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EQUIVARIANCE AND IMPRIMIVITY FOR
DISCRETE HOPF C'-COACTIONS

S. KALISZEWSKI AND JOHN QUIGG

Let U, V, and W be multiplicative unitaries coining from discrete Kac systems such
that W is an amenable normal submultiplicative unitary of V with quotient U. We
define notions for right-Hilbert bimodules of coactions of Sy and Sy, their restrictions
to Sw and Su, their dual coactions, and their full and reduced crossed products. If
N(A) denotes the imprimitivity bimodule associated to a coaction S of Sy on a C-
algebra A by Ng's imprimitivity theorem, we prove that for a suitably nondegenerate
injective right-Hilbert bimodule coaction of Sv on yi-Xfl, the balanced tensor products
N{A) ®Ax§w (AXB x Sw) and (AXB X Sy x r Sy) ®Bx.Svx.rsv

 N(B) a r e isomorphic
right-Hilbert Ax SvXrSu - Bx Sw bimodules. This can be interpreted as a natural
equivalence between certain crossed-product functors.

1. INTRODUCTION

Since Baaj and Skandalis introduced multiplicative unitaries in [2] as a generalisation
of locally compact groups, and proved a duality theorem [2, Theoreme 7.5] for crossed
products by coactions of the associated Hopf C*-algebras, there has been much interest
in extending other results for group actions and coactions to this context. Recently Ng
[18] has defined notions of sub- and quotient multiplicative unitaries, and has proved that
for multiplicative unitaries U, V, and W coming from discrete Kac systems such that
W is an amenable normal submultiplicative unitary of V with quotient U, and for any
injective nondegenerate coaction 5 of Sy on a C*-algebra A, the iterated crossed product
A xs Sy x j | r Su is Morita equivalent to A xS\ Sw [18, Theorem 3.4]. This is an analog
both of Green's celebrated imprimitivity theorem [9], which implies that for an action a
of a group G on A and a closed normal subgroup N of G, A xaG Xs\ G/N is Morita
equivalent to A xa\ N, and of Mansfield's imprimitivity theorem [15] for coactions (as
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generalised to non-amenable groups in [11]), which provides a Morita equivalence between
AxsGx^,N and A x^ G/N for a coaction <$ (satisfying a mild condition) of G on A and
any closed normal subgroup N of G. For discrete multiplicative unitaries, Ng's theorem
generalises Baaj-Skandalis duality (ignoring differences between full and reduced crossed
products) in the same way that Green's theorem generalises Imai-Takai-Takesaki duality
[10], and Mansfield's theorem generalises the duality of Katayama [13].

Now the significance of Green's theorem is that his imprimitivity bimodule may
be viewed as a Hilbert i 4x o | iV-module with a nondegenerate left action of A xa G
by adjointable operators, and thus allows induction of representations from A xa\ N to
A xaG via Rieffel's framework [21]. Similarly, Mansfield's bimodule allows induction of
representations from A x g\ G/N to A Xg G. The representation-inducing processes aris-
ing from these bimodules, and their interactions with one another, have received much
attention lately (see [3, 8, 5, 12, 20]), and the method that has evolved is to work
with the bimodules that implement the inducing maps on representations, rather than
with those inducing maps themselves. We call the bimodules involved right-Hilbert bi-
modules; they are essentially imprimitivity bimodules K%B together with nondegenerate
homomorphisms of A into M{K).

The equivariant right-Hilbert bimodules — that is, those right-Hilbert bimodules
AXB which carry compatible actions or coactions of a group G — turn out to be
closely related to imprimitivity theorems. In work with Echterhoff and Raeburn which is
currently in preparation we have shown, for example, that Green's imprimitivity the-
orem can be viewed as a natural equivalence between the crossed product functors
(A,G,a) >-¥ A xaG x$\ G/N and (A,G,a) >-* A xa\ N defined on a category whose
objects are C*-algebras with actions of G and whose morphisms (A, a) —* (B, /?) are
(isomorphism classes) of equivariant right-Hilbert A - B bimodules [4].

In this paper, we show that Ng's imprimitivity theorem is similarly compatible with
equivariant right-Hilbert bimodules. To do so, we must first develop a theory of coactions
of Hopf C*-algebras Sv and Sy on right-Hilbert bimodules, and their crossed products;
this is done as efficiently as possible in Section 2 by building for the most part on Ng's
imprimitivity bimodule apparatus [16]. In Section 3, we review Ng's fixed-point theorem
[18, Proposition 2.11], since it provides the construction of the bimodule which appears
in his imprimitivity theorem. Here we prove two lemmas relating Ng's bimodule to the
linking algebra and standard right-Hilbert bimodule (see below) constructions we use in
proving our main theorem.

In the final section, we prove our main result: for U, V, and W as in Ng's theorem,
and for a suitably nondegenerate injective right-Hilbert bimodule coaction of Sv on

as right-Hilbert AxSyXrSu - BxSw bimodules, where N(A) denotes Ng's AxSvXrSu
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-Ax Sw imprimitivity bimodule (and similarly for N(B)). As discussed above for
group actions, this should give a natural equivalence between certain crossed-product
functors, although we don't formalise this in the present paper. (Part of our point here is
that any reasonable imprimitivity theorem should be compatible with equivariant right-
Hilbert bimodules, and that the proof of this, following the same strategy we use in
the proof of Theorem 4.1, should be relatively straightforward.) Our theorem should
have implications for induced and restricted representations of crossed products by Hopf
C*-algebras, and for equivariant KK-theoiy as in [1].

