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Abstract. We demonstrate that a pair of additive quintic equations in at least 34 variables has a
nontrivial integral solution, subject only to an 11-adic solubility hypothesis. This is achieved
by an application of the Hardy^Littlewood method, for which we require a sharp estimate
for a 33.998th moment of quintic exponential sums.We are able to employ p-adic iteration in
a form that allows the estimation of such a mean value over a complete unit square, thereby
providing an approach that is technically simpler than those of previous workers and £exible
enough to be applied to related problems.
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1. Introduction

The application of the Hardy^Littlewood method to simultaneous diagonal
equations provides a rare instance, in the investigation of diophantine equations,
in which reasonable bounds may be established for the number of variables required
to guarantee the existence of nontrivial integral solutions, subject only to local
solubility conditions. Beginning with work of Davenport and Lewis in the 1960s
(see [9, 10]), workers have sought to exploit developments in the circle method
to reap improved conclusions for simultaneous diagonal equations, and especially
for pairs of such equations (see in particular [2^7] and [12]). Oftentimes, serious
technical complications are encountered in such endeavours, and this discourages
widespread use of the new tools. Most recently, Bru« dern [3] has investigated pairs
of diagonal cubic equations in 14 variables, developing a p-adic iteration restricted
to minor arcs appropriate to this problem. Formidable technical dif¢culties
permeate the latter treatment, and the length and complexity of the associated
exposition apparently deterred application of this method to a related problem
involving pairs of diagonal quintic equations (see the preamble to Theorem 3 of
Bru« dern [4]).
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The purpose of this paper is two-fold. On the one hand, we exploit recent mean
value estimates for smooth Weyl sums due to Vaughan and Wooley [17] in an
investigation of the solubility of pairs of diagonal quintic equations. On the other
hand, we seek to provide a £exible alternative to the technically burdensome
methods based on p-adic iterations restricted to minor arcs. Our approach would
appear to possess the same power as that potentially attainable via the latter
methods, yet is suf¢ciently simple that workers might be tempted to apply it to
related problems. In order to be more speci¢c concerning the central problem of
this paper, let c1; . . . ; cs and d1; . . . ; ds be integers, and consider the system of
equations

c1x5
1 þ � � � þ csx5

s ¼ d1x5
1 þ � � � þ dsx5

s ¼ 0: ð1:1Þ

We seek to determine how large s must be to ensure the existence of a nontrivial
integral solution x to this system (that is, a solution x 2 Zs

n f0g).

THEOREM 1. Suppose that sX 34, and that the system ð1:1Þ possesses a nontrivial
11-adic solution. Then the pair of equations ð1:1Þ possesses a nontrivial integral
solution.

One of the ¢rst results of this type was obtained by Cook [7], who established
without any local solubility hypothesis that the system (1.1) has nontrivial integral
solutions whenever sX 51. Assuming the 11-adic solubility of the system (1.1),
Bru« dern [4] (see Theorem 3) improved this bound to sX 37 by employing mean value
estimates of Vaughan [14]. Although the latter bound could be further sharpened to
sX 35 by routinely exploiting recent work of Vaughan and Wooley [17] concerning
Waring’s problem for ¢fth powers, the conclusion embodied in Theorem 1 requires
an altogether more sophisticated strategy, and appears to be the best attainable
in the current state of technology. We remark that Cook [8] has shown that the
system (1.1) has nontrivial 11-adic solutions whenever sX 41, and has also shown
that when p 6¼ 11, the existence of nontrivial p-adic solutions is assured whenever
sX 31. Finally, as is mentioned in Atkinson and Cook [1], it is a simple matter
to construct examples of the type (1.1) with s ¼ 30 that fail to possess nontrivial
11-adic solutions.

