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Abstract. In this paper, we show that a commutative Noetherian ring which satisfies
the radical formula must be of dimension at most one. From this we give a
characterization of commutative Noetherian rings that satisfy the radical formula.

1. Introduction It is well known that the set of nilpotent elements of a commutative
ring forms an ideal and is equal to the intersection of all the prime ideals. The above
notion has been generalized by R. L. McCasland to modules. Unfortunately, not every
module satisfies McCasland's radical formula. This paper looks at commutative Noether-
ian rings which satisfy McCasland's radical formula.

In this paper, all the rings are commutative with 1 and all the modules are unitary
and not necessarily finitely generated. Let M be a module over the ring R. A submodule P
of M is called a prime submodule of M if

(i)
(ii) whenever r e R and m E M\P with rm E P, then rM g p.

It is clear that if P is a prime submodule of M, then AnnR(M/P), the annihilator of
M/P over R, is a prime ideal. We say that P is a ^P-prime submodule of M if P is a prime
submodule of M with 9$ = AnnR(M/P). It is clear that the prime submodules of the
R-module R are precisely the prime ideals of R. Prime submodules have been studied in
[1] and [7].

Let iV be a submodule of M with N¥>M. The radical of N in M, denoted by
M-radfl N, is defined to be the intersection of all prime submodules of M containing N. If
there is no prime submodule containing N, then we put M-rad* N = M. The envelope of
N in M, denoted by EM(N), is defined to be the set

{rm :r E R and m e M such that r"m e N for some natural number n s 1}.

It is clear that (EM(N)), the submodule generated by EM(N), is contained in
M-radRN. As in [6], we say that N satisfies the radical formula (TV s.t.r.f.) in M if
A/-radR N = (EM(N)). M s.t.r.f. if every submodule of M s.t.r.f. in M. A ring R s.t.r.f. if
every R-module s.t.r.f.

The question of what kinds of modules s.t.r.f. has been considered in [2]-[6]. The
main objective of this paper is to classify all the Noetherian rings which s.t.r.f. Prior to this
paper, all known Noetherian rings which s.t.r.f. are of dimension at most one. It suggests
that only those Noetherian rings of dimension at most one can s.t.r.f. This will be proved
in Section 2. If a Noetherian ring is of dimension zero, it is then Artinian. We shall prove
in Section 3 that all Artinian rings s.t.r.f. That leaves us with only Noetherian rings of
dimension one. In Section 4, we shall deal with the local case. In Section 5, we prove our
main theorem which is stated as follows.
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THEOREM 1.1. Let R be a commutative Noetherian ring and $1, ^ 2 . • • •, $« be all the
minimal prime ideals of R. R s.t.r.f. if and only if R is Artinian or the following conditions
are satisfied.

(i) dim R = 1 and, for each / = 1,2, . . . ,«, R/tyj is a Dedekind domain and ^3, is the
only tyj-primary ideal.

(ii) For k = 1,2,... ,n - 1, ( f ) *Pi) + *P*+i = f) OP/ + $*+i), ifn*Z

(iii) For all 1 < i <j ^ n, R = ̂ , + $, or fl/Ofr + %) is semi-simple Artinian, ifn>2.

2. Some preliminary results. We first fix the following notation for the rest of this
paper.

(i) Unless stated otherwise, R denotes a (commutative) Noetherian ring,
(ii) dim R denotes the (Krull) dimension of R.
(iii) For any ideal / of R, rad / denotes the usual radical of /. In particular, rad 0 is

the set of nilpotent elements of R.
(iv) The elements in R2 = R®R will be written as (a,b), where a,b e R.
(v) Let M be an R-module. We use AnnR M to denote the annihilator of M over R.

Let us recall some basic results that will be used later. The following Proposition 2.1
is known, (i)-(iii) are parts of [6, Theorem 1] and (iv) is just [3, Proposition 2.4].

PROPOSITION 2.1. Let R be a ring, not necessarily Noetherian.

