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Computing canonical heights on elliptic curves in quasi-linear time

J. Steffen Müller and Michael Stoll

Abstract
We introduce an algorithm that can be used to compute the canonical height of a point on
an elliptic curve over the rationals in quasi-linear time. As in most previous algorithms, we
decompose the difference between the canonical and the naive height into an archimedean and
a non-archimedean term. Our main contribution is an algorithm for the computation of the
non-archimedean term that requires no integer factorization and runs in quasi-linear time.

1. Introduction

Let E denote an elliptic curve defined over a number field K. The canonical height is a
quadratic form ĥ : E(K) ⊗ R → R, first constructed by Néron [13] and Tate (unpublished).
For several applications, such as computing generators for E(K) and computing the regulator

appearing in the conjecture of Birch and Swinnerton–Dyer, one needs to compute ĥ(P ) for
points P ∈ E(K).

To this end, one typically chooses a Weierstrass equation W for E over K with OK-integral
coefficients and decomposes ĥ(P ) (or ĥ(P ) − h(P ), where h is the naive height on E with
respect to W ) into a sum of local terms, one for each place of K. For simplicity, let us
assume that K = Q. There are several efficient algorithms for the computation of the
contribution at infinity (see § 5). A very simple and efficient algorithm of Silverman [14]
can be used to compute the non-archimedean contributions separately. However, in order
to determine the non-archimedean places which contribute to ĥ(P ) (or ĥ(P ) − h(P )),
the algorithm of [14] assumes that the prime factorization of the discriminant ∆(W ) is
known, which renders this approach inefficient when the coefficients of W are large. This
observation motivated Silverman’s article [16], where it is shown how to compute ĥ(P )
without the need to factorize ∆(W ). Nevertheless, the algorithm of [16] requires the prime
factorization of gcd(c4(W ), c6(W )) in order to find a globally minimal Weierstrass equation
for E.

In this note, we introduce an algorithm for the computation of ĥ(P ) that does not require
any factorization into primes at all and runs in time that is quasi-linear in the size of the
input data and the desired precision of the result. More precisely, let ‖W‖ denote the largest
absolute value of the coefficients of W and let d denote the number of desired bits of precision
after the binary point. We denote the time needed to multiply two d-bit integers by M(d).
The following result is our main theorem. Recall the ‘soft-O’ notation: f(n) ∈ Õ(g(n)) means
that there are constants c,m > 0 such that, for n sufficiently large, |f(n)| 6 cg(n)(log g(n))m.
Using fast multiplication algorithms, M(d) ∈ Õ(d). We also use the notation f(n) � g(n) to
express the fact that there is a constant c > 0 such that |f(n)| 6 cg(n) for n sufficiently large.
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Theorem 1.1. Let E be given by a Weierstrass equation W with coefficients in Z and let
P ∈ E(Q). Then we can compute ĥ(P ) to d bits of (absolute) precision in time

� log(d+ h(P ))M(d+ h(P )) + (log log ‖W‖)2 M((log log ‖W‖)(log ‖W‖))
+ log(d+ log ‖W‖)2 M(d+ log ‖W‖)

∈ Õ(d+ h(P ) + log ‖W‖).

Since the size of the input is measured by h(P ) + log ‖W‖ (the first term gives the size of P ,
the second term gives the size of W ) and the size of the output is measured by log h(P ) + d,

this means that we can compute ĥ(P ) in quasi-linear time.
The strategy of the proof is to first find an algorithm for the computation of the local non-

archimedean contributions that does not assume minimality (see Proposition 4.3). Building on

this, the non-archimedean contribution to ĥ(P )− h(P ) can be computed upon observing that
it is a sum of rational multiples of logarithms of prime numbers, which can be determined by
working globally modulo a suitable power of ∆(W ). Combining this with a complexity analysis
of the fastest known algorithm for the computation of the local height at infinity due to Bost
and Mestre [6], Theorem 1.1 follows. We note that Marco Caselli, working on his PhD under
the supervision of Cremona, is currently extending the Bost–Mestre algorithm to also deal
with complex places.

The paper is organized as follows. In § 2, we set up some notation and introduce the notion
of Kummer coordinates of points on elliptic curves. Heights and their local decompositions are
recalled in § 3. In § 4, we discuss an algorithm that allows us to compute a non-archimedean
local summand of ĥ(P ) − h(P ) efficiently, without assuming minimality, and we estimate
its running time. Section 5 contains a discussion of the algorithm of Bost–Mestre for the
computation of the local height at infinity and of its running time. We then combine the non-
archimedean and the archimedean results into an efficient algorithm for the computation of
ĥ(P ) in § 6, leading to a proof of Theorem 1.1. Finally, in § 7, we discuss the practicality of
our algorithm.

2. Kummer coordinates

Let K be a field and consider an elliptic curve E/K, given by a Weierstrass equation

W : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

where a1, a2, a3, a4, a6 ∈ K. As usual, let

b2 = a21 + 4a2,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

and let
∆(W ) = −b22b8 − 8b43 − 27b26 + 9b2b4b6

denote the discriminant of the equation W . We define the functions g and f for P ∈ E(K)\{O}
by

g(P ) = x(P )4 − b4x(P )2 − 2b6x(P )− b8,
f(P ) = 4x(P )3 + b2x(P )2 + 2b4x(P ) + b6.