In the crudest approaches to problems of the type discussed above, estimates of
Weyl-type for exponential sums compensate for de¢ciencies in the available mean
value estimates, and hence permit an application of the Hardy^Littlewood method
via a traditional division into major and minor arcs. When such an approach fails,
recent ‘ef¢cient differencing’ methods for estimating mean values of exponential
sums over complete unit intervals sometimes fail to establish the desired conclusion
by only the narrowest of margins. Ef¢cient differencing may nonetheless be
attempted in such situations, but now one seeks to restrict the mean value to a
set of minor arcs. First applied by Vaughan [13] in work on sums of cubes, it is
this approach that Bru« dern applies in his impressive tour-de-force [3] devoted to
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pairs of diagonal cubic equations. Such a strategy entails laboriously tracking the
whereabouts of the minor arcs through myriad changes of variable, and requires
an arsenal of precise estimates essential for delicate pruning analyses. Instead of
diving into the technical morass of differencing on minor arcs, we exploit the
marginal failure of conventional ef¢cient differencing through an alternative
mechanism. Given a pair of equations (1.1) in 34 variables, we apply an ef¢cient
differencing process to a mean value, over the complete unit square, involving a
33.998th moment of quintic exponential sums. Drawing inspiration from work
of Wooley [19] devoted to fractional moments of smoothWeyl sums, this task proves
to be relatively straightforward. Our estimate for this mean value scarcely misses the
expected (best possible) upper bound, and moreover a small fraction of an
exponential sum remains with which to gain additional cancellation on the minor
arcs. Indeed, equipped with the fractional moment just alluded to (see Theorem
2.1 below), it now suf¢ces to apply a crude approach similar to that discussed earlier.
We emphasise here the overwhelming simpli¢cations achieved by integrating over a
complete unit square in the differencing process, and those achieved by aiming
for a slightly imprecise upper bound, over the corresponding complex and delicate
analysis required by restricting oneself to minor arcs (as in Bru« dern [3]).

We begin by establishing our fundamental mean value estimate in Section 2 using
the ideas alluded to above. In Section 3, we make some simplifying reductions
and then describe our approach to the theorem via the Hardy^Littlewood method.
With the mean value estimate of Section 2 in hand, we are able to deal with the
minor arcs in a routine manner in Section 4. As we are forced to handle a relatively
thick set of major arcs, the pruning operation undertaken in Section 5 is not without
its technical hurdles. Yet, once these obstacles have been negotiated, we are able to
perform the usual end-game analysis in Section 6 with few unexpected dif¢culties.

Throughout, the letter e denotes a suf¢ciently small positive number. We take P to
be the basic parameter, and this is always presumed suf¢ciently large in terms of e.
The implicit constants in Vinogradov’s well-known notation, � and �, depend
on e and the coef¢cients of implicit diophantine equations, unless otherwise
indicated. When p is a prime number, we write phkn to denote that phjn but
phþ16 jn. Finally, we adopt the convention that whenever e appears in a statement,
either implicitly or explicitly, then we assert that the statement holds for each
e > 0. Note that the ‘value’ of e may consequently change from statement to
statement, and hence also the dependence of implicit constants on e.

2. An Auxiliary Mean Value Estimate

The relative ease with which we establish the central conclusion of this paper is a
consequence of a sharp estimate for a certain fractional moment of quintic Weyl
sums. By employing an ef¢cient differencing process related to that applied in
Wooley [19], we are able to difference four complete Weyl sums in a mean value
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including somewhat fewer than 34 exponential sums. Before describing our
conclusions in detail, we require some notation.

Consider ¢xed integers A, B, a, b, c and d with the property that A > 0, B > 0,
ad 6¼ 0 and ad � bc 6¼ 0. We take Z to be a small positive number, and P to be a
positive number suf¢ciently large in terms of Z, A, B, a, b, c and d. Write

M ¼ P7=41; Q ¼ PM�1; H ¼ PM�5 and R ¼ PZ: ð2:1Þ

As usual, we write eðzÞ for e2piz. When k is a natural number, we write

FkðyÞ ¼
X

1W xWP
ðx;kÞ¼1

eðyx5Þ: ð2:2Þ

Also, when X and Y are positive numbers, we de¢ne the set of Y -smooth numbers
not exceeding X by

AðX ;Y Þ ¼ fn 2 ½1;X � \Z : pjn ) pWY g;

and then de¢ne

f ðyÞ ¼
X

y2AðQ;RÞ

eðyy5Þ: ð2:3Þ

When ða; bÞ 2 ½0; 1�2, it is convenient to de¢ne L1 ¼ L1ða; bÞ and L2 ¼ L2ða; bÞ by
L1 ¼ aaþ bb and L2 ¼ caþ db. Finally, for 0W tW 1, we de¢ne the exponential
sum

F tða; bÞ ¼
X

M<pW 2M
p��1 ðmod 5Þ

jFpðAaÞFpðBbÞj2jf ðL1p5Þf ðL2p5Þj15�t; ð2:4Þ

where here and throughout, the letter p denotes a prime number.
Our objective in this section is the proof of the estimate contained in the following

theorem.