PRELIMINARIES

For compatibility with Ng's work on imprimitivity bimodules, we define a right-
Hilbert A - B bimodule over C*-algebras A and B to be an imprimitivity bimodule

KXB together with a nondegenerate homomorphism of A into M(K). If X is a full
Hilbert B-module (see [14]), then X is a K-B{X) - B imprimitivity bimodule, and
M(KB{X)) = CB(X), so this is the same as having a nondegenerate action of A by
adjointable operators on X. Note that K itself becomes a right-Hilbert A - K bimod-
ule by using the natural K - K imprimitivity bimodule structure on K; we call this
a standard right-Hilbert bimodule. We have the decomposition AXB — A K ®K XB of
any right-Hilbert bimodule as a balanced tensor product of a standard bimodule and an
imprimitivity bimodule. We use the conventions of [6] regarding multiplier bimodules,
linking algebras, and homomorphisms of imprimitivity bimodules.

Let (S,6s) be a Hopf C*-algebra, and let 6: A —• M(A <g> 5) be a coaction of S
on a C*-algebra A, as in [2, Definition 0.2]. The coaction S is called nondegenerate
if span{J4(,4)(1 <S> S)} — A ® S. A covariant pair for (A,S,S) on a C*-algebra B
consists of a nondegenerate homomorphism 6: A —>• M(B) and a unitary corepresentation
u € M(B <S> S) of S such that

(9 <8> id) o S(a) = Ad(«) (0(a) <8> l )

for each a e A [17, Definition 2.8]. The full crossed product for (A, S, 6) is a C*-algebra
A x5 S together with a universal covariant pair (j, v) for (A, S, 6) on A xs S [17, Defini-
tion 2.11(b)]. If S = Sv for a multiplicative unitary V coming from a Kac system (see
below), we write 4̂ x^ Sy (with no hat) for A Xg S-

Let V e C(H ® H) be a regular multiplicative unitary as in [2]. We let L and p
denote the maps of C(H). into C(H) defined by

L{u>) =-(u <g> id)(K) and /?(w)

then we have the associated reduced Hopf C*-algebras

Sv = span{L(w) | w € C(H).} and Sv = spaa{p(w) \ u e C{H).}
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with comultiplications 8y and Sy, respectively, given by

5v(x) = V(x ® 1)V* and 6v{y) = V'(l ® y)V

[2, Theoreme 3.8]. The corresponding full Hopf C*-algebras are denoted (Sv)p and (Sv)P,
but their comultiplications are still denoted Sy and 6y [2, Corollaire A.6]. We view L
both as a faithful representation of Sv and as a nondegenerate representation of (Sv)p on
C(H); similarly, we view p as a map on both Sv and (Sv)p (see [17, Proposition 1.16(i)]).

The unitary corepresentations u € M(B®Sy) of Sy are in bijective correspondence
with the nondegenerate homomorphisms v: {Sy)p -> M(B) [17, Lemma2.6]. If (A, Sy,6)
is a coaction, by [17, Remark 2.12(b)] we have

A xs Sv - span{j(a)u{y) | a € A, y € (SV)P},

where fj.: {Sy)p -*• M(A xs Sy) is the nondegenerate homomorphism corresponding to v.
For every pair of homomorphisms 0: A —¥ M(B) and v: (Sy)p —¥ M(B) coming from a
covariant pair (6, u), there is (by definition of the crossed product) a unique nondegenerate
homomorphism 6 x i/: Axs Sv —> M(B) such that

(9 x u) o j = 8 and (6 x u) o p = v,

and the latter condition is equivalent to

({Ox

Let nL = (id®L) o 6: A -± CA{A <g> H). Then the reduced crossed product [17,
Definition 2.11 (a)] is

(a){l®p(w)) \a€A, u

The reduced crossed product by a coaction 6P of {Sy)p is defined similarly, and we have

A x«p,r (SV)P = A xs,r Sv,

where the coaction 5 = (id®L) o 6P of Sy is the reduction of <5P [17, Proposition 2.14].
There is a dual coaction 6 of {Sy)p on the full crossed product A xt Sy which satisfies

for all a € A, y 6 (-Sv)?; we also denote its reduction by 6 [19, Proposition 2.13].

Now suppose V comes from a Kac system (H, V,U) [2, Definition 6.4]. For any
coaction 6 of Sv on A, we have

(1.1) A xStT Sy = span{7r L (a ) ( l ® p(w)) \aeA, UJ£ C{H).} C CA{A ® H).
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Similarly, for any coaction 6 of SV on A, we denote the reduced crossed product by
A xitT Sv [2, Definition 7.1], and we have

(1.2) A X i , r 5 v = s p a n | 7 r A ( a ) ( l ® L ( w ) ) \a€A, w € C(H),\ C.CA(A®H),

where A = Ad(U) o p and K\ = (id ®\) o 5 [2, Lemme 7.2].