Then, for P ∈ E(K)\E[2], x(2P ) = g(P )/f(P ). We now extend this to all P ∈ E(K).
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Note that P1 is the Kummer variety E/{±1} of E. An explicit covering map E → P1 is
given by

κ : E −→ P1

(x : y : 1) 7−→ (x : 1)

O 7−→ (1 : 0).

We call (x1, x2) ∈ A2(K)\{(0, 0)} a pair of Kummer coordinates for P ∈ E(K) if
κ(P ) = (x1 : x2).

The degree 4 homogenizations of g and f are

δ1(x1, x2) = x41 − b4x21x22 − 2b6x1x
3
2 − b8x42,

δ2(x1, x2) = 4x31x2 + b2x
2
1x

2
2 + 2b4x1x

3
2 + b6x

4
2,

respectively. For (x1, x2) ∈ A2
K , we set

δ(x1, x2) = (δ1(x1, x2), δ2(x1, x2)).

It follows that if (x1, x2) is a pair of Kummer coordinates for P ∈ E(K), then δ(x1, x2) is a
pair of Kummer coordinates for 2P .

3. Heights

Let K be a number field and let E/K be an elliptic curve given by a Weierstrass equation W ,
as in (2.1). We denote by MK the set of places of K. For a place v ∈ MK , we normalize the
associated absolute value |·|v so that it restricts to the usual absolute value on Q when v is an
infinite place and so that |p|v = p−1 when v is a finite place above p. We write nv = [Kv : Qw]
for the local degree, where w is the place of Q below v. Then we have the product formula∏

v∈MK
|x|nv

v = 1 for all x ∈ K×. The naive height of P ∈ E(K)\{O} with respect to W is
given by

h(P ) =
1

[K : Q]

∑
v∈MK

nv log max{|x1|v, |x2|v},

where (x1, x2) is a pair of Kummer coordinates for P . Note that h(P ) does not depend on the
choice of (x1, x2), by the product formula.

The limit

ĥ(P ) = lim
n→∞

h(nP )

n2

exists and is called the canonical height (or Néron–Tate height) of P .

For the computation of ĥ(P ), the limit construction is not suitable due to slow convergence

and exponential growth of the size of the coordinates. Instead, one decomposes ĥ(P ) into local
terms. We now recall how this can be achieved, following [10]. For v ∈ MK and Q ∈ E(Kv),
we set

Φv(Q) =
max{|δ1(x1, x2)|v, |δ2(x1, x2)|v}

max{|x1|v, |x2|v}4
,

where (x1, x2) ∈ A2(Kv)\{0, 0} is a pair of Kummer coordinates for Q. Since δ1 and δ2 are
homogeneous of degree 4, Φv(Q) does not depend on the choice of (x1, x2). The function Φv

is continuous and bounded on E(Kv), so it makes sense to define

Ψv(Q) = −
∞∑

n=0

4−n−1 log Φv(2nQ),
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which is, likewise, continuous and bounded. Note that for P ∈ E(K),

h(2P )− 4h(P ) =
1

[K : Q]

∑
v∈MK

nv log Φv(P ),

and Tate’s telescoping trick yields the formula

ĥ(P ) = h(P )− 1

[K : Q]

∑
v∈MK

nvΨv(P ), (3.1)

which we will use to compute the canonical height.
It is also possible to decompose the canonical height into a sum of local height functions.

For v ∈MK and Q ∈ E(Kv)\{O}, we define the local height of Q as

λ̂v(Q) = log max{1, |x(Q)|v} −Ψv(Q).

Then (3.1) immediately implies that

ĥ(P ) =
1

[K : Q]

∑
v∈MK

nvλ̂v(P ) (3.2)

for P ∈ E(K)\{O}.

Remark 1. Several normalizations for the local height on elliptic curves can be found in
the literature (see the discussion in [10]). Our normalization corresponds to that used in [10],
so in particular, our canonical height is twice the canonical height in Silverman’s paper [14]
and in his books on elliptic curves. More precisely, we have

λ̂v(Q) = 2λ̂SilBv (Q) + 1
6 log |∆(W )|v,

where λ̂SilBv is the normalization used in Silverman’s book [15, Chapter VI]. The advantages

of our normalizations are discussed in [10]; the crucial advantage of λ̂SilBv is its independence
of the chosen Weierstrass equation.

In § 5, we need to know how local heights change under isogenies.

Proposition 3.1 (Bernardi [1]). Let E and E′ be elliptic curves defined over Kv, given by
Weierstrass equations W and W ′, respectively. Let ϕ : E −→ E′ be an isogeny of degree n. If
Q ∈ E(Kv) satisfies ϕ(Q) 6= 0, then

λ̂v(ϕ(Q)) = nλ̂v(Q)− log |Fϕ(Q)|v − log |m′(ϕ)|v,

where

Fϕ(Q) =
∏

R∈ker(ϕ)\{O}

(x(Q)− x(R))

and

m′(ϕ) = lim
Q→O

x(Q)

x(ϕ(Q))
.
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4. Non-archimedean local error functions

In this section, we let K be a non-archimedean local field with normalized additive valuation
v : K � Z ∪ {∞}. Let O denote the valuation ring of K, let k denote the residue class field
of O and let π be a uniformizing element of O. Consider an elliptic curve E/K given by a
Weierstrass equation W , as in (2.1), with coefficients in O.