(i) R s.t.r.f. provided M-rad* (0) g (EM(0)), for every R-module M.
(ii) Suppose that M is an R-module which s.tr.f. and I is an ideal of R. Then M/1M

s.t.r.f. as an R/I-module. Consequently, if R s.t.r.f, then the quotient ring R/I
s.t.r.f, for any ideal I of R.

(iii) Suppose that M is an R-module and N is a submodule of M. Then every prime
submodule of M/N is of the form PIN, for some prime submodule P of M
contains N. Furthermore, N s.t.r.f. in M if and only if the zero submodule of M/N
s.t.r.f. in M/N.

(iv) Suppose R is Noetherian and M is a finitely generated R-module. Then M s.t.r.f. if
and only if Mm s.t.r.f. as an R^-module, for every maximal ideal Tt of R.

By definition, a ring R s.t.r.f. if every R-module s.t.r.f. However, as suggested in [3,
Theorem 3.3], the key is to study when R2 s.t.r.f. as an ̂ -module. As we shall see later, it
turns out that R s.t.r.f. if and only if R2 s.t.r.f. as an R-module.

THEOREM 2.2. Suppose that (R, Wl) is a local ring, not necessarily Noetherian, and R2

s.t.r.f. as an R-module, Let a, b e M and I be an ideal of R such that

(*) b <£Ra + (Ann*x") D (Ra + Rb) for any x s (rad Ra) \I and n e N.

Then ael 2

Proof. Let / = Ra + Rb. It is easy to verify that a prime submodule of R2 contains
J(a, b) if and only if it contains (a,b); (see the proof of [2, Theorem 11]). Thus,
R2-T&dRJ(a, b) = R2-r&dRR(a, b). As R2 s.t.r.f., we have R2-radRR(a, b) = < M / ( o , b))).
Hence (a, b) e (ER2(J(a, b))). By the definition of ER2(J(a, b)), there exist

https://doi.org/10.1017/S0017089500032225 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500032225


COMMUTATIVE NOETHERIAN RINGS 287

(a) rur2,...,rksR\{0},
(b) (Cl, rf,). (<*. d2),.... (cfc, rf*) e 7?2\{(0,0)}, and
(c) non-negative integers nu n2, • • •, nk,

such that
k

(i) (a, b) = 2 /-,(<:„ d,), and
/=i

(ii) for each 1 < i < /c, ^'(c,, d,) = ft{a, b), for some ̂  e /.
k

By (i), we have a = £ r,Q. We are done if we can show that each M E / + 3ft2. Let
1=1

1 < i < A: be given. If r, is a unit, then from (ii) we have rfa E Ja c 3ft2. If r, E /, then
r,Ci e I. Suppose that r, e 3ft \ I. We now show that c, e 3ft. Suppose not. From (ii) above,
we would have r, e rad Ra and r"'{adt - bct) = 0. Hence b e Ra + (Ann* r?') D (/?a + Rb),
which is a contradiction. Therefore, we must have c, e 2ft and hence /-,<:, e 3ft2. •

Note that for the remainder of this section, R is not necessarily local.

COROLLARY 2.3. Suppose that R2 s.t.r.f. as an R-module, d imf l^ l and $ is a
minimal prime ideal of R. Then ^ is the only ^-primary ideal of R and Rl^ is a Dedekind
domain. In particular, R is a Dedekind domain if R is a domain.

Proof. We first assume R is local with maximal ideal 3ft and R is ^3-primary. To
prove our desired result, we only need to show R is a DVR.

As dim/?>l , 3ft *% Thus, we can choose a e 3ft \ (3ft2 + <£). If 3ft *Ra, then we
can choose b E 3ft\/?a. Let / = ty. As ty is the set of all zero-divisors of /?, the condition
(*) of Theorem 2.2 is now satisfied. By Theorem 2.2, we get a E 3ft2 + ty. This contradicts
our choice of a. Theorem 3ft = Ra and hence R is a DVR.