THEOREM 2.1. Suppose that t is a real number with 0W tW 10�3. Then whenever
Z > 0 is suf¢ciently small, one has for each positive number e the estimateZ Z

½0;1�2
F tða; bÞ da db � MPe�6Q30�2t:

Before launching our proof of Theorem 2.1, it is useful to establish some
preliminary estimates that ease our subsequent discussion. We begin by recalling
some mean value estimates of Vaughan and Wooley [17].
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LEMMA 2.2. When s ¼ 7; 8; 9; one hasZ 1

0
j f ðyÞj2s dy � Q2s�5þDs ;

where D7 ¼ 0:272729, D8 ¼ 0:077363 and D9 ¼ 0.
Proof. These estimates are immediate from the tables on page 236 of [17]. &

Following the execution of our differencing procedure, we obtain the exponential
sum

G1ðy; p;CÞ ¼ p�5
Xp5
‘¼1

Fp
Cðyþ ‘Þ

p5

� ����� ����2: ð2:5Þ

We require an estimate for the related exponential sum

F �
1 ðyÞ ¼

X
M<pW 2M
p��1 ðmod 5Þ

jG1ðy; p;CÞj2; ð2:6Þ

valid for C ¼ A or B, and valid uniformly for y 2 ½0; 1Þ. In order to describe this
estimate, we require some further notation. We put c ¼ 106 maxfA;Bg and then
de¢ne the set of major arcs M to be the union of the intervals

Mðq; rÞ ¼ fy 2 ½0; 1Þ : jqy� rjW c�1PQ�5g;

with 0W rW qW c�1P and ðr; qÞ ¼ 1. We also set m ¼ ½0; 1Þ nM. We write

Fðz; h; pÞ ¼ p�5ððzþ hp5Þ5 � ðz� hp5Þ5Þ;

and then de¢ne

tðq; r; h; pÞ ¼
Xq
w¼1

e
r
q
Fðw; h; pÞ

� ������
�����:

Also, we de¢ne the function DCðyÞ for y 2 ½0; 1Þ by taking

DCðyÞ ¼
X

M<pW 2M

X
1W hWH

Pq�1tðq;Cr; h; pÞ

ð1þ jy� r=qjhP4Þ
1=4

0@ 1A2

;

when y 2 Mðq; rÞ � M, and otherwise by taking DCðyÞ ¼ 0.

LEMMA 2.3. When C ¼ A or B, the estimate F �
1 ðyÞ � P2þeM þ DCðyÞ holds

uniformly for y 2 ½0; 1Þ.
Proof. Suppose that C is either A or B, and let p be a prime number satisfying

M < pW 2M and p � �1 ðmod5Þ. Then in view of (2.1), and our assumption that
P is suf¢ciently large in terms of A and B, one has p > maxfA;Bg, whence p does
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not divide AB. Then we may apply the argument on page 46 of Vaughan andWooley
[16], leading to equation (4.14) of that paper, to conclude that

jG1ðy; p;CÞj � P þ jGpðCyÞj; ð2:7Þ

where

GpðxÞ ¼
X

1W hWPp�5

X
hp5<zW 2P�hp5

z�h ðmod 2Þ

eð2�5xFðz; h; pÞÞ: ð2:8Þ

Further, on applying Lemma 4.1 of Vaughan andWooley [16], we derive the estimate

jG1ðy; p;CÞj � P þ ðlogPÞG�
pðCyÞ; ð2:9Þ

where

G�
pðxÞ ¼

X
1W hWH

sup
g2½0;1�

X
1W zW 2P

eð2�5xFðz; h; pÞ þ gzÞ

������
������: ð2:10Þ

We ¢rst obtain an estimate of major arc type for the exponential sum de¢ned in
(2.8). By applying essentially the same van der Corput analysis as was used in
the proof of Lemma 4.7 of Vaughan and Wooley [17], one ¢nds that when
C ¼ A or B, and y 2 Mðq; rÞ � M, one has

jGpðCyÞj �
X

1W hWH

Pq�1tðq;Cr; h; pÞ

ð1þ jy� r=qjhP4Þ
1=4 þHq3=4þe: ð2:11Þ

Here we note that the restrictions on the variable z imposed in (2.8) are easily accom-
modated within the latter argument (the reader may wish to compare the situation
here with that in the proof of Lemma 4.3 of Vaughan and Wooley [16]). On recalling
(2.7), we therefore conclude from (2.1), (2.6) and (2.11) that whenever y 2 M one has

F �
1 ðyÞ � DCðyÞ þMðP þHP3=4þeÞ

2
� DCðyÞ þ P2M: ð2:12Þ

We next observe that one may treat the exponential sum

Fþ
1 ðyÞ ¼

X
M<pW 2M

jG�
pðCyÞj2 ð2:13Þ

by using a re¢ned differencing argument similar to that applied in Sections 2 and 3 of
Vaughan [14] to the exponential sum