Given P ∈ E(K), we choose a pair of Kummer coordinates (x1, x2) for P and define

ε(x1, x2) = min{v(δ1(x1, x2)), v(δ2(x1, x2))} − 4 min{v(x1), v(x2)} ∈ Z.

Note that ε does not depend on the choice of Kummer coordinates, so we can define ε(P ) =
ε(x1, x2) for any such choice. The function ε is non-negative, bounded and continuous in the
v-adic topology. Hence we can define

µ(P ) =

∞∑
n=0

1

4n+1
ε(2nP ) ∈ R. (4.1)

It follows that µ is non-negative, bounded and continuous as well. One can show that, in fact,
µ(P ) ∈ Q (compare Table 1).

Remark 2. If K is the completion of a number field at a non-archimedean place v, then
nv log Φv(P ) = −ε(P )(log #k) and nvΨv(P ) = µ(P )(log #k) for P ∈ E(K), where Φv and Ψv

are as defined in § 3.

If we have bounds for ε(P ) and for the denominator of µ(P ), then we can use (4.1) to
compute µ(P ).

Lemma 4.1. Assume that M > 2 and B are non-negative integers such that:
(1) M ′µ(P ) ∈ Z for some 0 < M ′ 6M ; and
(2) max{ε(P ) : P ∈ E(K)} 6 B.

Set

m =

⌊
log(BM2/3)

log 4

⌋
.

Then µ(P ) is the unique fraction with denominator 6 M in the interval [µ0, µ0 + 1/M2],
where

µ0 =

m∑
n=0

4−n−1ε(2nP ).

Proof. We know that µ(P ) is a fraction with denominator bounded by M . Two distinct
fractions with this property have distance greater than 1/M2 (here we use M > 2), so there

Table 1. Non-zero values of and upper bounds α for µ for minimal Weierstrass equations.

Type v(∆) µ α

Im m > 2 i(m− i)/m, i = 1, . . . ,m− 1 m/4
III >3 1/2 1/2
IV >4 2/3 2/3
I∗m >6 +m 1, (m+ 4)/4 (m+ 4)/4
IV∗ >8 4/3 4/3
III∗ >9 3/2 3/2
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is at most one such fraction in the given interval. On the other hand, we know that

µ0 6 µ(P ) 6 µ0 +
∑
n>m

4−n−1B = µ0 +
B

3 · 4m+1
6 µ0 +

1

M2
.

We now discuss how to bound ε(P ) and the denominator of µ(P ).

Lemma 4.2. For P ∈ E(K):
(i) 0 6 µ(P ) 6 1

4v(∆(W ));
(ii) 0 6 ε(P ) 6 v(∆(W )); and

(iii) the denominator of µ(P ) is bounded from above by v(∆(W )).

Proof. Note that if v(∆(W )) = 0 and v(x1, x2) = 0, then also v(δ(x1, x2)) = 0, since one
can express a power of ∆ as the resultant of δ1 and δ2. Therefore, if the Weierstrass equation
W is minimal, then ε(P ) vanishes if and only if P has non-singular reduction; in particular,

ε(P ) = 0⇒ ε(2P ) = 0. (4.2)

One can also prove (4.2) using explicit formulas which do not require minimality of W . If
W is minimal, then, by the above, the value µ(P ) vanishes if and only if P has non-singular
reduction. More generally, it depends only on the component of the special fiber of the Néron
model of E that P reduces to (see [14]). Hence the same is true for ε(P ), since

ε(P ) = 4µ(P )− µ(2P ). (4.3)

For minimal W , the non-zero values that µ can take and an upper bound α are given in
Table 1. These are taken from [10, 15].

Let vmin denote the minimal discriminant of E over O. In general,

0 6 µ(P ) 6 α+ 1
6 (v(∆(W ))− vmin),

by [10, Proposition 8], and (i) follows from a straightforward computation. Because of (4.3),
this also proves (ii). By the proof of [10, Proposition 8], a transformation from one integral
Weierstrass equation to another does not change µ(P ) mod Z, so (iii) follows from Table 1.

Lemmas 4.1 and 4.2 lead to an algorithm for the computation of µ(P ). A pair (x1, x2) of
Kummer coordinates for P is said to be primitive if min{v(x1), v(x2)} = 0. Recall that π
denotes a uniformizer of K.

Algorithm 1.
1. Set B := v(∆).
2. If B 6 1, then return 0. Otherwise set m := blog(B3/3)/log 4c.
3. Set µ0 := 0. Let (x1, x2) be primitive Kummer coordinates for P with (m + 1)B + 1
v-adic digits of precision.