We now go back to the general case. Let / ' be a ^-primary ideal. By Proposition
2.1(ii), /?// '©/?// ' s.t.r.f. as an ^//'-module. In view of Proposition 2.1 (iv) and the
result proved earlier, we see that R/I' is a Dedekind domain. In particular, / ' = 5|8 and
dim /?// ' = dim R = l. •

In [2], Jenkins and Smith proved that any Dedekind domain s.t.r.f. (see [2, Theorem
9]). In the same paper, they also give a partial characterization of Noetherian domains
which s.t.r.f. (See [2, Corollary 13].) In view of Corollary 2.3, we see that Dedekind
domains are the only Noetherian domains which s.t.r.f. This answers a question raised in
[2]-

The next result is immediate from Corollary 2.3.
COROLLARY 2.4. Suppose that R2 s.t.r.f. as an R-module. Then dim/? ^ 1.

Next, we prove a key result which allows us to reduce to the case when rad 0 = 0.
This result can also be viewed as a partial converse to Proposition 2.1(ii).

PROPOSITION 2.5. Let R be a ring, not necessarily Noetherian. Suppose that

(i) R/rad 0 s.t.r.f. as a ring,
(ii) there exist maximal ideals 3ftj, 3ft2,... ,3ft,, and natural numbers ki,k2,.. • ,kn

with
rad 0 n 3ft?1 n 2ft£ n . . . n 3ft*-= 0.

Then R s.t.r.f.
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Proof. We may assume that all the /c,'s are equal to a common value k, say. Let M be
an R-module. To show R s.t.r.f., by Proposition 2.1(i) it suffices to prove M-rad^Oc
(EM(0)). Clearly, we have (rad 0)M g (EM(0)). Let msM-rad^O be given. Then, by
Proposition 2.1(iii), m + (rad 0)M E M/((rad 0)M)-rad«/radO 0. As R/rad 0 s.t.r.f., we have

m + (rad 0)M = £ W, + (rad 0)M,

where r, e R, m, E M and r"'mf E (rad 0)M, for some natural number nt. Hence m =
y + 2 r,m,, for some y E (rad 0)Af. We are done if we can show that each r^ is in

(EM(0)).
First, observe that if r E 3ft: n . . . n 3ftn and m e M, with r'm E (rad 0)A/ for some

natural number t, then by (ii) we have r'+km = 0. Hence rm E EM(0).
Thus, if r, E 3fti D . . . n 3ftn then, by the above observation, r^i e EM(0). Suppose

rt g 3ft;, for some 1 < / ^ n. Without loss of generality, we may assume r, E Sfti D 3ft2 n
. . . n Wl,, and r, e 9K/+1 U . . . U H«B. Then R = flr?' + 37J,+i n . . .n2K n . Write 1 = sr?' + x,
for some s E R and J: E 2ft/+1 D . . . n 3ftn. Then r^ = sr^m, + r^mj. As r̂ 'm, E
(radO)M, srj"+1/?i, and (r,Ar)nim, are also in (radO)A/. In particular, sr^i+1m, e (EM(0)). On
the other hand ^x E 3ftj n . . . n 3ftn. By an earlier observation, r,jtm, E £A/(0)

 a l s o- This
proves r,m,- e (EM(0)). D

REMARK. Note that condition (ii) in Proposition 2.5 cannot be dropped. To see this,
we let D be a Dedekind domain and R = D[x]/(x2). Clearly (x) is the minimal prime ideal
of R, R is (x)-primary and R/(x) s.t.r.f. However, it follows from Corollary 2.3 that R
does not s.t.r.f.

PROPOSITION 2.6. Suppose that dim R = 1 and every minimal ideal ^ of R is the only
^-primary ideal in R. Then condition (ii) of Proposition 2.5 is satisfied.

