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Abstract

We examine the relative effect of warming events (storms) and snow cover on thermodynamic
growth of Arctic sea ice in winter. We use a 1-D snow and ice thermodynamic model to perform
sensitivity experiments. Observations from the winter period of the Norwegian young sea ICE
(N-ICE2015) campaign north of Svalbard are used to initiate and force the model. The N-
ICE2015 winter was characterized by frequent storm events that brought pulses of heat and mois-
ture, and a thick snow cover atop the sea ice (0.3–0.5 m). By the end of the winter, sea-ice bottom
growth was negligible. We show that the thermodynamic effect of storms to the winter sea-ice
growth is controlled by the amount of snow on sea ice. For 1.3 m initial ice thickness, the decrease
in ice growth caused by the warming events ranged from −1.4% (for 0.5 m of snow) to −7.5%
(for snow-free conditions). The decrease in sea-ice growth caused by the thick snow (0.5 m)
was more important, ranging from −17% (with storms) to −23% (without storms). The results
showcase the critical role of snow on winter Arctic sea-ice growth.

Introduction

The Arctic sea-ice system is going through a transition, from a multi-year to a thinner, sea-
sonal, first-year ice system (Comiso, 2002; Maslanik and others, 2011; Meier and others,
2014). In wintertime, the thinner sea ice becomes more vulnerable to changes in the atmos-
pheric boundary conditions, such as air temperature, wind speed and precipitation. These
changes are often associated with storm activity. Most severe storms occur during the Arctic win-
ter and they originate from the North Atlantic Ocean (Zhang and others, 2004; Sorteberg and
Walsh, 2008). They enter the Arctic Ocean via the Fram Strait and the Barents Sea region and
bring pulses of heat and moisture further north, reducing the heat loss from the ocean to the
atmosphere and hindering sea-ice growth (Graham and others, 2019).

A number of studies has been carried out on investigating the relation between storms and
sea-ice retreat in autumn and summer (Screen and others, 2011; Zhang and others, 2013; Babb
and others, 2016). Due to the scarcity of continuous winter observations in the Arctic Ocean,
winter studies rely on atmospheric reanalyses and remote-sensing products. Atmospheric
reanalyses suffer from large air temperature biases during winter, and substantial precipitation
spreads among different simulation products (Lindsay and others, 2014; Boisvert and others,
2018). Remote-sensing products for sea-ice thickness retrievals, rely on accurate information
of snow depth on sea ice. Uncertainties in the amount of snow on sea ice can induce large
errors in acquiring sea-ice thickness (Giles and others, 2007; Haapala and others, 2013;
Ricker and others, 2015). This was especially evident in the Norwegian young sea ICE
(N-ICE2015) study region (King and others, 2018). Therefore, winter observations become
very valuable for understanding the new Arctic sea-ice system.

The N-ICE2015 is the most comprehensive, multidisciplinary campaign in the Atlantic sec-
tor of the Arctic Ocean including winter observations. N-ICE2015 observations provide a
unique testbed to investigate closer the influence of the storm activity on the sea-ice growth
evolution in winter. During the N-ICE2015 campaign (Granskog and others, 2018), frequent
storms and thick snow on sea ice were observed from January to March 2015 north of Svalbard
(Graham and others, 2019). In this study, we aim to examine the effect of snow and storm-induced
warming events on Arctic sea-ice thermodynamic growth in winter. We do this by performing a
modelling sensitivity study guided by observations collected during the N-ICE2015 campaign. In
this study we focus on the interaction between the sea ice and the atmosphere. For that purpose we
apply a low ocean heat flux, representative of deep Arctic basin conditions.

Materials and Methods

Observations during the N-ICE2015 campaign

During the winter part of the N-ICE2015 campaign, the R/V Lance was tethered to two dif-
ferent ice floes (Floe 1 and 2) north of Svalbard and moved passively with the ice drift.
Comprehensive observations of sea-ice thickness and snow depth were collected from snow
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buoys, ice mass-balance buoys (IMBs), electromagnetic induction
(EM) surveys (ground-based) and snow probe measurements
(Rösel and others, 2018). Even though air temperature was mostly
below −30°C, sea-ice thickness increased only slightly during the
observation period. This was attributed to the thick snow (Rösel
and others, 2018) that provided thermal insulation to the sea
ice, and to the frequent synoptic storms that brought pulses of
heat and moisture in the region (Cohen and others, 2017). In
this study, we aim to investigate the relative importance of these
two factors (snow and frequent warming events caused by storms)
for the thermodynamic growth of sea ice.