F1ðyÞ ¼
X

M<mWMR

X
1W hWH

X
1W zW 2P

eðyFðz; h;mÞÞ:

Following an application of Cauchy’s inequality, the differencing process removes
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the implicit supremum over g in (2.10) and hence gives the bound

Fþ
1 ðyÞ � H

X
M<pW 2M

X
1W hWH

X
0W h2 W 2P

X
1W zW 2P�h2

eð2�5CyF1ðz; h; h2; pÞÞ

������
������;

where

F1ðz; h; h2; pÞ ¼ Fðzþ h2; h; pÞ � Fðz; h; pÞ:

Thus, in a manner resembling the derivation of equation (2.37) of Vaughan [14], and
imitating the argument leading to equation (3.1) and Lemmata 3.1 and 3.2 of
Vaughan [14], we obtain

Fþ
1 ðyÞ � MH2P3=2 þM1=2H3=2P1=2jFþ

3 ðyÞj
1=2; ð2:14Þ

where Fþ
3 ðyÞ is bounded in the shape

jFþ
3 ðyÞj

2 WDðyÞEðyÞ ð2:15Þ

for certain exponential sums DðyÞ and EðyÞ. Here, it suf¢ces for us to note that
whenever jy� r=qjW q�2 and ðr; qÞ ¼ 1, the exponential sum DðyÞ satis¢es

DðyÞ � Pe P4H
qþQ5jqy� rj

þ P3H þ qþQ5jqy� rj
� �

; ð2:16Þ

and, whenever

M5 WX WQ5M�5; ðr; qÞ ¼ 1; qWX and jy� r=qjW q�1X�1;

the exponential sum EðyÞ satis¢es

EðyÞ � Pe P2HM2

ðqþQ5jqy� rjÞ1=5
þ P2HM

� �
: ð2:17Þ

We remark here that the constant C in (2.13) is absorbed within the argument of the
proofs of Lemmata 3.1 and 3.2 of Vaughan [14].

Suppose that y 2 m. By Dirichlet’s Theorem, we may choose r 2 Z and q 2 Nwith
ðr; qÞ ¼ 1, qW cP�1Q5 and jqy� rjW c�1PQ�5. By the de¢nition of m, one has
q > c�1P, and so it follows from (2.1) and (2.15)^(2.17) that

jFþ
3 ðyÞj � PeðP3H þ P�1Q5Þ

1=2
ðP9=5HM2 þ P2HMÞ

1=2
� P5=2þeHM1=2;

whence by (2.14),

sup
y2m

Fþ
1 ðyÞ � P3=2MH2 þ P7=4þeM3=4H2 � P7=4þeM3=4H2:

In view of (2.6), (2.9), and (2.13), we therefore deduce that

sup
y2m

F �
1 ðyÞ � P2M þ P7=4þeM3=4H2;
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whence by (2.1) we obtain

sup
y2m

F �
1 ðyÞ � P2þeM: ð2:18Þ

The conclusion of the lemma is immediate on combining (2.12) and (2.18). &

We augment the previous estimates with a ¢nal mean value estimate that provides,
in essence, a major arc bound.

LEMMA 2.4. Suppose that uX 5=2 and C ¼ A or B. Then one has

Z 1

0
jDCðyÞju dy � PeðP2H2MÞ

uQ�5:

Proof.This estimate follows by applying the argument of the proof of Lemma 4.10
of Vaughan and Wooley [17]. One has merely to note that the function DCðyÞ
de¢ned above carries all the variables save p with twice the weight appearing in
the corresponding expression in the latter lemma, and that the constant C affects
only the implicit constant in the claimed upper bound. &

The moment has arrived to unleash our forces on the proof of Theorem 2.1. We
begin by extracting the ef¢cient difference, and here we follow a routine originating
in work of Vaughan [13] and applied in a situation similar to that at hand in Wooley
[19]. Suppose initially that p is a ¢xed prime number with M < pW 2M and
p � �1 ðmod 5). Write

LtðpÞ ¼
Z Z

½0;1�2
jFpðAaÞFpðBbÞj2j f ðL1p5Þf ðL2p5Þj15�tda db:

By a change of variable, one ¢nds that

LtðpÞ ¼ p�10
Z Z

½0;p5�2
jFpðAap�5ÞFpðBbp�5Þj2j f ðL1Þf ðL2Þj

15�tda db:

But L1ða; bÞ and L2ða; bÞ are linear forms in a and b with integral coef¢cients, so by
the periodicity modulo 1 of f ðyÞ with respect to y, one ¢nds that