4. For n := 0 to m do:
a. Compute (x′1, x

′
2) := δ(x1, x2) (to (m+ 1)B + 1 v-adic digits of precision).

b. Set ` := min{v(x′1), v(x′2)}.
c. If ` = 0, then return µ0.
d. Set µ0 := µ0 + 4−n−1`.
e. Set (x1, x2) := π−`(x′1, x

′
2).

5. Return the unique fraction with denominator at most B in the interval [µ0, µ0 + 1/B2].

We now show that the algorithm is correct and estimate its running time.
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Proposition 4.3. Algorithm 1 computes µ(P ). Its running time is

� (log v(∆))M((log v(∆))v(∆)(log #k))

as v(∆)→∞, with an absolute implied constant.

Proof. If B = v(∆) 6 1, then µ = ε = 0, by Table 1. Otherwise, the loop in step 4 computes
the sum in Lemma 4.1 (where now M = B > 2). When ` = 0 in step 4c, then ε(2n

′
P ) = 0 for

all n′ > n by (4.2), and hence the infinite sum defining µ is actually a finite sum and equals µ0.
(This step could be left out without affecting the correctness or the worst-case complexity of
the algorithm.) Lemma 4.2 shows that B is an upper bound for ε and that M = B is an upper
bound for the denominator of µ. So the algorithm computes µ(P ), provided the precision of
(m+1)B+1 v-adic digits is sufficient. For this, note that the precision loss at each duplication
step is given by ε(2nP ) and is therefore bounded by B. So, after at most m + 1 steps in the
loop, the resulting (x1, x2) still has at least one digit of precision.

It remains to estimate the running time. We assume that elements of O are represented as
truncated power series in π, whose coefficients are taken from a complete set of representatives
for the residue classes. Operations on these coefficients can be performed in time� M(log #k).
Then steps b to e in the loop take negligible time compared with step a, which involves a fixed
number of additions and multiplications of elements given to a precision of (m+1)B+1 digits,
leading to a complexity of

� M(((m+ 1)B + 1)(log #k))

operations for each pass through the loop. The total running time is therefore

� (m+ 1)M(((m+ 1)B + 1)(log #k))� (log v(∆))M((log v(∆))v(∆)(log #k))

as v(∆)→∞.

Remark 3. We stress that our algorithm does not require W to be minimal. If we know that
W is minimal, then Silverman’s algorithm [14, § 5], which only involves the computation of the
valuations of a bounded number of polynomials in the coefficients of W and the coordinates
of P , can be used to compute µ(P ).

5. Archimedean local heights

Let K be an archimedean local field with valuation v. The following methods have been
proposed for the computation of the local height λ̂ = λ̂v on an elliptic curve E/K, given by a
Weierstrass equation (2.1):
• an elegant series approach due to Tate and modified by Silverman [14];
• a more complicated series approach based on theta functions (see [9, Algorithm 7.5.7]);
• an algorithm based on the arithmetic geometric mean (AGM) and 2-isogenies introduced

by Bost and Mestre in an unpublished manuscript [6], which currently requires v to be
real (see also Bradshaw’s PhD thesis [7]).

Tate’s series converges linearly. The theta series has a better rate of convergence and is
also faster in practice if the elliptic integrals arising in the algorithm are computed using the
AGM. If v is real and one is interested in high precision, then the method of Bost and Mestre
is preferable, as it converges quadratically. We now describe this algorithm and provide a
complexity analysis. Let v be real and let |·| denote the usual absolute value on K = R. We

want to compute λ̂(P ) for a point P ∈ E(R); for simplicity, we only consider the case 2P 6= O.

Note that the function µ considered in [6] satisfies µ = 1
2 λ̂.
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Applying a transformation, we may assume that E is given by a Weierstrass equation

W : y2 = x(x2 + ux+ v),

where u, v ∈ R. If all points of order two on E are real, then we set E0 = E. Otherwise,
consider the isogeny E → E0 defined by

(x, y) 7→
(
x2 + ux+ v

x
, y
x2 − v
x2

)
, (5.1)

where now E0 has full 2-torsion over R and is given by the Weierstrass equation

y2 = x(x2 − 2ux+ u2 − 4v).

By Proposition 3.1, it suffices to compute the local height of the image of P on E0 to
obtain λ̂(P ). For the algorithm, we need a Weierstrass equation

W0 : y2 = x(x+ a20)(x+ b20)

for E0, where 0 < b0 < a0 ∈ R. We may assume that P lies on the connected component
E0

0(R) of the identity; if not, we can apply the algorithm to 2P ∈ E0
0(R) and compute λ̂(P )

using
λ̂(2P ) = 4λ̂(P )− log |2y(P )|. (5.2)

We define the AGM sequences (an) and (bn) by

an =
an−1 + bn−1

2
, bn =

√
an−1bn−1,

and we let M(a0, b0) denote their common limit. For n > 1 we recursively define an elliptic
curve En over the reals by the Weierstrass equation

Wn : y2 = x(x+ a2n)(x+ b2n),

and we define a 2-isogeny ϕn−1 : En → En−1 by

(x, y) 7−→
(
x(x+ b2n)

x+ a2n
, y

(x+ an−1an)(x+ bn−1an)

(x+ a2n)2

)
.