It is important to note that for any Kac system (H, V, U), (H, V, U) is also a Kac
system [2, Proposition 6.5], where V — T,{U®\)V{U®\)H and £ denotes the flip operator
on H <S> H, and that then (SV,<$v) — (Sv,5y) as a consequence of [2, Proposition 6.7].
Hence, for any coaction (A,SV,8) there is a coaction (A, Sv,8') such that A xs Sv =
AxgiSy and A X{TSv — AxgitTSv. Thus any results about crossed products by coactions
of Sy always yield analogous results for coactions of Sv'- for example, Equation (1.2)
above can be derived from Equation (1.1) by replacing V by V.

Let V be a regular multiplicative unitary, and let ip: A -* M(B) be a nondegenerate
homomorphism which is equivariant for coactions 8A and 6B of Sv', that is, such that

6B oij) = id) o6A.

If {JBIVB) is the universal covariant pair for (B,SV,8B) on B x Sv, then (js ° IP,VB)

is a covariant pair for (A,Sv,6A), so we get a nondegenerate homomorphism ip x Sv =
{JB°i>) x fJ'B- Ax Sv —>• M(B x Sv), where \xB '• (Sv)P -* M(A x Sv) corresponds to VB
as in [17, Lemma 2.6]. If ip is equivariant for coactions of Sv on A and B, we likewise
get a nondegenerate homomorphism tp x Sv • A x Sv —* M(B x Sv)-

The analogous result for reduced crossed products, which we shall need in order to
define the reduced right-Hilbert bimodule crossed products in the next section, requires
a bit more work:

LEMMA 1 . 1 . Let V be a regular multiplicative unitary on a Hilbert space H,
and let 6A and 8B be coactions of Sv on C*-algebras A and B. Suppose also that
ip: A -> M(B) is a 5A - 5B equivariant nondegenerate homomorphism. Then there exists
a nondegenerate homomorphism ^ x r Sv'- A XSAIT SV -* M(B X6B<T SV) such that

(1.3) W-XrS

for a € A and y € Sv-

PROOF: AS in the proof of [2, Theoreme 7.5], ^4xr5v acts nondegenerately on A®H,
and therefore on (A <S> H) ®A B, where B is the standard right-Hilbert A - B bimodule
arising from tp. It is straightforward to check that the map $ : (A ® H) ®A B -* B ® H
determined by
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is a Hilbert B-module isomorphism; thus CB({A®H) ®AB) = CB(B®H), SO we obtain
a nondegenerate homomorphism ip x r Sv • A x r Sv -* CB{B ® H) characterised by

for a, c 6 A, y € Sv, £ € # , and 6 6 B.

Now for a, c,f, and b as above, factor f = £(1)77 for some x e Sv and rj € H, and
n

choose Oj € A and Xj e 5v such that <S/i(a)(l ® x) ss 5Z a» ® ̂ i- Then we have

® 0 ®^ 6)) = *(^(o)(c®0 04 6)

= $ ((id ®L) o ̂ ( 0 ) (c ® 1,(1)77)

= $ ((id ®L) («A(a

® xt){c ® IJ) ®A 6)

c)6 ® 77)

&{ip®L)(6A(a){l®x))(ip{c)b®r])

so that (^ x r 5\/)(7r^(a)) = wf (V'(a)). Since it is straightforward to check that (\p x r

5v) ( l ® piy)) = 1 ® p{y) for y € 5v, this shows that rp x r Sv maps A x r Sv into
M(J5 x r Sv) C £ B (B ® H) and also establishes Equation (1.3), which in turn makes it
evident that i/> x r Sv is nondegenerate. D
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2 . COACTIONS ON RIGHT-HlLBERT BIMODULES

Let V be a regular multiplicative unitary. For simplicity, we shall just write 5 for
Sv and S for Sv- We define a coaction of the Hopf C*-algebra 5 on a right-Hilbert A
- B bimodule X to be an imprimitivity bimodule coaction {SK,5X,SB) of 5 on K%B
[16, Definition 3.3(a)] together with a C*-coaction 5A of 5 on A such that the associated
homomorphism ip: A —> M(K) is 5 A - 5K equivariant. We say that a right-Hilbert
bimodule coaction (5 A, 5 x, 5 B) is injective if 8A and SB are (in which case 5x will be
also), and we say it is nondegenerate if 6A and 6B are nondegenerate C*-coactions.

Given an imprimitivity bimodule coaction {6K,5x,5B) of 5 on KXB, the rule

6x{x)

6x(yT 6B(b)

IK X\
defines a coaction 5L of S on the linking algebra L(X) — I ~ I [16, Lemma 3.7].\X BJ
Departing slightly from Ng, we shall define the imprimitivity bimodule crossed product

-(K-x)

itivity bimodu

KXB x6xSto be the corner jL(p) (L(X) XSL S)jfL(g), where P = I Q n) ^ 9 = ( 0 l )

are the canonical projections in M(L(X)). By [16, Theorem 3.11], KXB *sx S is then a
K XjK S - B xsB S imprimitivity bimodule which is an imprimitivity bimodule crossed
product in Ng's sense [16, Definition 3.5(b)], and we have

BXSBSJ

Similarly (this time in keeping with Ng), we define the reduced crossed product KXB x«x,r

S to be (idigiL) o 5L(p)(L(X) xiL, S)(id®L) o 5L(q) [16, Remark 3.20(a)]. By the proof
of [16, Proposition 3.19], it is a A" x$K,r S - B xSBit. S imprimitivity bimodule, and

•rf ]=L(Xx,x,rS).