Proof. Let 5JJlt... , $ r be all the minimal prime ideals of R. As R is Noetherian, a
reduced primary decomposition of the zero ideal can be written as follows:

o=/i ny2 n... njr n /, n i2... n /„,

where each 7, is a $,-primary ideal and /, is an 3ft,-primary ideal, for some maximal ideal
3ft,. By assumption /, = $,. Therefore, we get

0 = rad 0 n A n 72... n /„.

As Ii is 3ft,-primary, we have 3ft*1 £7,, for some large enough natural number kh Our
desired result now follows. •

To end this section, we generalize the last statement of Corollary 2.3.

COROLLARY 2.7. Suppose that dim R = 1 and there exists a unique minimal ideal ty in
R. Then R s.t.r.f. if and only if Rl% is a Dedekind domain and $ is the only ^-primary
ideal in R.
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Proof. We only need to prove sufficiency. This follows from Proposition 2.5 and
2.6. •

3. Local-global principle for rings s.t.r.f. In the first half of this section we shall
show that an /?-module M s.t.r.f. provided every finitely generated R-submodule of M
s.t.r.f. From this, we deduce that a ring R s.t.r.f. if and only if R%t s.t.r.f. for any maximal
ideal 9ft. As a consequence, we prove also that every Artinian ring s.t.r.f.

DEFINITION. Let $$ be a prime ideal of R, where R is not necessarily Noetherian.
Suppose M is an i?-module. We define M($) = {m E M:sm G $Af for some s e R

Next, we recall a result which was proved implicitly in both [1] and [7].

LEMMA 3.1. Let M be an R-module, where R is not necessarily Noetherian. Then
M-rad/jO = DM(^), where the intersection is taken over all the prime ideals of R.
Furthermore, if M is finitely generated, then the above intersection can be taken over
{$ e spec(/?): Ann*(A/) £ ^}.

Proof. By [1, Proposition 1.1], if M($) ¥= M, then M($) is a $j3-prime submodule of
M. Also [1, Proposition 1.1] tells us that if N is a ^3-prime submodule of Af, then
M($JS) c N, The first assertion follows easily from the above remarks. By [1, Corollary
1.2], if M is finitely generated, then Af($) is a prime submodule of M for every prime
ideal *$ 2 Ann^ (Af). Note that if $ is a prime ideal such that Ann^ (Af) is not contained
in ^, then M = M(^). The last assertion follows. •

COROLLARY 3.2. (cf [2, Lemma 3]). Suppose dim R s 1 and M is an R-module. Let

Nx = fl M($), where the intersection is taken over all the minimal prime ideals of R,
N2 = n 2ftAf, where the intersection is taken over all the maximal ideals of R.

Then Af-rad* 0 = M n N2.

Proof. Note that A/(2ft) = 9KA/ or M, for every maximal ideal 3R. The required result
follows immediately from Lemma 3.1. •

The next lemma is a generalization of [2, Lemma 5].

LEMMA 3.3. Suppose d im/? s i , M is an R-module and N is a submodule of M with
N ¥" M. Then Af-rad/? N = U L-rad/j N, where the union is taken over all submodules L of
M which contains N, and L/N is finitely generated.

Proof. By Proposition 2.1(iii), we may assume that N = 0. We shall follow the
approach used in the proof of [2, Lemma 5]. By [2, Lemma 4], L-rad* 0 g M-radR 0, for
any finitely generated submodule L of M. We now show that the inclusion holds the other
way.

Let m EA/-radflO be given. Let Sgj ,^ . - • • .$„ (finitely many) be all the minimal
prime ideals of R. By Corollary 3.2, for each i = 1,2,... ,n, there exists j , e / ? \ ^ with
stm e 93,Af. For each i = 1,2,..., n, there are only finitely many (possibly none) maximal
ideals of R which contain both s, and $,. Let Win,..., 3^^ be all the maximal ideals which
contain s, and $,.. By Corollary 3.2, for each l < i < / i , m e 3K/;-M, for / = 1,2,. ..,n,.
Together with s,m e $,Af for i = 1,2,... n, we see that there exists a finitely generated
submodule L of Af such that
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(i) Sitn G ^,L for i = 1,2,... n,
(ii) for each 1 < i < n, m e 3ft,yL for; = 1,2,.. . , /i,.