Then the sequence of curves (En)n converges to a singular cubic curve E∞ with equation

W∞ : y2 = x(x+M(a0, b0)2)2.

Moreover, the sequence of isogenies (ϕn)n converges to the identity map on E∞(R).

Now let λ̂n denote the local height on En(R). Then Proposition 3.1 asserts that

λ̂n−1(ϕn−1(Pn)) = 2λ̂n(Pn)− log(x(Pn) + a2n), (5.3)

whenever we have x(ϕn−1(Pn)) 6= 0.

Bost and Mestre use (5.3) to give a formula for λ̂(P ). Note that ϕn−1 maps En(R) onto the
connected component E0

n−1(R) and that points on E0
n−1(R) always have a unique preimage

on E0
n(R) under ϕn−1. Setting P0 = P , we therefore get a well-defined sequence of preimages

Pn = (xn, yn) ∈ E0
n(R), which converges to a point P∞ = (x∞, y∞) ∈ E∞(R). Here xn can be

calculated using

xn = 1
2 (xn−1 − an−1bn−1 +

√
(xn−1 + a2n−1)(xn−1 + b2n−1)).
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From (5.3), we deduce that

λ̂(P ) = λ̂0(P ) = log lim
n→∞

(xn + a2n)2
n−1∏n−1

m=1(xm + a2m)2m−1
,

or, equivalently,

λ̂(P ) = log(x1 + a21) +

∞∑
n=1

2n log
xn+1 + a2n+1

xn + a2n
. (5.4)

Because of the quadratic convergence of the AGM, these formulas can be used to compute
λ̂(P ) to an accuracy of 2−d in � log(d + log ‖W‖) steps. This has already been shown by
Bradshaw (see [7, § 6.1]). We give a slightly different error estimate. First, note that

an − bn 6 21−2
n

(a0 − b0).

Because xn > 0 and 0 < b0 < bn < an, this implies that

a2n − b2n
xn + a2n

6 21−2
n

(a0 − b0)
an + bn
xn + a2n

6 22−2
n

(
a0
b0
− 1

)
. (5.5)

Now set

sn := 1−
xn+1 + a2n+1

xn + a2n
and ϑ :=

a0
b0
− 1 +

√
a0
b0
− 1.

Then 0 < sn < 1 and ϑ � ‖W‖. The sequence sn converges rapidly to zero for large n,
since (5.5) implies that

sn =

∣∣∣∣12
(√

xn + b2n
xn + a2n

+
xn + ((a2n + b2n)/2)

xn + a2n

)
− 1

∣∣∣∣
6

1

2

∣∣∣∣
√
xn + b2n
xn + a2n

− 1

∣∣∣∣+
1

2

∣∣∣∣xn + ((a2n + b2n)/2)

xn + a2n
− 1

∣∣∣∣
6

1

2

√
a2n − b2n
xn + a2n

+
1

4

(
a2n − b2n
xn + a2n

)
6 2−2

n−1

√
a0
b0
− 1 + 2−2

n

(
a0
b0
− 1

)
6 2−2

n−1

ϑ . (5.6)

In particular, sn 6 1
2 for n > log2(log2 ϑ + 1) + 1, so that |log(1 − sn)| 6 2sn for such n. We

can use this to bound the tail of the series in (5.4). Namely,∣∣∣∣ ∞∑
n=N+1

2n log
xn+1 + a2n+1

xn + a2n

∣∣∣∣ 6 ∞∑
n=N+1

2n|log(1− sn)|

6 ϑ
∞∑

n=N+1

21+n−2n−1

if N > log2(log2 ϑ+ 1). For n > 4, n− 2n−1 6 −2n−2, so∣∣∣∣ ∞∑
n=N+1

2n log
xn+1 + a2n+1

xn + a2n

∣∣∣∣ 6 ϑ ∞∑
n=N+1

21−2
n−2

6 22−2
N−1

ϑ (5.7)

follows, provided N > max{3, log2(log2 ϑ+ 1)}.
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Having computed λ̂(P ) for P ∈ E(R), we get Ψ∞(P ) from

Ψ∞(P ) = log max{1, |x(P )|} − λ̂(P ). (5.8)

Proposition 5.1. The algorithm above computes Ψ∞(P ) to d bits of precision in time

� log(d+ log ‖W‖)2 M(d+ log ‖W‖).

Proof. First, suppose that we have already computed a0, b0 and x0 and that P lies on the
connected component E0

0(R). By (5.4) and (5.7),∣∣∣∣λ̂(P )− log(x1 + a21)−
N∑

n=1

2n log
xn+1 + a2n+1

xn + a2n

∣∣∣∣ 6 2−d

for
N = max{3, log2(d+ 2 + log2 ϑ) + 1} � log(d+ log ‖W‖).