Now given a right-Hilbert bimodule coaction {6A,8X,&B) of 5 on AXB, the non-
degenerate homomorphism ip x S: A x S -> M(K x S) makes KXB x S into a right-
Hilbert Ax S - B x S bimodule, which we denote by AXB X S and call the right-Hilbert
bimodule crossed product of AXB by 5. Similarly, the nondegenerate homomorphism
rpxr§: AxTS -»• M(K xr S) of Lemma 1.1 makes KXB x r S into a right-Hilbert A xr S
- B xT S bimodule, which we denote AXB XT S. If V comes from a Kac system, we de-
fine right-Hilbert bimodule coactions of Sv — Sy and the right-Hilbert bimodule crossed
products A%B X SV and AXB x r SV by replacing V with V in the above definitions.

If (6K,6X,O~B) is an imprimitivity bimodule coaction of S on KXB, it is straightfor-
ward to check that the dual coaction Si of Sp on L(X) x S restricts to the dual coactions
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6K and 6B on the diagonal corners K x S and B x S. The restriction of 5i to the upper
right corner K%B X S gives a map 6x such that (6K,6X,6B) is an imprimitivity bimod-
ule coaction of Sp on KXB x 5 which we call the dual imprimitivity bimodule coaction.
(One can show that this definition agrees with that given for Hilbert modules in [16,
Remark 2.18].) If (6A,6X,6B) is a right-Hilbert bimodule coaction of 5 on AXB, we de-
fine the dual coaction of Sp on AXB x 5 to be the dual imprimitivity bimodule coaction
(6K,O~X,6B), together with the dual C*-coaction 6A- Since

x 5) <S> id) o SA(jA(a)nA(y)) = ((i> x 5 ) ® id) ( ( ^ ( o ) ® l)(pA ® id)(?v(»)))

for all a € A, y € Sp, the nondegenerate homomorphism ip x S: A x 5 -> Af(ii' x 5) is
<5>i - 5K equivariant, so this is indeed a right-Hilbert bimodule coaction.

Given a right-Hilbert bimodule coaction (6A,6K,6K) of 5 on a standard bimodule
AKK, we have potentially two different right-Hilbert A x S - K x S bimodules: the
bimodule crossed product AKK X S and the standard bimodule formed from the C*-
algebra crossed product K x S and the nondegenerate homomorphism ip x S: Ax S —>
M(K x S). The following lemma shows that these coincide; in other words, a crossed
product of a standard bimodule is a standard bimodule.

LEMMA 2 . 1 . Let V be a regular multiplicative unitary, and let (6A, 6K, 5K) be a
right-Hilbert bimodule coaction ofS = Sy on a standard bimodule AKK- Then the right-
Hilbert bimodule crossed product AKK XiK S is isomorphic to the C*-crossed product
K XSK S as a right-Hilbert A x$A S - K xil( S bimodule. An analogous statement also
holds for the reduced crossed products.

P R O O F : Since AKK x 5 is by definition KKK * S with the same homomorphism
T/I x S, it suffices to show that KKK x 5 is isomorphic to the C*-crossed product K xs S

-(KK)as a. K XSK S - K XgK S imprimitivity bimodule. Let L = ( v ^ J be the linking

algebra for KK

Theorem 3.11],

( 5K 5K\
I be the associated coaction. Then by [16,

OK OK I

s ) •S

and the projection j[ n n ) in M(L XgL S) corresponds to ( ^ x 5
 n J under this

isomorphism.
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[9] Discrete Hopf C"-coactions 261

Let M2 denote the C*-algebra of two-by-two matrices over C. Then the canonical

isomorphism <J>: M2 ® K ->• L determined by $ I I , I ® k I = I , „ I is clearly
, r r , \\c al J \ck dkl

id ®6K - OK equivariant; thus \ \ / / \ /

(2.2) L XSL S ^ (M2 ® K) xidls6K S.

Note that this isomorphism takes j \ K I 6 M(L XSL S) to j I I I <S> 1/c 1 G

M((M2®K)xid*SKS). \° V VV° V J

We next claim that

(2.3) {M2®K)XU96KSS£M2®(KXSK!§).

For if i denotes the trivial coaction of C on M2, then [17, Proposition 3.2] implies that

(M2 ® K) xie,6l< C^S ^ (M2 x t C) ® (iT x,5K 5) ,
and the right and left sides of this equation are naturally isomorphic to the right

and left sides, respectively, of Equation (2.3). Under this isomorphism, the projec-

J ®

()
tion j l l I ® IK-J e M((M2 ® K) xid®SK S) is carried to I

M(M2®(KXSKS)).

Combining Equations (2.1), (2.2), and (2.3), we have

J ® 1 ^ ^ e

and since j I K I maps to j I ® 1, it follows that the corners K^K XSK S and

K XjK S are isomorphic as K xsK S - K xgK S imprimitivity bimodules.

For the reduced crossed products, it again suffices to show that KKK x r 5 is isomor-
phic to K xT S as a K x r 5 - K xr S imprimitivity bimodule. By [16, Remark 3.20(a)]
we have

KKK xr §y

KKKK XT S KXTS

and it follows from equivariance of $ : M2 ® K —• L that

•( .

L X6L>T S^{M2® K) x u a , , , 5.