Six major winter storms occurred during the N-ICE2015 cam-
paign (Cohen and others, 2017). The storms were characterised by
a considerable pressure drop, and a large increase in the air tem-
perature, wind speed and relative humidity (Fig. 1). In most cases
near-surface air temperatures rose by more than 20°C in 48 h
(Cohen and others, 2017). The net longwave radiative flux rose
from ∼−60 to 0Wm−2 in 12 h (Walden and others, 2017). The
atmospheric boundary layer became warmer than the ice and
snow surface, triggering downward conductive heat fluxes that
warmed the snow and the upper layers of sea ice (Graham and
others, 2019). The average wind speed throughout the winter
was 6.8 m s−1, and at instances it rose above 20 m s−1 during
the major storms (Cohen and others, 2017). On 18 February,
Floe 1 broke up. R/V Lance had to relocate, and it reached Floe
2 on 23 February. The meteorological measurements were inter-
rupted during this period.

The model experiments

We used HIGHTSI, a 1-D, high resolution, thermodynamic ice
and snow model (Launiainen and Cheng, 1998), to assess the
effect of the storms and snow load on the winter sea-ice growth.
HIGHTSI has been used widely in sea-ice modelling applications
in the Arctic Ocean, and has been extensively validated against
observations (Cheng and others, 2008, 2013; Wang and others,
2013, 2015; Merkouriadi and others, 2017). HIGHTSI resolves
the evolution of snow depth, sea-ice thickness and temperature
profiles in response to prescribed meteorological forcing.

Data from the winter part of the N-ICE2015 campaign (22
January–15 March) were used to guide the model experiments.

We used snow and sea-ice thickness and temperature profile
data from one of the N-ICE2015 IMBs (SIMBA_2015a) to initiate
the experiments (Provost and others, 2017; Rösel and others,
2018). In situ observations from the N-ICE2015 campaign includ-
ing air temperature (2 m), wind speed (10 m), relative humidity
(2 m) (Fig. 1) and downward longwave radiative flux (Fig. 2b)
were used to force HIGHTSI (Hudson and others, 2015, 2016).
Upward longwave radiative flux observations are also available
and they were used to validate HIGHTSI modelled values.
There was a very good agreement between the observed and the
modelled upward longwave radiative flux (Fig. 2a). The down-
ward solar radiative flux is available only from 3 March onward.
The values remained small and the effect on the surface heat bal-
ance is negligible, therefore solar radiation was neglected in the
experiments. When R/V Lance was relocated in late February to
Floe 2, weather conditions remained stable without storm events.
During this time, we applied linear interpolation to all para-
meters, to fill the gaps in the observational data.

To examine the effect of storms on the thermodynamic growth
of sea ice, we created two meteorological forcing datasets. One is
based on the meteorological data collected during N-ICE2015 that
were characterized by frequent storms (Fig. 1). In the other one
we manually removed the effect of storms on the observed para-
meters, by cycling through observations from the cold and calm
periods (Days 24–33). Time series of air temperature, wind
speed, relative humidity and downward longwave radiative flux
were artificially created (Figs 1 and 2 in red) and were used as
model forcing to investigate the sea-ice growth without the warm-
ing effect of storms. During the calm and cold periods, average air
temperature, wind speed, relative humidity and net longwave
radiative flux values were −33.6°C, 5.5 m s−1, 70.8% and −41.3
Wm−2, respectively. These values are quite representative of the
Arctic Ocean in winter (Wang and others, 2019).