For every n 6 N , we have to apply a fixed number of additions, multiplications and square roots
to compute an+1, bn+1 and xn+1, which can be done to d′ bits of precision in time � M(d′),
and we have to compute log(1− sn). Because of precision loss due to the multiplication by 2n,
we need to compute log(1− sn) to an additional n bits, so we need an initial precision of

d+N � d+ log(d+ log ‖W‖)

bits. A logarithm can be computed to d′ bits of precision in time � (log d′)M(d′) using one of
several quadratically converging algorithms based on the AGM (see [4, Chapter 7]). Therefore,
and by (5.6), we can compute log(1− sn) to d+ n bits of precision in time

� log(d+ log(d+ log ‖W‖))M(d+ log(d+ log ‖W‖)).

The computation of log(x1 + a21) to d bits of precision takes time

� log(d+ log ‖W‖)M(d+ log ‖W‖).

Hence, given a0, b0 and x0 to d+N bits of precision, we can compute λ̂(P ) to d bits of precision
in time

� log(d+ log ‖W‖) · (M(d+ log ‖W‖) + log(d+ log(d+ log ‖W‖))M(d+ log(d+ log ‖W‖))).

We can then find Ψ∞(P ) using (5.8) in time � log(d)M(d), which is negligible.
To compute a0, b0 and x0 from a given Weierstrass equation, we need to find the roots of

at most two polynomials of degree 6 3 with real coefficients, transform the corresponding
Weierstrass equation and find the image of our point P under these transformations. The
roots of a polynomial of fixed degree to d′ bits of precision can be found in time � M(d′)
(see [4, Theorem 6.4]); the same holds for the evaluation of a polynomial of fixed degree. To
counter loss of precision, we start with an initial precision of� d+log ‖W‖+log(d+log ‖W‖)
bits, so we can compute a0, b0 and x0 to d+N bits of precision in time

� M(d+ log ‖W‖+ log(d+ log ‖W‖)),

which is dominated by the complexity of the remaining parts of the algorithm. The logarithmic
correction terms coming from (5.2) and from Proposition 3.1 applied to the isogeny (5.1) and
to the change of model needed to find W0 can be computed to a sufficient number of bits of
precision in time � log(d+ log ‖W‖)M(d+ log ‖W‖). Hence the result follows.

https://doi.org/10.1112/S1461157016000139 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157016000139


computing canonical heights in quasi-linear time 401

Remark 4. For large n, computing log(1 − sn) using an AGM-based algorithm might be
less efficient than using a power series such as

log x = 2

∞∑
k=0

1

2k + 1

(
x− 1

x+ 1

)2k+1

.

The reason is that, by (5.6), the numbers 1− sn are very close to 1, so only few terms of the
power series have to be computed.

6. Computing the canonical height of rational points

We will combine the results of §§ 4 and 5 into an efficient algorithm for computing the canonical
height of a point P on an elliptic curve E over a number field, which will prove Theorem 1.1.
For simplicity, we take this number field to be Q in the following. We assume that our curve
is given by a Weierstrass equation (2.1) W with coefficients in Z, but we make no minimality
assumption.

One usually computes ĥ(P ) using the decomposition (3.2) into local heights λ̂v(P ). The local

height λ̂∞(P ) can be computed using the algorithm of Bost–Mestre discussed in § 5 or one of the
other approaches mentioned there. If the factorization of ∆(W ) is known, we can use [14, § 5]

to compute the local heights λ̂p(P ) efficiently. Alternative, but less efficient, algorithms can
be found in [17, 18]. If we know that W is minimal (for which some factorization is required;

see the introduction), then we can use [16] to compute
∑

p λ̂p(P ) without factorizing ∆(W ).

Another approach to computing ĥ(P ) without factorization is discussed in [11], but their
method does not yield a polynomial-time algorithm.

Our goal is to devise an algorithm for the computation of ĥ(P ) that runs in time that is
quasi-linear in log ‖W‖, h(P ) along with the required precision d, which is measured in bits
after the binary point. We note that h(P ) is the logarithm of a rational number, so it can be
computed in time� log(h(P ) +d)M(h(P ) +d). In the previous section, we showed that there
is a quasi-linear algorithm for the computation of Ψ∞(P ) (see Proposition 5.1).

It remains to see how the total contribution

Ψf(P ) :=
∑
p

Ψp(P ) =
∑
p

µp(P ) log p

coming from the local error functions at finite places can be computed efficiently; here we
write µp for the local height correction function over Qp, as in Definition 4.1.

Fix P ∈ E(Q). We assume that (x1, x2) ∈ Z2 is a primitive (that is, gcd(x1, x2) = 1) pair

of Kummer coordinates for P . We set gn = gcd(δ(x
(n)
1 , x

(n)
2 )), where (x

(n)
1 , x

(n)
2 ) ∈ Z2 is a

primitive pair of Kummer coordinates for 2nP . Then the definition of µp implies that

Ψf(P ) =

∞∑
n=0

4−n−1 log gn.

See [12] for a related approach in genus 2. By Lemma 4.2, we know that each gn divides ∆(W ).
The key observation is that Ψf(P ) is a rational linear combination of logarithms of positive
integers, which can be computed exactly as follows.

Algorithm 2.
1. Set (x′1, x

′
2) := δ(x1, x2), g0 := gcd(x′1, x

′
2) and (x1, x2) := (x′1/g0, x

′
2/g0).