LtðpÞ ¼ p�10
Xp5
u¼1

Xp5
u¼1

Z Z
½0;1�2

Fp
Aðaþ uÞ

p5

� �
Fp

Bðbþ uÞ
p5

� ����� ����2j f ðL1Þf ðL2Þj
15�tda db

¼

Z Z
½0;1�2

G1ða; p;AÞG1ðb; p;BÞj f ðL1Þf ðL2Þj
15�tda db; ð2:19Þ

where G1ðy; p;CÞ is the exponential sum de¢ned in (2.5).
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Observe next that on recalling (2.6), an application of Cauchy’s inequality reveals
that X

M<pW 2M
p��1 ðmod 5Þ

G1ða; p;AÞG1ðb; p;BÞW ðF �
1 ðaÞF

�
1 ðbÞÞ

1=2:

By Lemma 2.3, therefore, we deduce thatX
M<pW 2M

p��1 ðmod 5Þ

G1ða; p;AÞG1ðb; p;BÞ � ðP2þeM þ DAðaÞÞ
1=2
ðP2þeM þ DBðbÞÞ

1=2:

Thus, on substituting into (2.19) and recalling (2.4), we conclude thatZ Z
½0;1�2

F tða; bÞ da db � P2þeMI1 þ P1þeM1=2ðI2 þ I3Þ þ I4; ð2:20Þ

where

I1 ¼
Z Z

½0;1�2
j f ðL1Þf ðL2Þj

15�t da db; ð2:21Þ

I2 ¼
Z Z

½0;1�2
DAðaÞ

1=2
j f ðL1Þf ðL2Þj

15�t da db; ð2:22Þ

I3 ¼
Z Z

½0;1�2
DBðbÞ

1=2
j f ðL1Þf ðL2Þj

15�t da db; ð2:23Þ

and

I4 ¼
Z Z

½0;1�2
DAðaÞ

1=2DBðbÞ
1=2
j f ðL1Þf ðL2Þj

15�t da db: ð2:24Þ

The integral I1 is easily disposed of by an application of Lemma 2.2. Since the
linear forms L1 and L2 are linearly independent, we may combine a nonsingular
change of variables in (2.21) with Ho« lder’s inequality to deduce that

I1 �
Z Z

½0;1�2
j f ðxÞf ðzÞj15�tdx dz

W

Z 1

0
j f ðaÞj14da

� �1þt Z 1

0
j f ðbÞj16db

� �1�t

�


Q9:272729�1þt
Q11:077363�1�t

:

Consequently, on recalling our assumption that 0W tW 10�3, we ¢nd that

I1 � Q20:3503�2t: ð2:25Þ

We estimate the integral I2 by applying Ho« lder’s inequality once more. Thus, from
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(2.22) we obtain

I2 � sup
ða;bÞ2½0;1�2

j f ðL1Þj

 !3=5�t

I1=55 I ð3�5tÞ=10
6 I ð1þtÞ=2

7 ; ð2:26Þ

where

I5 ¼
Z Z

½0;1�2
DAðaÞ

5=2
j f ðL2Þj

16 da db; ð2:27Þ

I6 ¼
Z Z

½0;1�2
j f ðL1Þ

18f ðL2Þ
16
j da db and I7 ¼

Z Z
½0;1�2

j f ðL1Þ
18f ðL2Þ

14
jda db:

By a change of variables, we again deduce from Lemma 2.2 that

I6 �
Z 1

0
j f ðaÞj18da

� � Z 1

0
j f ðbÞj16db

� �
� Q24:077363 ð2:28Þ

and

I7 �
Z 1

0
j f ðaÞj18da

� � Z 1

0
j f ðbÞj14db

� �
� Q22:272729: ð2:29Þ

Also, by another change of variable, our assumption that d 6¼ 0 leads to the identityZ 1

0
j f ðL2Þj

16db ¼

Z 1

0
j f ðdbÞj16db ¼

Z 1

0
j f ðbÞj16db:

Thus we deduce from (2.27) and Lemmata 2.2 and 2.4 that

I5 � Q11:077363
Z 1

0
DAðaÞ

5=2da � PeðP2H2MÞ
5=2Q6:077363: ð2:30Þ

On substituting (2.28)^(2.30) into (2.26), and employing a trivial estimate for f ðL1Þ,
we ¢nd that