Applying [17, Proposition 3.3], which is the reduced version of [17, Proposition 3.2], we
get

(M2 ® K) xmKir C ® 5 S (M2 x l i r C) ® (K XSK,r S),
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and hence
(M2 ® K) xT S S M2 ® {K xr 5).

Combining these isomorphisms and matching up the projections as above, it follows that

RKK *iK,r S^K XSK,T S. D

For the proof of our main result (Theorem 4.1) we shall need to know that the

decomposition AXB — AK ®K XB is equivariant:

LEMMA 2 . 2 . Let V be a regular multiplicative unitary, let (6A, 6X,SB) be a right-
Hilbert bimodule coaction ofS = Sy on AXB, and let 6K be the associated coaction on
K — KB{X). Then there exist right-Hilbert bimodule isomorphisms

AXB xSx S a UKK XSK S) ®KXS (KXB X , X 5)

and

AXB x j J [ l f S S (AKK x , K , S) ®KXrS {KXB xSxir §).

P R O O F : By definition, AXB xgx S is the imprimitivity bimodule KXB *6X S with the
nondegenerate homomorphism ip x S: A x S -> M{K x S) arising from V»: A -> M(K).
Since AKK x 5 is KKK X S with the same map, for the first isomorphism it suffices to
show that KXB *SX S = {RKR X«K -5) <8>Kx§ (KXB XSX S) as imprimitivity bimodules.
But by Lemma 2.1, KKK x 5 = K x S, so the result follows from the usual cancellation
C®CY^Y.

The assertion about the reduced crossed products follows similarly from Lemma 2.1. D

3. T H E FIXED-POINT THEOREM

Based upon the familiar results for actions of compact groups and coactions of dis-
crete groups, one would guess that the crossed product by a coaction of a Hopf C*-algebra
of compact type is Morita equivalent to the fixed-point algebra. In [18] Ng proves a ver-
sion of this fixed-point theorem, and this is crucial for his imprimitivity theorem, which
we study in the next section. (We should point out that the imprimitivity theorem natu-
rally involves a coaction of Su for a multiplicative unitary U coming from a discrete Kac
system, but is proved by applying the fixed-point theorem to the corresponding coaction
of SQ, where U is compact.) Here we recall Ng's fixed-point result and establish some re-
lations to multipliers and bimodules, in preparation for our work with Ng's imprimitivity
theorem in Section 4.

Let V be a regular multiplicative unitary of compact type such that Sy has a faithful
Haar state (p. Again we shall just write 5 for Sv and 5 for Sv- Let (J be a coaction of S
on a C*-algebra A which is effective in the sense that

l)} =A®S.
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Ng shows in two steps [18, Theorem 2.7 and Proposition 2.9] that the reduced crossed
product A x 4 r S is Morita equivalent to the fixed-point algebra A1. Since it will simplify
our computations with the imprimitivity bimodule, we shall combine Ng's two steps into
one.

Ng's strategy is to use a nonunital version of Watatani's C*-basic construction [22].
The map E = EA = (id ®ip) o 6 is a conditional expectation of A onto A1, and so
A becomes a full pre-Hilbert .A*-module under right multiplication and the pre-inner
product

(a,b)AS=E(a'b).

The Hausdorff completion of the pre-Hilbert ,4*-module A is a full Hilbert >l*-module,
denoted T = T{A). Let 77 = t]A be the canonical map of A into T, and define eA 6 CAi (!F)
and A = XA: A -> CAt{T) by

eAT}{a) = 7}(E{a)) and X(a)r)(b) = 77(06).

Then the C*-basic construction is defined to be the closed span in CAs(F) of X{A)eAX(A),
and is denoted C* (A,eA). Since

eAX(a)eA = X(E(a))eA and E(a') = E(a);

C (A, eA) is a C*-algebra; in fact, a routine computation shows C* (A, eA) coincides with
the imprimitivity algebra K,As{T). Moreover, a short computation shows that the left
inner product is given on the generators by

c(A,eA)(v(a),v(b)) = Ha)eAX(b').

Therefore, the Hausdorff completion T of the span{A(.A)e,tA(.4)} - As pre-imprimitivity
bimodule A is a C* (A, eA) - As imprimitivity bimodule.

Ng's first step is to temporarily assume the coaction 6 is injective. Then the condi-
tional expectation E is faithful, and Ng proves [18, Theorem 2.7] that in this case the
map

X(a)eAX(b)^6(a)(l®p(<p))6(b)

extends to an isomorphism of the C*-basic construction C* (A, eA) onto the reduced
crossed product A *s,r S, where

which, as Ng observes in [18, proof of Lemma 2.5], is a member of S.

Ng's second step is to remove the injectivity condition on 5 and note that, if we put
/ = ker<5, there is an injective coaction 8' on A/I given by 6'(q(a)) = (q®id)oS(a), where
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q: A —• A/1 is the quotient map. Then 5' is also effective, q maps A6 isomorphically
onto (A/I)6', and the reduced crossed products A x f r 5 and (A/I) Xs\r S coincide. Ng
deduces as a corollary [18, Proposition 2.9] that A XfT S is still Morita equivalent to A1.

To combine Ng's two steps, note that in the second step the imprimitivity bimodule
T(A/I) is the completion of A/1 with inner product

(q(a), q(b)){A/l)t, = EAI,(q(a)'q(b)) = q o EA(a'b) = q({a, b)A,).