2. Set D := gcd(∆(W ), g∞0 ) and B := blogD/log 2c.
3. If B 6 1, then return 0. Otherwise set m := blog(B5/3)/log 4c.
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4. For n := 1 to m do:
a. Compute (x′1, x

′
2) := δ(x1, x2) mod Dm+1g0.

b. Set gn := gcd(D, gcd(x′1, x
′
2)) and (x1, x2) := (x′1/gn, x

′
2/gn).

5. Use Bernstein’s algorithm from [2] to compute a sequence (q1, . . . , qr) of pairwise coprime
positive integers such that each gn (for n = 0, . . . ,m) is a product of powers of the qi:
gn =

∏r
i=1 q

ei,n
i .

6. For i := 1 to r do:
a. Compute a :=

∑m
n=0 4−n−1ei,n.

b. Let µi be the simplest fraction between a and a+ 1/B4.
7. Return

∑r
i=1 µi log qi, a formal linear combination of logarithms.

Proposition 6.1. The preceding algorithm computes Ψf(P ) in time

� (log logD)2 M((log logD)(logD)) + M(h(P ))(log h(P )).

Proof. We note that if B 6 1 in step 3, then either g0 = 1 and Ψf(P ) = 0, or D ∈ {2, 3}.
In the latter case, g0 is a power of p = 2 or 3 and vp(∆(W )) = 1, which would imply that
εp(P ) = 0, so g0 = 1, and we get a contradiction.

Let p be a prime. If p - g0, then εp(P ) = 0 and therefore µp(P ) = 0. So we now assume that
p divides g0. We have vp(∆(W )) = vp(D) 6 B. We see that p(m+1)vp(D)+1 divides Dm+1g0, so
computing modulo Dm+1g0 will provide sufficient p-adic accuracy so that vp(gn) = εp(2nP )
for all n 6 m (compare the proof of Proposition 4.3 above). (One could replace Dm+1g0
by Dm+1−ng0 in step 4a.) Since all the gn are power products of the qi, there will be exactly
one i = i(p) such that p | qi(p); let bp = vp(qi(p)). Then

m∑
n=0

4−n−1εp(2nP ) =

m∑
n=0

4−n−1vp(gn) = bp

m∑
n=0

4−n−1ei(p),n = bpa,

so

µp(P ) =

∞∑
n=0

4−n−1εp(2nP ) = bpa+

∞∑
n=m+1

4−n−1εp(2nP ),

where the last sum is in [0, 1/B4] (this follows from 0 6 εp 6 B; see Lemma 4.2 and the
definition of m, and compare the proof of Lemma 4.1). We know that the denominator
of µp(P ) is at most B (see Lemma 4.2), so the denominator of µp(P )/bp is at most B2,
since bp 6 vp(D) 6 B. On the other hand, a 6 µp(P )/bp 6 a + 1/(bpB

4) 6 a + 1/B4, which
implies that µp(P )/bp is the unique fraction in [a, a + 1/B4] with denominator at most B2,
so µp(P )/bp = µi(p), by Step 6b. Now

∑
p

µp(P ) log p =
∑
p

µi(p)bp log p =

r∑
i=1

µi

∑
p|qi

bp log p =

r∑
i=1

µi log qi.

It remains to estimate the running time. The computation of δ(x1, x2) can be done in time
� M(h(P )); the same is true for the division in step 1. The gcd in step 1 can be computed in
time � M(h(P )) log h(P ). The computations in steps 2 and 3 take negligible time compared
with step 4. Each pass through the loop in step 4 takes time � M((m + 2) logD) log((m +
2) logD), so the total time for the loop is

� mM(m(logD)) log(m logD)� (log logD)2 M((log logD)(logD)).

The algorithm in [2] computes suitable qi for a pair a, b of positive integers in time �
(log ab)(log log ab)2. We iterate this algorithm, applying it first to g0 and g1, then to each
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of the resulting qi and g2 and so on. Note that gn 6 D for all n. Because there are always
� logD terms in the sequence of qi, this leads to a contribution of � logD(log logD)3 for
step 5. This is dominated by the time for the loop. The remaining steps take negligible time.

In practice, the efficiency of this approach can be improved as follows.
• We trial factorize ∆(W ) up to some bound T to split off the contributions of all

sufficiently small primes p. We can then compute the corresponding µp using the
algorithm of Proposition 4.3 or the algorithm of [14] (see Remark 3). In step 3, we
can then set B := blogD′/log T c, where D′ is the unfactorized part of D. Note that, in
practice, the trial division can take quite a bit more time than it saves, in particular,
when the equation has large coefficients, so this modification should be used with care.

• We update our list of ‘building blocks’ qi after each pass through the loop in step 4
using the new gn; we do the computation modulo suitable powers of the qi instead of
modulo Dm+1g0. We can also use separate values of B and m for each qi, which will
usually be smaller than those given above.

