some cases the multiple may be so small that the “vertex” of
I(B) is inside the convex hull of the other vertices and so does not appear. In other words,
not all choices of n− 1 linearly independent vertices of B◦ give rise to maximal simplices in
Equation (5). Thus, I(B) is not, in general, a multiple of Π(B)◦. This clarifies some of the
remarks in [14, p. 170]. We give some examples of the various possibilities below.

3. Note that both Π( . ) and ( . )◦ are mappings from convex sets in X to convex sets in
X∗. The mappings I( . ) and Π( . )◦ map the set of centrally symmetric convex bodies in X
into itself and can be iterated.

5 Examples

In each of the examples we take X = R3, use x, y, z as coordinates and (to save space) write
vectors as rows.

Example 1 Let B1 be the cube with vertices at (±1,±1,±1).

In this case, B◦1 is the octahedron with vertices at (±1, 0, 0), (0,±1, 0), (0, 0,±1) and
the cross-product of any two of these is another of them. Hence I(B1) = B◦1 . Note also, that
in this case, Π(B1) = 2B1 and I(B1) = 2Π(B)◦.

Example 2 Let B2 be the same cube but with the vertices ±(1, 1, 1) cut off to create two
equilateral triangular facets.

The dual ball B◦2 has the same vertices as B◦1 together with ±(ξ, ξ, ξ) with ξ > 1/3.
The cross-product (1, 0, 0) × (ξ, ξ, ξ) = (0,−ξ, ξ) is in the octahedron B◦1 if ξ ≤ 1/2
and outside otherwise. Thus, if ξ ≤ 1/2 then I(B2) = B◦1 = I(B1). If ξ > 1/2 then
I(B2) = co

(
B◦1 ∪ {±(0,−ξ, ξ),±(ξ, 0,−ξ),±(−ξ, ξ, 0)}

)
. However, in all cases Π(B2)◦

has 12 vertices in the same directions as those of I(B2) in the case when ξ > 1/2 but the
proportions are different.

This example can be extended.

Example 3 Let B3 be the cubo-octahedron with vertices at

(±1,±1, 0), (±1, 0,±1), (0,±1,±1).
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The dual ball is the rhombic dodecahedron with vertices at ±(1, 0, 0), ±(0, 1, 0)
±(0, 0, 1) and at (±1/2,±1/2,±1/2). The cross-product of vertices of the first type with
those of the second and of two vertices of the second type are all on the boundary of the
octahedron I(B1) = B◦1 . Therefore, I(B3) = I(B1).

Example 4 Let B4 be the octahedron B◦1 .

The dual ball is the cube B1. Cross-products of the vertices of B1 yield the vertices of the
cubo-octahedron 2B3.

Example 5 Let B5 be the rhombic dodecahedron B◦3 .

The dual ball is the cubo-octahedron B3. Cross-products of vertices of B3 of the type
(1, 1, 0) × (1,−1, 0) yield vertices of the form (0, 0,−2) and cross-products of vertices of
B3 of the type (1, 1, 0) × (0, 1, 1) yield vertices of the form (1,−1, 1). Permutation of the
entries and the signs show that I(B5) = 2B5.

Example 6 Let B6 be the cylinder {(x, y, z) : x2 + y2 ≤ 1; |z| ≤ 1}.

In this case B◦6 is the double cone {(x, y, z) :
√

x2 + y2 + |z| ≤ 1}. The cross-product of
two extreme points of B◦6 is either of the form

(0, 0, 1)× (cos θ, sin θ, 0) = (− cos θ, sin θ, 0)

or
(cos θ, sin θ, 0)× (cosφ, sinφ, 0) =

(
0, 0, sin(φ− θ)

)
.

The latter is extreme when φ = θ ± π/2. Thus I(B6) = B◦6 .
Note that Π(B6) is the cylinder {(x, y, z) : x2 + y2 ≤ 4, |z| ≤ π} which is not similar to

B◦6 . Its polar Π(B6)◦ is the double cone {(x, y, z) : 4(x2 + y2) − π|z| ≤ 1} which is not a
multiple of I(B6).

Example 7 Let B7 be the double cone B◦6 .