Let Q be a maximal ideal such that D g {3ftn,..., Sft̂ .}, for i = 1,2,..., n. Without loss
of generality, we may assume ^ £ O. Then Rst + O = R and hence Rm = Rsitn + dm.
Since s ^ e ^ t L £ QL and m e L, we have m e QL. By Corollary 3.2, m e L-rad*0.
Hence M-rad* 0 c UL-rad* 0. D

We are now ready to prove the Local-Global principle for rings s.t.r.f.

THEOREM 3.4. The following statements are equivalent.

(i) R s.t.r.f.
(ii) Rw s.t.r.f., for any maximal ideal 2W of R.

(iii) Every finitely generated R^-module s.t.r.f, for any maximal ideal 3ft of R.
(iv) Every finitely generated R-module s.t.r.f.

Proof. (i)=^(iv) is obvious, (iv)^(i) follows from Corollary 2.4 and Lemma 3.3.
Similarly, we have (ii)£>(iii). By Proposition 2.1 (iv), (iii)O(iv). D

Later, it will be shown that statement (iv) of Theorem 3.4 can be replaced by R2

s.t.r.f. as /?-module.

THEOREM 3.5. Any Artinian ring s.t.r.f.

Proof. By Theorem 3.4, we may assume that R is local Artinian with maximal ideal
2ft. As rad 0 = 3ft, fl/rad 0 is a field and therefore s.t.r.f. On the other hand, since 3ft" = 0
for some positive integer n, R s.t.r.f. by Proposition 2.5. •

4. The s.t.r.f. condition on one dimensional local rings. Throughout this section, we
shall assume that R is a one dimensional local ring. We shall give a necessary condition
for R to s.t.r.f.

Let 3ft be the maximal ideal of R and tyu 8̂2> • • • > *Pn aU the minimal prime ideals of
R. In Corollary 2.7, we have already dealt with the case when n = 1. We may therefore

n n
assume n > 2. For i = 1,. . . ,«, we define /, = p | f#k. If n s 3, we also define L = f) ^k,

k=\ k=l
k*i k*l

k+]
for all 1 < /,/ ̂  n with i ¥>j. The notation above is fixed throughout this section.

LEMMA 4.1. Suppose n > 3 and 3R = I,j + %, for all \<i,j<n with i¥>j. Then the
following conditions are equivalent.

(i) 3ft = /, + %, for some 1 < / ̂  n.
(ii) 271 = /, + %, for each i = l,2,...,n.
(iii) Iu = h + Ij, for all 1 < / , / < « with i ¥>j.
(iv) Iij = I, + Ij, for some 1 s i, j s n with i ¥>j.
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Proof. Suppose that 3ft = /< + 5g,, for some 1 < j < n. Let 1 < / <n with ; # / be given.
By assumption, we have 3ft = Iy + *£,. Let a,, e I,j. Then a,, = a( + pit for some a, e /,,/>, E
$,. It follows that pt = o/; - a, e 7;. Hence a,y e // +1}. Therefore lti c /, + 7;. Clearly,
/// 2 // + 7, and so we have Itj = // + Ij. By assumption, we have 3ft = 7,;, + $,. Substitute for
7,; and note that 7, £ %, we get 3ft = 7, + 7y + $Py = 7y + g?y.

Using the above argument, we easily get (i) ̂  (ii), (ii) =£> (iii) and (iv) =^ (i). Lastly, it
is trivial that (iii) =£> (iv). •

Note that the assertion of Lemma 4.1 holds for arbitrary rings, not necessarily
Noetherian; also 3ft and $,'s need not be maximal and prime ideals respectively.