Initial snow density was assumed to be uniform (350 kg m−3)
for the entire snowpack. The densification of snow was considered
according to Anderson (1976). The snow depth during the experi-
ments was kept constant for simplicity. A constant snow depth is
not realistic; however, even though storms brought precipitation
at N-ICE2015, in some locations the snow depth did not increase
much, due to wind-blown snow (Rösel and others, 2018). We
conducted experiments with four snow depths (hs): hs = 0.50,

Fig. 1. Meteorological forcing used to perform the
model experiments. The N-ICE2015 observations of air
temperature , relative humidity and wind speed are in
blue. The same parameters modified to remove the
effect of storms are in red. The shaded areas denote
the storm period based on Cohen and others (2017).
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0.30 0.15 and 0 m and an ice thickness of 1.3 m, which is repre-
sentative of a typical ice thickness during N-ICE2015. The initial
snow and ice temperature profiles were taken from the
SIMBA_2015a IMB (Provost and others, 2017). For the experi-
ments in which we used thinner initial snow depths, the snow
temperature profiles were adapted by preserving the observed ini-
tial temperature gradient between the snow surface and the snow/
ice interface. A snow depth of 0.50 m corresponded to the snow
conditions that were observed at the start of the N-ICE2015 cam-
paign (22 January). hs = 0.30 m of snow corresponds to the clima-
tological mean based on the snow climatology by Warren and
others (1999). hs = 0.15 m is considered a typical value of the west-
ern Arctic (Webster and others, 2014). Finally, we performed a
snow-free experiment as a reference, in order to isolate the warm-
ing effect of storms. We repeated the same experiments for initial
ice thicknesses (h0i) of 0.5 and 2.0 m, to examine the sensitivity of
our results to different initial ice thickness conditions. The time
step of our experiments was 15 min.

Our purpose was not to reproduce the N-ICE2015 observa-
tions, but to conduct an idealistic, sensitivity study representative
for the ice pack in the deep Amundsen basin during this period.
For this reason, we kept a constant, low ocean heat flux (Fw = 1
Wm−2), representative of the conditions in the deep basin
(McPhee and others, 2003). We did not allow for snow-ice forma-
tion (which would have been the case for the largest snow depth),
as widespread negative freeboard without flooding was observed
(Rösel and others, 2018). Detailed information on the model
parameterizations are given in Table 1.

Results

The simulated temperature profiles inside the ice and snow, with
and without the effect of the storms, and for different snow
depths, are shown in Figure 3. The pulses of heat brought by
the storms have a clear signature in the snow temperature profiles
(Fig. 3, left panels). Under a thick snow cover (hs = 0.5 m) the heat
pulses are strongly modulated in the ice temperature profiles, and

they are observed mainly at the ice surface (Fig. 3). The insulation
properties of snow are clearly demonstrated in Figure 3. Under
snow-free conditions the average sea-ice surface temperature
decreased by ∼23°C, compared to the case with 0.5 m deep
snow cover.

The simulated sea-ice thickness evolution with and without
the effect of the storms, and for different snow depth scenarios
(hs = 0.5, 0.3, 0.15 and 0) is shown in Figure 4. All experiments
start on 22 January (day 22) and run until 15 March (day 74).
The initial ice thickness in all of the experiments was 1.30 m,
taken from N-ICE2015 observations (SIMBA_2015a). The results
show that the sea-ice growth is mainly controlled by the snow
depth. Under snow-free conditions and without the effect of
storms, sea-ice grows 0.21 m thicker (+13%) than for 0.15 m of
snow, 0.34 m thicker (+22%) than for 0.30 m of snow, and 0.42

Fig. 2. Upward and downward longwave radiative flux used to perform the model experiments. The N-ICE2015 observations are in blue. The modified fluxes to
remove the effect of storms are in red. The lighter coloured lines are the modelled upward longwave radiative fluxes.

Table 1. Model parameters and constants used in this study

Parameter Value Remarks/source

Heat capacity of ice (ci) 2093 J kg−1 K−1

Latent heat of Fusion of
Arctic sea ice (Lsi)

Function of Ti, si Yen (1981)

Ocean heat flux (Fw) 1 Wm−2 McPhee and others
(2003); winter deep basin

Sea ice density (ρi) 910 kg m−3

Snow density (ρs) 350–390 kg m−3 Anderson (1976)
Surface emissivity (e) 0.97
Sea ice heat
conductivity (ksi)

Function of Ti, si Pringle and others (2007)

Effective thermal
conductivity of snow (ks)

Function of ρs (0.39–0.44
Wm−1 K−1)