Since q is faithful on the image of {-,-)As, F{A/I) can be identified with !F(A). More
precisely, the map rjA(a) i-t r]A/i(<}(a)) is well-defined and extends to an isomorphism
$ of the Hilbert j4*-module T(A) onto the Hilbert (^ / / / -module F(A/I), with right
coefficient map q\As. Moreover, a short computation shows

*{\A{a)eA\A(b)r,A(c)) = XA/I{q(a))eA/IXA/r{q(b))^>(VA(c)),

so $ is in fact an isomorphism of the C* (A, eA) - As imprimitivity bimodule T(A) onto
the C* (A/I,eA/[) - (A/I)6' imprimitivity bimodule F(A/I), with left coefficient map
determined by

\A(a)eA\A(b) H-> \A/i{q(a))eA;r\A/r(q(b)).

Combining with the isomorphism

XA/i(q(a))eA/lXA/I(q(b)) -> 5'(q(a))(l ® p(<p))6'(q(b))

of C (A/I,eA/i) onto (A/1) Xs',TS, and with the identification of AxStTS and (A/1) xf«>r

5, we get an isomorphism

XA(a)eAX(b) i-> 6{a)(l ® p(<p))6(b)

of C* (A, eA) onto A Xs,r S. Putting all this together, we have a one-step version of Ng's
fixed-point theorem [18, Proposition 2.11] — although we haven't addressed the case of
coactions by Sp:

PROPOSITION 3 . 1 . [18] IfV is a regular multiplicative unitary of compact

type such that S = Sy has a faithful Haar state <p, and if 6 is an effective coaction

of S on A, then A is a pre-imprimitivity bimodule between t ie pre-C-algebra B =
spanJ£(A)(l <S> p(<p))5(A)\ and the fixed-point algebra A6, with operations given for

a,b,c£ A and d e As by

( ) ) c = aE(bc)

a- d — ad

Consequently, the HausdorS completion T(A) of A is an A xir S - A6 imprimitivity

bimodule.
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Now let (SA,SX,SB) be a coaction of 5 on an A - B imprimitivity bimodule X, let
L = L{X) be the linking algebra, and let SL be the associated coaction of 5 on L. Then
we have

A®\ 0

= / 6A(A)(A®1) SX(X)-(B®1)\
\SX(X)~-(A®1) SB(B)(B®1) )

and

&X(X) • (B ® 1) = SX{X • B) • (B ® 1)

= SX{X)-5B(B){B<»1);

it follows from this (and by symmetry) that 8L is effective whenever SA and SB are.

Let p = I I € M(L). We shall need the following result in the next section.

LEMMA 3 . 2 . Let V be a regular multiplicative unitary of compact type such that
S = Sy has a faithful Haar state (p, and with notation as above, suppose that SA and SB
are effective. Then the inclusion A"-+ L extends to an isomorphism $ of the AxSA,rS -
ASA imprimitivity bimodule F(A) onto the SL{P){L XgL<r S)5L(p) - pLStp imprimitivity
bimodule 5i(p) • T{L) • p.

PROOF: Let us first make sure we understand all the components of the statement
of the lemma. On the right side of T{V) we regard p as an element of M(L6L), which
naturally embeds in M(L). Since the projections p in M(LSL) and SL(P) = p ® 1 in
M(L xr S) are full, SL{p) • F{L) p is indeed a SL(p)(L x r S)6L(p) - pLlLp imprimitivity
bimodule. We have

SL(p){L xr S)SL(p) = (p® l)span{(5L(L)(lM(L)

= span{(p® l)SL{L)(p® 1){1M(A) ® S)}

= span{<5L(pLp)(lM(/i)

= span{<54(/l)(lM(/i) ® 5)}

= A xT S,

where we have used p = \M(A)- On the other side, since EL\A — EA and the natural
extension of EL to M(L) is a conditional expectation onto M(LSL), we have

= PEL(L)p = EL(pLp) = EA(A) = As\
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Thus, it suffices to show the inclusion A «-» L respects the right inner products and
the left module multiplications. For the inner products, if a, b € A then

(a,b)LlL = EL(a'b) = EA(a'b) = (a,b)AlA .

Turning to the left module multiplications, first note that

6L(P) (1M(L) ® P(<P))6L(P) = P ® p(v) = ^M{A) ® p{f),

so for a,6€^we have

6L{a)(1M(L) ® p{<f))6L{b) = 6A(a)(lM{A) <g> p(tp))6A{b).

Hence, for a, 6, c e A we have

(<SL(a)(lM(L) ® P(<p))<5t(&)) • c = aEL(bc) = aEA{bc)

= (6A{a)(lM{A) ® p(<p))6A(b^J c,

and we're done. D

We'll also need the following lemma concerning standard bimodules.

