JOURNAL OF GLACIOLOGY

situation is described by eight meteorological characteristics. The results of classification of snowfall situations into avalanching and non-avalanching ones are as follows: reliability of ρ is from 75% to 91%, H from 0.15 to 0.51; based on independent material the reliability of ρ is from 63% to 85%, H from 0.10 to 0.56.

This paper has been accepted in revised form for publication in a later issue of the *Journal* of Glaciology.

ICING RATE ON STATIONARY STRUCTURES UNDER MARINE CONDITIONS

By K. Itagaki

(U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire 03755, U.S.A.)

ABSTRACT. Icing on stationary structures is an increasingly serious problem as off-shore drilling operations in the sub-polar regions becomes more popular. Since this problem is less complicated than icing on a ship, an attempt was made to calculate accretion rate using existing data.

The rate of ice accumulation R can be calculated from $R = C_f C_c F$ where F is the mass flux of the water drops and C_f and C_c are the proportions of spray frozen on the surface and coefficient of capture of drops, respectively. C_c can be close to unity for larger drops such as sea spray. Although many other factors may contribute, C_f seems to be a strong function of the air temperature.

Mass flux can be written as $F = \frac{4}{3}\pi\rho \int n(r) Vr^3 dr$ where n(r) is the number of drops of radius r in unit volume, V is the wind velocity, ρ is the density of water; n(r) is a function of wind velocity and height of observation. For a stationary structure, the mass flux is primarily dependent upon the wind speed.

The ice accretion rate R, calculated using published data on the size distribution of sea spray and using a capture efficiency C_c of I agrees surprisingly well with the diagrams given by previous authors for icing on ships.

680