I2 � PeðP2H2MÞ
1=2Q20:17515�2t: ð2:31Þ

Here again we make use of the assumption that 0W tW 10�3.
Plainly, on interchanging the roles of a and b, and of A and B, in (2.23), the

argument applied in the previous paragraph establishes in like manner that

I3 � PeðP2H2MÞ
1=2Q20:17515�2t: ð2:32Þ

Finally, applying Ho« lder’s inequality yet again, we ¢nd from (2.24) that

I4 � sup
ða;bÞ2½0;1�2

j f ðL1Þf ðL2Þj

 !3=5�t

I1=58 I4=59 ; ð2:33Þ
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where

I8 ¼
Z Z

½0;1�2



DAðaÞDBðbÞ

�5=2
da db and I9 ¼

Z Z
½0;1�2

j f ðL1Þf ðL2Þj
18 da db:

By a change of variables, Lemma 2.2 on this occasion leads to the estimate

I9 �
Z 1

0
j f ðaÞj18da

� � Z 1

0
j f ðbÞj18db

� �
� Q26: ð2:34Þ

On the other hand, by Lemma 2.4, one has

I8 �


PeðP2H2MÞ

5=2Q�5�2 � PeðP2H2MÞ
5Q�10: ð2:35Þ

Thus, on substituting (2.34) and (2.35) into (2.33), we arrive at the estimate

I4 � P2þeH2MQ20�2t: ð2:36Þ

We now combine the estimates (2.25), (2.31), (2.32), (2.36) and (2.20) to ¢nd thatZ Z
½0;1�2

F tða; bÞ da db � P2þeM Q20:3503�2t þHQ20:17515�2t þH2Q20�2t
 �
:

On recalling (2.1), the desired conclusionZ Z
½0;1�2

F tða; bÞ da db � MPe�6Q30�2t

follows with a modicum of computation.
Before departing this section, we record a further auxiliary estimate of use in the

pruning argument described in Section 5. As an analogue of the exponential
sum F tða; bÞ de¢ned in (2.4), we now write

bFF tða; bÞ ¼
X

M<pW 2M
p��1 ðmod 5Þ

jFpðAaÞj2j f ðL1p5Þf ðL2p5Þj15�t: ð2:37Þ

LEMMA 2.5. Suppose that t is a real number with 0W tW 10�3. Then whenever Z > 0
is suf¢ciently small, one has the estimateZ Z

½0;1�2
bFF tða; bÞda db � PMQ20:3517�2t:

Proof. We apply the argument underlying the proof of Theorem 2.1, making
simple modi¢cations as needed. Suppose ¢rst that p is a ¢xed prime number with
M < pW 2M and p � �1 ðmod 5Þ, and write

bLLtðpÞ ¼
Z Z

½0;1�2
jFpðAaÞj2j f ðL1p5Þf ðL2p5Þj15�tda db:
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As in the argument leading to (2.19), a change of variables leads to the identity

bLLtðpÞ ¼
Z Z

½0;1�2
G1ða; p;AÞj f ðL1Þf ðL2Þj

15�tda db: ð2:38Þ

But an application of Cauchy’s inequality reveals thatX
M<pW 2M

p��1 ðmod 5Þ

G1ða; p;AÞWM1=2F �
1 ðaÞ

1=2;

whence by Lemma 2.3 we obtainX
M<pW 2M

p��1 ðmod 5Þ

G1ða; p;AÞ � P1þeM þM1=2DAðaÞ
1=2:

On substituting into (2.38) and recalling (2.37), we deduce thatZ Z
½0;1�2

bFF tða; bÞda db � P1þeMI1 þM1=2I2;

where I1 and I2 are de¢ned, respectively, in (2.21) and (2.22). We therefore conclude
from (2.25) and (2.31) thatZ Z

½0;1�2
bFF tða; bÞda db � P1þeMQ20:3503�2t þ P1þeHMQ20:17515�2t:

The conclusion of the lemma now follows from (2.1) with a smidgen of
computation. &

3. Preliminaries to an Application of the Circle Method

Before applying the circle method to prove Theorem 1, we need to eliminate some
relatively simple cases. First of all, we may clearly suppose in (1.1) that for each
i at least one of ci or di is nonzero. Further, we may assume that s ¼ 34, since
any super£uous variables may either be set to zero at the outset, or otherwise
specialised so as to preserve 11-adic solubility. Next we need some information about
the number of distinct coef¢cient ratios ci=di present in (1.1).

LEMMA 3.1. If there is an extended real number r such that ci=di ¼ r for 16 or more
values of i, then the system ð1:1Þ has a nontrivial integral solution.