Here B◦7 = B6 and (up to a sign) the cross-product of two extreme points of B◦7 is of the
form:

(cos θ, sin θ, 1)× (cosφ, sinφ, 1) =
(
sin θ − sinφ,− cos θ + cosφ, sin(φ− θ)

)

= (2 cosα sinβ, 2 sinα sinβ, sin 2β),

where α := (θ + φ)/2 and β := (θ − φ)/2. This represents a circle of radius r = 2 sinβ in
the plane z = sin 2β. Note that r and z satisfy the equation

4z2 = r2(4− r2).

As β increases from 0 to π/2, z increases from 0 to 1 and then decreases. At the same time
r increases from 0 to 2. Thus, extreme points are given when π/4 ≤ β ≤ π/2 and I(B7) is
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the solid of revolution formed when that part of the lemniscate 4z2 = x2(4− x2) for which
−1 ≤ z ≤ 1 and

√
2 ≤ x ≤ 2 is rotated about the z-axis.

On the other hand, Π(B7) is a multiple of the cosine curve x = cos z revolved about the
z-axis (see, for example, Gardner [9, p. 133]. In this case I(B7) andΠ(B7) appear unrelated.
This fact was stated in [14, p. 170] based on some calculations much more complicated
than those given here.

A very similar analysis may be made when B is a double cone over a regular 2k-gon.
Examples 1, 2 and 3 form the proof of the following theorem.

Theorem 10 The mapping I is not one-to-one.

Remarks 1. When ξ ≤ 1/2 the cross-sections of B2 and the corresponding ones of B1

are close enough so that the minimal parallelograms circumscribed to each are identical.
Therefore, this construction for σ is insufficient to distinguish between the two balls. If
ξ > 1/2 then there are cross-sections of B2 that are so much smaller than those of B1 that
the minimal parallelogram is also smaller and hence σ is larger in that direction.

2. It was pointed out in [14, p. 140] that Benson’s idea may be modified in one of
several ways. One can inscribe either a maximal cross-polytope or a maximal ellipsoid
in B ∩ f⊥ or one can circumscribe a minimal ellipsoid about B ∩ f⊥. For information
about such ellipsoids, see Gruber [11] or Danzer, Laugwitz and Lenz [8]. For all of these
possibilities, the corresponding mapping I is not injective. Inscribed and circumscribed
ellipsoids will yield the same isoperimetrices for B1 and B2 if ξ is sufficiently small. While
inscribed parallelograms will distinguish these two balls, other examples can easily be given.

Examples 3, 4 and 5 form the proofs of the following theorems.

Theorem 11 In R3 there are balls B (other than ellipsoids) for which I(B) and B are similar.

Theorem 12 In R3 there are balls B (other than ellipsoids and those covered by Theorem 11)
for which I2(B) and B are similar.

Remarks 1. It is not clear (to me) whether there are other balls with the same property
as the rhombic dodecahedron. A reasonable candidate might be the triacontahedron (see,
for example, Coxeter [7, Section 2.7]) but calculations show that it fails. It is interesting
to compare I(B5) with Π(B5)◦. The latter (up to a multiple) has vertices at (±1,±1,±1)
and at (±3/2, 0, 0), (0,±3/2, 0), (0, 0,±3/2). The adjustment of these latter vertices from
(3/2, 0, 0) to (2, 0, 0) etc., converts the dual of a zonotope into a zonotope. Example 5
also shows that the range of I is not contained in the set of duals of zonoids and raises the
question as to the nature of its range.

2. Likewise, it is not clear (to me) whether there are other balls with the same property
as the octahedron. The double cone over a regular hexagon does not. The calculations for
a double cone over an octagon got out of hand. Nor have I done the calculations for higher
dimensions.

3. In [14, Chapters 6 and 7] two questions are raised pertaining to the definitions of
area discussed there: For n ≥ 3, are there balls other than ellipsoids for which I(B) and
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B are similar? and, for arbitrary B, is it true that In(B) (suitably scaled) converges to an
ellipsoid? Theorems 11 and 12 show that for Benson’s definition the general answer to the
first question is ‘Yes’ and to the second is ‘No’. However, these very specific examples shed
little light on the structure of the questions. Are the examples very isolated or part of a
more general phenomenon?

4. For all definitions of area, it appears that I(B) is shaped somewhat like B◦ and that
I2(B) resembles B itself. In R. D. Holmes’ words “I(B) serves as a surrogate of B◦ in the
original space.” Most of these examples and Theorem 12 reinforce this heuristic but, in this
sense, Theorem 11 is counter-intuitive.
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