THEOREM 4.2. Suppose (7?, 3ft) is a one dimensional local ring and « s 2 . If R2 s.t.r.f.
as an R-module, then there exist xu...,xn e R such that for i = 1,2,..., n, I,, = Rx/ +

£rad 0, ̂ , = £ 4; and 3K = % +1,, = £ Ik.
k=\

n

Proof Clearly, we may assume rad 0 = 0. Hence R is reduced and f] ty, = 0. Note
that, by Corollary 2.3, rt/ig, is a DVR for i = 1,2,..., n. '=1

Let 1 < I < « be given. As i?/^, is a DVR, we may write <2R = Ry + '$i, for some
y e 3ft. Note that /, ̂  0 and /, ̂  ^8,, Hence /, + gj, = Ry' + ^,, for some / > 1. There exist
Xi e Ii and p( e $£, with ^ = y ' +pt. We now show that xt generates /,. Let a E /,. Then
a = ry' + qh for some r e R and qt E ^5,. It follows that rxt - a = rpt - qt s It fl ^ , = 0.
Hence a = rx,. Therefore /, = Rxh

Suppose n =2. In this case, 7i = $ 2 and /2 = *Pi. It remains to show that 3ft =
5£, + ̂ 2. As R/^2 is a DVR, we have 3ft = Ra + %2, where a e 3ft \ %2. As n > 2, /? is not
a DVR and 3ft */?a. Choose b eWl\Ra. Let JC e (rad 7?a) \ (^j + 5p2). As ^ Us£2

contains all zero divisors of 7?, we have Ann^x" = 0, for all n sN. By Theorem 2.2,
a e 3ft2 + ^ + $2. It follows that 3ft = 3ft2 + 5& + $2. By Nakayama's lemma, we get
aft = * , + ̂ 2.

Suppose n s 3 . For each j = 1,2,...,n,R/It is a one dimensional reduced local ring.
By Proposition 2.1(ii), we also know that each R/I^R/Ii s.t.r.f. as an #//rmodule. By
applying the induction hypothesis to each R/Ij(BR/Ih we get

(i) fori = l,2,...,n,3ft= £ /,*,

(ii) for all 1 < i,j < n with i ¥>j, % = 7, + 2 Ijk and Iv = Rx^ + Ih for some x,} e 3ft.

k*t

Clearly, Iik £ 5|3; if /,/, k are all distinct. By this observation, (i) gives

Wl = Iij + '$j = RXij + IJ + % for all iV;. (1)

Suppose 3ft T̂  /„ + S(Sn. By Lemma 4.1,

3K * I, + %, for all/, (2)

Itj^It + Ij, for alii 9*/. (3)
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From (ii) and (3), we get xu e I12\ (7j + h)- Let x e (rad Rx12)\(7t + 72). As R is reduced,
Ann^x" = Ann**, for any neN. Note that x s 712\0Pi U^2) as rad 7Lt12 £ 7^, 7]2n
^ ! = 72 and 712n^82 = h- Therefore, A n n / , x c $ , n % z . Clearly, Rxn + Rx23£ $ 4 n 5p5 D
. . . n 5pn. Hence

7fct12 + (Ann**) D (7fct12 + 7fct23) £ 7?;t12 + 73.

Suppose Jt23e Rxl2 + (A.nnRx)n(Rxl2 +Rx23). Then *23 e Rxn + A- By (1), 3ft =
Rx23 + I3 + %^Rx12 + I3 + ^3 = ^3 + I3, and hence 33? = g53 + 73, which contradicts (2).
Therefore x^ g Rxn + (Ann**) n (7tti2 + Rxn). Now, Theorem 2.2 gives xl2 e 2ft2 + A +
72. By (1), 2ft = 7lti2 + 72 + 9$2 £ 3ft2 + 7, + 72 + g$2 = 2ft2 + 72 + S|32. Thus 3K = Tt2 +12 + ^2.
By Nakayama's lemma, we have 3ft = 72 + V$2, which contradicts (2). Therefore 9ft =
/« + tyn- By Lemma 4.1, Iy = 7, + Ih for all / ¥=j. The required result follows from (i) and
(ii). D

5. Proof of the main result. For the convenience of readers, we recall a result in [4].
THEOREM 5.1. Let n>2 and Ju... ,Jn be prime ideals in R. (/? need not be local.)