Proof. If some ratio r is repeated 16 or more times, then we may assume by
relabelling that ci=di ¼ r for 1W iW 16. But then by taking a linear combination
of the two equations, we ¢nd that the system (1.1) is equivalent to the new system

c1x5
1 þ � � � þ c17x5

17 þ � � � þ c34x5
34 ¼ 0;

D17x5
17 þ � � � þD34x5

34 ¼ 0;
ð3:1Þ
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where Di ¼ d1ci � c1di for 17W iW 34. From Gray [11], one knows that for every
prime p, any diagonal quintic equation in 16 or more variables necessarily possesses
nontrivial p-adic solutions. It therefore follows from the ¢fth power technology
of Vaughan and Wooley [17] that a single additive equation in 17 or more variables
is nontrivially soluble over the integers. Thus we can ¢nd y17; . . . ; y34 2 Z, not
all zero, such that

D17y517 þ � � � þD34y534 ¼ 0:

Moreover, if we let C17 ¼ c17y517 þ � � � þ c34y534, then we can ¢nd integers z1; . . . ; z17,
not all zero, satisfying

c1z51 þ � � � þ c16z516 þ C17z517 ¼ 0;

and it is easy to see that x ¼ ðz1; . . . ; z16; z17y17; . . . ; z17y34Þ is a nontrivial solution of
(3.1). This completes the proof of the lemma.

For each i, write ri ¼ ci=di. In view of the conclusion of Lemma 3.1, we may
suppose that there are at least three distinct values among r1; . . . ; r34. We may
therefore rearrange variables in such a way that r1 6¼ r2 and r3 6¼ r4. Since we then
have c1d2 6¼ c2d1, it follows by taking linear combinations of the two equations that
(1.1) is equivalent to a system of the form

c1x5
1 þ c3x5

3 þ c4x5
4 þ � � � þ c34x5

34 ¼ 0;

d2x5
2 þ d3x5

3 þ d4x5
4 þ � � � þ d34x5

34 ¼ 0;

where c1d2 6¼ 0. We therefore assume from now on that c2 ¼ d1 ¼ 0. After replacing
one or both of x1 and x2 by �x1 and �x2, if necessary, we may further assume that
c1 > 0 and d2 > 0.

In our application of the circle method, we will be concerned with the linear forms

gi ¼ ciaþ dib ð1W iW 34Þ:

Suppose that 1W i < jW 4 and 5W kW 34. It is clear that whenever ri 6¼ rj we can
write

gk ¼ ukgi þ ukgj ð3:2Þ

for some uk; uk 2 Q, but we would often prefer to be able to take uk; uk 2 Z. To this
end, we write

D ¼
Y

1W i<jW 4
ri 6¼rj

jcidj � cjdij

and make the change of variables xk ! Dxk ð5W kW 34Þ. Then we may replace the
coef¢cients ck and dk by D5ck and D5dk, and this ensures that in (3.2), one may take
uk; uk 2 Z.
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Finally, we need to consider some local solubility issues. Since r1 6¼ r2, the linear
system

c1z1 þ � � � þ c34z34 ¼ d1z1 þ � � � þ d34z34 ¼ 0 ð3:3Þ

has a 32-dimensional space of real solutions. But for each i, the space of solutions
with zi ¼ 0 has dimension 31, since there are at least three distinct values among
r1; . . . ; r34. Hence there is a real solution ðz1; . . . ; z34Þ to (3.3) with no zi equal to
zero, and a real solution g ¼ ðZ1; . . . ; Z34Þ to (1.1) is now obtained by taking ¢fth
roots. Moreover, by replacing xi by �xi if necessary, and hence ðci; diÞ by
ð�ci;�diÞ, we may assume that Zi > 0 for each i, and by homogeneity we may further
assume that Zi < 1 for each i. Notice that our earlier assumption that c1 > 0 and
d2 > 0 may be preserved here by replacing ðc; dÞ by ð�c;�dÞ, for a suitable choice
of signs. Clearly, such an g provides a non-singular real solution to the system (1.1).

With regard to p-adic solubility, we know from work of Cook [8] that the system
(1.1) has a nontrivial p-adic solution whenever p 6¼ 11. Since 11-adic solubility is
imposed as a hypothesis in Theorem 1, we may henceforth assume that (1.1) has
a nontrivial p-adic solution for each prime p. Moreover, the argument of Davenport
and Lewis [9], pages 114^115, shows that the latter implies the existence of a
nonsingular p-adic solution for each prime p, provided that every form in the pencil
of the two forms in (1.1) explicitly contains at least 16 variables. However, if this
latter hypothesis fails to hold, then a simpli¢ed version of the argument used in
the proof of Lemma 3.1 may be applied to produce a nontrivial rational solution
to the system (1.1). For future reference, we summarize the results of this section
so far in the following lemma.