Sturm and others (1997)

Initial temperature in
snow and ice

Non-linear profile in
snow, Linear profile in
ice

Based on SIMBA_2015a
buoy data

Time step (t) 15 min
Number of layers in the
ice

20

Number of layers in the
snow

20
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Fig. 3. Simulated ice and snow temperature profiles with (left) and without (right) the effect of storms for different snow depth scenarios, hs = 0.5, 0.3, 0.15 and 0m.
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m thicker (+29%) than for 0.50 m of snow. When the effect of
storms is taken into account, under snow-free conditions the
sea ice grows 0.15 m thicker (+10%) than for 0.15 m of snow,
0.25 m thicker (+17%) than for 0.30 m of snow and 0.30 m thicker
(+21%) than for 0.50 m of snow.

The effect of snow on the sea-ice growth is dominant. The
effect of storms becomes more important with less snow on sea
ice. For 1.3 m initial sea-ice thickness and 0.5 m of snow depth,
the storms reduce the final sea-ice thickness only by 0.02 m
(−1.4%). Under snow-free conditions the effect of storms maxi-
mizes, and the final sea-ice thickness is reduced by 0.14 m
(−7.7%). Under snow-free conditions it takes 1 d to grow 1 cm
of sea ice without the effect of the storms, and 1.3 d with the
effect of the storms. For 0.5 m of snow depth it takes 3.8 d to
grow 1 cm of sea ice without the effect of the storms, and 4.5 d
with the effect of the storms.

The effect of both the snow and the storms in reducing the rate
of sea-ice growth becomes more important in thinner ice condi-
tions (h0i = 0.5 m) and less important in thicker ice conditions
(h0i = 2 m). However, regardless of the initial ice thickness condi-
tions, the effect of snow is always dominant. Results from all
model experiments are summarized in Table 2.

Discussion and Conclusions

We performed a modelling sensitivity study using a 1-D sea ice
and snow thermodynamic model (HIGHTSI), to examine the
relative effect of storms and snow for Arctic sea-ice growth in
winter. Observational data from the N-ICE2015 campaign were
used to guide the model experiments. During the winter part of
the N-ICE2015 campaign (22 January–15 March) six major
storm events occurred, which brought pulses of heat and moisture
in the area (Fig. 1). On 22 January, the snow on sea ice was excep-
tionally thick (∼0.5 m). By 15 March, both the snow depth and
the sea-ice thickness increased only slightly (Rösel and others,
2018). In this sensitivity experiment we evaluate the impact of
storms and snow in the evolution of the sea-ice growth, (i) by

adjusting the thickness of snow on sea ice and (ii) by removing
the effect of storms from the meteorological forcing. We do not
take into account the increased ocean heat fluxes that occurred dur-
ing some storms (Peterson and others, 2017). Instead, we use values
representative of the deep Arctic basin in winter (McPhee and
others, 2003), away from the warm Atlantic water inflow. Neither
have we accounted for snow-ice formation that was also evident,
especially for the thickest snow covers (Provost and others, 2017).

Our results show that sea-ice growth is mainly controlled by
the snow depth on sea ice. The effect of storm warming events
becomes more important with less snow on sea ice. For 1.3 m ini-
tial ice thickness and 0.5 m snow, similar to what was observed
during N-ICE2015, the reducing effect of storms in sea-ice growth
is relatively small, i.e. the difference in the final sea-ice thickness
was only reduced by 0.02 m (−1.4%) due to the effect of the
storms. Sea-ice growth rate was reduced from 0.26 to 0.22 cm d−1

(−15%). In the extreme case of snow-free conditions, the difference
in the final thermodynamic sea-ice thickness caused by the storms

Fig. 4. Simulated sea-ice thickness evolution with (blue) and without (red) the effect of storm-induced warming events for an initial ice thickness of 1.3 m, for
different snow depths: hs = 0.5 m, 0.3, 0.15 and 0m. Snow depth remains unchanged within the same experiment.