• In this way, we can integrate steps 4, 5 and 6 into one loop.
• We can replace B5 in the definition of m by 2B4. Then µp(P ) 6 bpa + 1/(2B3) and
a 6 µp(P )/bp 6 a+ 1/(2bpB

3). If µp(P )/bp = r/s with s 6 Bbp, then we have the
bound a 6 r/s 6 a+ 1/(2sB2) 6 a+ 1/(2s2). There can be at most one fraction r/s
with s 6 B2 satisfying this: if r′/s′ is another such fraction, then

1

ss′
6

∣∣∣∣rs − r′

s′

∣∣∣∣ 6 1

2 min{s, s′}B2
,

which leads to the contradiction max{s, s′} > 2B2. We can then find µi = µp(P )/bp as
the first convergent r/s of the continued fraction expansion of a that is > a and satisfies
r/s 6 a+ 1/(2sB2).

Combining Propositions 5.1 and 6.1, we finally obtain an efficient algorithm for computing
the canonical height ĥ(P ) of a point P ∈ E(Q).

Proof of Theorem 1.1. The first term is the time needed to compute h(P ). The second term
comes from the complexity bound for the computation of Ψf (P ) (using logD � log ‖W‖)
from Proposition 6.1. The third term is the bound for the computation of Ψ∞(P ) given in
Proposition 5.1.

7. Implementation and Examples

We have implemented our algorithm using the computer algebra system Magma [5]. In
the current implementation, the factorization into coprimes in the algorithm preceding
Proposition 6.1 uses a relatively simple algorithm due to Buchmann and Lenstra [8,
Proposition 6.5] instead of the faster algorithm of [2] (or of [3]). In practice, the running
time of this part of the algorithm appears to be negligible.

Let us compare our implementation to Magma’s built-in command CanonicalHeight

(version 2.21-2). The latter uses the method of Bost–Mestre for the computation of the
archimedean local height. For the finite part of the height, a globally minimal Weierstrass
model is computed. The non-archimedean contributions are then computed separately using
the algorithm from [14]; the relevant primes are found by factorizing gcd(δ1(x1, x2), δ2(x1, x2)),
where (x1, x2) is a primitive pair of Kummer coordinates for a point P . The same strategy is
currently used in Pari/GP. The computer algebra system Sage contains an implementation of,
essentially, Silverman’s original algorithm for the computation of canonical heights from [14];
in particular, it factorizes the discriminant.
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Example 1. Consider the family Ea of curves given by the Weierstrass equation

Wa : y2 = x3 − ax+ a,

where a is an integer, and the non-torsion point P = (1, 1) on Ea. To compute ĥ(P ),
Magma needs to find a globally minimal model for Ea, which boils down to deciding
whether a sixth power of a prime divides a. Hence, for random integers a of large
absolute value, the Magma implementation becomes slow. For instance, taking a to be
5340200419833800017985460942490398389444339691251749039558531515293241873258929634112121245344691478, which has 100
digits and is of the form a = 2 · 37 · a′ with a′ composite, Magma’s built-in CanonicalHeight

takes about an hour, but our implementation needs only 0.001 s to compute ĥ(P ) to 30
decimal digits of precision. For these computations, and the ones below, we used a Dell
Latitude E7440 Laptop with 8 GB of memory and an i5-4300U CPU with two cores having
1.9 GHz each. For a equal to 115649893384795953398883187939881613043897694784028452529258425025293802195204696

39630008648580579144420644034811856542472168315806833370153467480796669618513200953623811052728493745808300717019759850,
which has 200 digits and factorizes as a = 2 · 32 · 52 · a′ with a′ composite, the computation of
ĥ(P ) using our implementation takes 0.003 s, whereas Magma needs about 5 h and 30 min.

Finally, we look at the 500-digit number a = 2827680552318108632932814118841641560630470858973477817578971

661824087775869298113031993537983620824509955240160299513508612337439203295411762778576874861686362808346426902357565834

678351754150539150287382646650368854949603944852250499352900341147968844836101223685296862173154902553901481398879346590

153031505842226530360178416613777225501497807415587146715112586124106534351729435112961600134931787708117028525772977327

0941059335530220433045635898507554473398924420918799034729911478550230429211184, which factorizes as the product
a = 24 · 23 · 71 · a′ with a′ composite. Our implementation needs 0.009 s to compute ĥ(P );
Magma’s CanonicalHeight did not terminate in six weeks. For this a, the computation of the
canonical height of 50P , which has naive height h(50P ) ≈ 1437536.77, took 0.215 s, whereas
it took Magma 2.83 s to even compute 50P !

For random a having 5000 digits, the computation of ĥ(P ) to the standard precision
of 30 decimal digits usually takes about 0.7 s. Our implementation is usually faster
than CanonicalHeight if a has at least 18 decimal digits. Note that in contrast to our
implementation, the Magma implementation of the algorithm of Bost–Mestre for λ̂∞ is written
in C.

The family Ea has no special properties or applications that we are aware of; it was merely
chosen for testing purposes.

Acknowledgements. We would like to thank Jean-François Mestre for providing us with a
copy of the unpublished manuscript [6], Mark Watkins for answering our questions about the
computation of canonical heights in Magma, and Elliot Wells for pointing out an inaccuracy
in Algorithm 2 and the complexity analysis in Proposition 6.1, and Marco Caselli for pointing
out an inaccuracy in the statement of Proposition 3.1.
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