Suppose that

( i ) / 1 n / 2 . . . n / n = o,
(ii) R/Jj is a Dedekind domain, for all i,

(iii) for k = 1,2,..., n - 1, Jk+l + f l /, = PI C4+i + //),
i=i 1=1

(iv) for any 1 < / < ; < /i, R=Ji
JrJj or 7?/(/( + Jj) is semi-simple Artinian.

Then R s.t.r.f.
By Theorem 5.1, we now show the converse of Theorem 4.2 is true when 7? is

reduced. Set /, = $,-. Then (iii) and (iv) are automatically true as $, + /, = 3ft. Finally,
observe that 3ft/$, is generated by xt + %. Therefore 7?/^, is a DVR. Hence, 7?. s.t.r.f.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 3.5, we may assume 7? is not Artinian. Thus, we
may assume dim 7? = 1, by Corollary 2.4. In view of Corollary 2.7, we may also assume
n>2 .

Assume 7?2 s.t.r.f. as an 7?-module. By Corollary 2.3, (i) is satisfied. Under
localization at any maximal ideal 3ft of 7?, ^,7?^ = 7?^ if 5)3,̂  3ft and $,•/?»? remains prime
otherwise. By Theorem 4.2, (iii) holds in 7?^, and that both sides of the condition (ii)
become SftT?̂  if 3ft contains ^*+1 and %, for some i with 1 < / < ^. Otherwise, both sides
will be equal to 7?^. Hence (ii) and (iii) hold globally.

Suppose (i), (ii) and (iii) hold. By Proposition 2.5 and 2.6, we may then assume
rad 0 = 0. Now all the conditions required in Theorem 5.1 are satisfied. Hence 7?
s.t.r.f. D

It is not difficult to see that (ii) and (iii) holding in Theorem 1.1 is equivalent to the
condition that for each i, 7? = $, + H % or 7?/(^, + p | %) is semi-simple Artinian. (For a

proof, one needs only to consider the localization of 7? over every maximal ideal.)
Furthermore, in the proof of necessity of Theorem 1.1, we only need to assume 7?2 s.t.r.f.
We have therefore obtained the following result.
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COROLLARY 5.2. A ring R s.t.r.f. if and only ifR2 s.t.r.f. as an R-module.

We now end this paper with the following examples.

EXAMPLES. (1) So far, all the known examples of one dimensional rings which s.t.r.f.
are reduced. We now give an example of a one dimensional ring which is not reduced and
s.t.r.f. Let R = F[X, Y]/(X2, AT), where F is a field and X, Y are indeterminates. It is
easily verified that RX is the only minimal prime ideal of R and R/RX = F[Y]. In fact,
RX, RX + RY are all the associated prime ideals and 0 = RXC\RY2 is a primary
decomposition of the zero ideal. By Theorem 1.1, R s.t.r.f.

(2) In the global case, we can define It as in Section 4. However, it is no longer true
that // is principal even when rad 0 = 0. Here is a counterexample. Let S be a Dedekind
domain with a non-principal maximal ideal 2ft. Let 7? = {(si,.s2) E SXS:SI -S2 e 3JI}.
Clearly, R is a commutative Noetherian ring under the usual componentwise addition and
multiplication. Let ^ j = {(s, 0):s e 2tt} and $ 2 = {(0,5):s e 3ft}. It is easily verified that

(i) $£, and S£2 are prime ideals of R with 5gi D ^ 2 = 0,
(ii) for 1 = 1,2, R/% a S and % = M.

By Theorem 1.1, R s.t.r.f. As 9ft is non-principal, neither $1 nor ^82 is principal.
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