LEMMA 3 . 3 . Let V be a regular multiplicative unitary of compact type such that

S = Sv has a faithful Haar state (p. Ifip: A -t M(B) is a nondegenerate homomorphism

which is equivariant for effective coactions 6A and 6B of S, then xfr extends to a nonde-

generate imprimitivity bimodule homomorphism $ : ^"(^4) —¥ M(T(B)} with coefficient

maps ip xT S and ip\AsA-

P R O O F : By [12, Lemma 5.1], it's enough to show T/I preserves both module multi-
plications and inner products. For a, b, c £ A and d € ASA we have

ip({6A(a)(l<8>p(<p))6A{b))-cJ = i>{aEA(bc)) = tl>(a)4> o EA(bc)

= (^ xr S)(6A(a){l ® p(f))6A(b)) • tf(c),

ip(a • d) = ip{ad) = tp{a)i>(d) = ip{a) • ip(d),

and

Q
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4. EQUIVARIANCE AND IMPRIMITIVITY

We now turn to the result we call Ng's imprimitivity theorem [18, Theorem 3.4].
This is an analogue, for multiplicative unitaries of discrete type (in fact, coming from dis-
crete Kac systems), of Green's and Mansfield's imprimitivity theorems for group actions
and coactions, respectively. Our main theorem (Theorem 4.1) says that Ng's theorem is
compatible with equivariant right-Hilbert bimodules; we begin by introducing the nota-
tion and construction of Ng's imprimitivity bimodule.

Let U, V, and W be multiplicative unitaries coming from discrete Kac systems, and
assume W is a normal submultiplicative unitary of V and U is the corresponding quotient
(see [18, Definition 3.2]); this implies that there exist surjective Hopf *-homomorphisms
Lv,w • Sv ->• Sw and pv<u: (SV)P -» (Su)P- Thus any coaction 8 of Sy on A can be
restricted to a coaction 8\ = (id <8>Lv,w) °8 of Sw on A, and any dual coaction 5 of (Sy)p

on A XgSv can be restricted to a coaction 6\ = (id ®pv,u)°& of (Su)p on A x6Sv- We can
pass to the corresponding coaction of the reduced C*-algebra Su without changing either
the crossed product or the fixed-point algebra, and we continue to denote this coaction
by?|.

Now assume further that W is amenable, and let pw,v- {Sw)P —* (Sv)P be the
Hopf *-homomorphism vouchsafed by the normality of W in V. Ng shows that if 5 is
nondegenerate, the nondegenerate homomorphism

= JA Pw,v): A xS\ Sw ->• M(A xs Sv)

is actually an isomorphism of A x$| Sw onto the fixed-point algebra (A xg Sy)'', and that

the restricted dual coaction 6\ ofSu is effective. Viewing this as an effective coaction of 5^

with U compact, Proposition 3.1 provides an A xsSy xs\trSu - (A xsSy)^ imprimitivity

bimodule T{A Xg Sv); using the isomorphism <f>A, this becomes an A xs Sv Xj. Su -

Axj | Sw imprimitivity bimodule which we denote by N(A).

With notation as below, we define the map 5X\'- X -> M(X®Sw) to be (id®Z,v,w)°
Sx; it is straightforward to check that then (SK\,8X\,SB\) is an imprimitivity bimodule
coaction of Sw on KXB and that ip: A -¥ M{K) is 6A\ - SK\ equivariant. We call the
resulting right-Hilbert bimodule coaction (SA\, Sx\, #BI) of Sw the restricted coaction from
Sv- The restricted dual right-Hilbert bimodule coaction (<5/I|,I$X|,<$B|) of {Su)p is defined
similarly; its reduction to Su is also denoted ( ^ I ^ X I I ^ B D -

THEOREM 4 . 1 . Let U, V, and W be multiplicative unitaries coming from dis-
crete Kac systems, with W an amenable normal submultiplicative unitary of V and U
the corresponding quotient. Let (SA,SX,SB) be an injective, nondegenerate coaction of
Sv on a right-Hilbert A - B bimodule X, and suppose that the associated coaction 6K

https://doi.org/10.1017/S0004972700018736 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018736


268 S. Kaliszewski and J. Quigg [16]

on t i e imprimitivity algebra of X is also nondegenerate. Then the diagram

A XSA SV XgAlr Su - ^ > A XSA\ SW

(4.1)

B XSB SV xf f i | r Sv > B XSB1 SW
N(B)

commutes in the sense that

x Sw) a (AXB x Sv x r Sv) <S>Bx§vxrSu
 N(B)

as right-Hubert A x Sv x r Su - B x Sw bimodules.

PROOF: By definition we have an imprimitivity bimodule RXB, a nondegenerate
homomorphism tp: A —t M(K), and a coaction 8K of Sv on K = K.B(X) such that tp
is 6A ~ SK equivariant and (SK^X^B) is an imprimitivity bimodule coaction of Sv on
KXB which is nondegenerate by assumption. Our strategy will be to prove a version of
Diagram 4.1 for the imprimitivity bimodule KXB, a version for the standard bimodule
AKK, and then to combine them using the decomposition Lemma 2.2.

First consider the imprimitivity bimodule KXB- let L = L(X) be the linking algebra

of X, let p = I I and 9 = 1 j be the canonical projections in M(L), and let 6L

be the associated coaction of Sy on L. Then 5L is injective since 8K and 5B (hence also
Sx) are. Since 6B is nondegenerate, we have

spSn{6x{X) • (1 ® 5)} = spkn{Sx{X • B) • (1 ® 5)}

= sm{6x{X)-{B®S)}

similarly, the nondegeneracy of 6K implies that span{rfx(-^) • (1 ® S)} — X <S> S. It

follows easily that 5L is nondegenerate as well. Thus, by [18, Theorem 3.4], we have a

K XSK SV
 xsK\r^v ~ K x ^ i 5 ^ imprimitivity bimodule N(K), and an L XSL SV

 X J L | r 5 y

- L XSL\ Sw imprimitivity bimodule N(L). We claim that

(4.2) N{K) ®Kx§w {KXB x Sw) = (KXB X SV x r Sv)

as K x Sv xT Su - B x Sw imprimitivity bimodules.