Table 2. Results from all model experiments

Snow depth
(m)

Final sea ice
thickness (m)

Ice growth rate
(cm d−1)

No of days per cm
growth

Storms No storms Storms No storms Storms No storms

Initial ice thickness = 1.3 m
0 1.72 1.86 0.78 1.05 1.3 1.0
0.15 1.57 1.65 0.50 0.66 2.0 1.5
0.30 1.48 1.52 0.33 0.41 3.1 2.4
0.50 1.42 1.44 0.22 0.26 4.5 3.8

Initial ice thickness = 0.5 m
0 1.25 1.47 1.39 1.80 0.7 0.6
0.15 0.94 1.08 0.81 1.07 1.2 0.9
0.30 0.77 0.85 0.50 0.65 2.0 1.6
0.50 0.68 0.72 0.34 0.41 3.0 2.5

Initial ice thickness = 2.0 m
0 2.26 2.35 0.48 0.65 2.1 1.5
0.15 2.17 2.22 0.31 0.40 3.2 2.5
0.30 2.11 2.13 0.20 0.25 5.0 4.1
0.50 2.08 2.09 0.14 0.16 6.9 6.2

168 Ioanna Merkouriadi and others

https://doi.org/10.1017/aog.2020.25 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2020.25


was 0.14m (−7.5%). Sea-ice growth rate was reduced from 1.05 to
0.78 cm d−1 (−50%).

Snow depth on the other hand is strongly affecting sea-ice
growth in winter. Without the effect of the storms, 0.5 m of
snow cover reduced the final sea-ice thickness by 0.42 m
(−23%) compared to snow-free conditions. Sea-ice growth rate
was reduced from 1.05 to 0.26 cm d−1 (−75%). With the effect
of storms, 0.5 m of snow reduced the final sea-ice thickness by
0.30 m (−17%) compared to snow-free conditions. Sea-ice growth
rate was reduced from 0.78 to 0.22 cm d−1 (−72%).

We repeated the same experiments with different initial sea-ice
thickness (h0i = 0.5 and 2 m), to examine how that would affect
our results (Table 2). To summarize, for 1.3 m initial ice thickness
the reducing effect of storms on the sea-ice growth ranged from
−1.4 to −7.5%, and the reducing effect of snow ranged from
−17 to −23%. For lower initial ice thickness (h0i = 0.5 m) the
reducing effect of storms on the sea-ice growth becomes more
important (−6 to −15%), but so does the reducing effect of
snow (−46 to −51%). While, for greater initial ice thickness
(h0i = 2 m), the reducing effect of storms becomes less important
(from −0.5 to −3.8%), but so does the reducing effect of snow
(from −8 to −11%).

We should note once more that the ocean heat flux was kept
low on purpose in our experiments (1Wm−2), in order to simu-
late conditions of the deep Arctic basin and to isolate the effect of
sea ice and atmosphere interactions. Observations from the IMBs
deployed during N-ICE2015 capture the complete effect of the
atmosphere and ocean along the drift path of the buoy.
Specifically, for SIMBA_2015a sea-ice thickness decreased by
0.13 m in 30 d, due to the large ocean heat flux when the ice
drifted over warm Atlantic water, where ocean heat fluxes are
much larger than in the deep basin. Clearly, in this region the
effect of the ocean heat flux is large, but it is likely limited to
the Atlantic water pathway (Graham and others, 2019). It is
also indirectly created by the increased under ice mixing caused
by ice drifting and high winds. The examination of a fully coupled
atmosphere-ice-ocean system is needed.

This study shows that the thermodynamic effect of warming
events to the sea-ice growth is strongly connected to the snow
depth on sea ice. We should note that, naturally, snowfall and
storms are complementing factors that often coincide in time.
However, the snow depth on sea ice does not uniformly increase
after a storm event (Rösel and others, 2018). That is because,
under strong winds, snow is blown away and redeposited around
pressure ridges and ice blocks, which serve as topographic
obstructions to the wind (Liston and others, 2018). Also, snow
can be lost to leads which often form during storms. In this
study, we use observations and model data to demonstrate the
dual, insulating effect of snow on winter sea-ice growth. Building
on previous work (Merkouriadi and others, 2017, 2020), we show
that snow inhibits sea-ice growth. However, snow also reduces
the effect of warm atmospheric temperatures during storms.
These results emphasize the need for improved understanding
and representation of snow as a critical component of the Arctic
atmosphere-ice-ocean system (Webster and others, 2018).
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