(4.3) L(X) x, t | Sw a L(X xSx\ Sw).
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A l s o , (L(X) x S v , ( S v ) p , 6 L ) S (L(X x S v ) , ( S V ) P , e L ) , w h e r e e L = ( - * / ) l t f o l l o w s

5X|
that the coactions SL\ and ez,| = I -j- — I of (Su)p are isomorphic, and therefore that

\6x\ 6B\J
their reductions are, so that

(4.4) L(X) XSL SV x ? [ | r Su 3 Lpf x4jc Sv) x e t | , 5c/ S L(jf x , x Sv x?x | ? r Sy).

Let pn/,9w £ M(L(X X S W ) ) and P{/,<ft/ € M(X-(X x Sv x r Su)) be the canonical
projections. Then using Equations (4.3) and (4.4) to view N(L) as an L{X x Sv x r Su)
- L{X x Sw) imprimitivity bimodule, [7, Lemma 4.6] gives us a K x Sv x r Su - B x Sw

imprimitivity bimodule isomorphism

(pu • N(L) • pw) <8>Kxsw (KXB x Sw)

a (KXB x Sv x r Su) ®BXSVX,SU (<lu • N(L) • qw).

Thus, in order to establish Equation (4.2) we only need imprimitivity bimodule
isomorphisms pv • N(L) • pw — N(K) and qu • N(L) • qw — N(B), and by symmetry it
suffices to prove the first. Now the isomorphism L(X x Sv x r Su) = L(X x Sv) x r Su

takes pu to £L{pv), and the isomorphisms L{X x Sw) = L{X) xSw= (L{X) x Sv)^1 =
L(X x Sv)£ t ' carry pw to pv- Therefore, Lemma 3.2 (applied to the coaction of SQ on
L x r Sv equivalent to 6L\) tells us that

Pu • N(L) • Pw a eL(pv) • T{L x r Sv) • Pv = ?{K x r Sv) a AT(/r),

which gives Equation (4.2).

Next we consider the standard bimodule AK-K with the right-Hilbert bimodule coac-

tion {5A, 6K, 5K)- We claim that

(4.5) N(A) ®AxSw (AKK x Sw) S U/ifir x Sv x r Sv) ®KxSvXrSu N(K)

as right-Hilbert A x Sv x r Sy - K x Sw bimodules; by [12, Lemma 5.3] and Lemma 2.1, it
is enough to show that there is a nondegenerate imprimitivity bimodule homomorphism
\£ from N(A) to M(N(K)) with coefficient maps ip x Sv x r Sy and ip x Sjy- Applying
Lemma 3.3 to the nondegenerate homomorphism ip x Sv: A x Sv —• M(A" x Sv), which
is equivariant for the coactions (of SQ equivalent to) 6A\ and SK\ of Sy, we obtain a
nondegenerate imprimitivity bimodule homomorphism # : .^(.4 x Sv) -> M{T{K x Sv))
with coefficient maps ip x Sv *rSu and (^ x ^vJI/^^j j»A|. Now by definition, ipx Sv =

UK °ip) X MK> an(^ Ng's isomorphism ^ : A x Sw -+ (A x Sv)*'*' is j \ x {n\ o
Thus,

<t>Ko{il)x Sw) = {JK x (M£ ) ( ]^

= 0'^ ° ip) x

= (O'Jr ° V-)
= (4>x Sv) o
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This shows that the isomorphisms <j>A: A x Sw -*• (A x SV)SA^ and cj>K: K x Sw ->
(K x SvYKi carry the coefficient map (ip x Sv)\{Ax§v)sAi to ip x S^ ; in other words,
viewed as a map of N(A) into M (iV(.ft')), * is a nondegenerate imprimitivity bimod-
ule homomorphism with coefficient maps i\> x Sv x r 5y and xp x Sw, which establishes
Equation (4.5).

We now have a prism

AxSyy

in which the front two faces commute by the above arguments, and the commutativity
of the back face is the desired result; it only remains to show that the two side triangles
commute. That is, we need to know that

AXB x Sv xr Sv S (AKK x Sv xr Sv) x Sv xr Sv)

Sw) ®Kx§w (KXB x Sw)

and

as right-Hilbert A x Sv xrSv - B x Sv xr Sv and A x Sw - B x Sw bimodules, respectively.
But this follows from Lemma 2.2, in the first case applied to the coaction (5A\,?X\,6B\)

of Su on AXB x Sv and then using K x Sv = AKK x Sv from Lemma 2.1. D

REMARK 4.2. For an imprimitivity bimodule coaction (6K,6X,SB) of a Hopf C-
algebra, it is probably true that 8K is nondegenerate whenever 6B is; this would simplify
the hypotheses of Theorem 4.1 somewhat. Unfortunately, we have been unable to find
a proof. (For group coactions, it is true — see [11, Proposition 2.3] — and the proof is
fairly nontrivial.) It may be possible to finesse the problem, but since our main point
here is to illustrate our approach to imprimitivity theorems, we have chosen not to get
mired in nondegeneracy issues.
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