LEMMA 3.2. Suppose that the conclusion of Theorem 1 holds when all of the
conditions (i)^(iv) below are satis¢ed. Then the theorem holds in general.

(i) One has s ¼ 34, c2 ¼ d1 ¼ 0, c1; d2 > 0, and c3d4 � c4d3 6¼ 0.
(ii) Each distinct ratio ri ¼ ci=di (in the extended real numbers) occurs for at most 15

di¡erent indices i.
(iii) For each k with 5W kW 34 and all i and j with 1W i < jW 4 and ri 6¼ rj, there exist

integers uk and uk such that gk ¼ ukgi þ ukgj.
(iv) The system ð1:1Þ has a nonsingular p-adic solution for every prime p and a

nonsingular real solution g with 0 < Zi < 1 for each i.

Assuming from now on that conditions (i)^(iv) of Lemma 3.2 are satis¢ed, we are
now ready to describe our strategy for proving Theorem 1. Recall the de¢nitions
of FpðyÞ and f ðyÞ from (2.2) and (2.3). When B is any measurable subset of the unit
square ½0; 1Þ2, de¢ne

NðBÞ ¼
X

M<pW 2M
p��1 ðmod 5Þ

Z Z
B

Fpðg1Þ � � �Fpðg4Þf ðp
5g5Þ � � � f ðp

5g34Þ da db: ð3:4Þ
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Further, let NðPÞ denote the number of solutions of the system

c1x5
1 þ � � � þ c4x5

4 þ p5ðc5y55 þ � � � þ c34y534Þ ¼ 0;

d1x5
1 þ � � � þ d4x5

4 þ p5ðd5y55 þ � � � þ d34y534Þ ¼ 0;
ð3:5Þ

with

1W xi WP ð1W iW 4Þ; yj 2 AðQ;RÞ ð5W jW 34Þ;

M < pW 2M; ðp; x1x2x3x4Þ ¼ 1 and p � �1 ðmod 5Þ:

Notice that by orthogonality one has NðPÞ ¼ N ð½0; 1Þ2Þ. We aim to establish the
expected lower bound NðPÞ � MP�6Q30ðlogPÞ�1 by an application of the
Hardy^Littlewood method. Since every solution of (3.5) automatically satis¢es (1.1),
this conclusion suf¢ces to prove Theorem 1. We complete our initial skirmishing by
describing the Hardy^Littlewood dissection underlying our application of the
circle method. Write d ¼ 1=100, and de¢ne the major arcs M to be the union of
the intervals

Mðq; a; bÞ ¼ fða; bÞ 2 ½0; 1Þ2 : jqa� ajWPdQ�5 and jqb� bjWPdQ�5g; ð3:6Þ

with 0W a; bW qWPdM5 and ðq; a; bÞ ¼ 1. It is clear from (2.1) that these intervals
are pairwise disjoint. Further, write m ¼ ½0; 1Þ2nM for the minor arcs. We remark,
as will become apparent in due course, that while this set-up allows the minor arcs
to be handled rather easily, the treatment of the major arcs entails a nontrivial
pruning process.

4. The Minor Arcs

The estimation of the minor arc contribution NðmÞ is easily accomplished with the
aid of Theorem 2.1, and so we sally towards the desired estimate

NðmÞ � MQ30P�6�n; ð4:1Þ

for some positive number n, without further comment. First of all, it is easy to deduce
from condition (ii) of Lemma 3.2 that there is a partition P of the set f5; 6; 7; . . . ; 34g
into 15 two-element blocks, with the property that fk; ‘g 2 P ) rk 6¼ r‘. Hence by
using the trivial inequality

jz1 � � � znjW jz1jn þ � � � þ jznjn;

one ¢nds that

j f ðp5g5Þ � � � f ðp
5g34ÞjW

X
5W k<‘W 34

rk 6¼r‘

j f ðp5gkÞf ðp
5g‘Þj

15:
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It therefore follows from (3.4) that for some k and ‘ with rk 6¼ r‘ one has

NðmÞ �
X

M<pW 2M
p��1 ðmod 5Þ

Z Z
m

jFpðg1Þ � � �Fpðg4Þjj f ðp
5gkÞf ðp

5g‘Þj
15da db;

and, by interchanging the roles of k and ‘ if necessary, we may suppose that ckd‘ 6¼ 0.
When B � ½0; 1Þ2 and t is a real number with 0W tW 1, write

N 0;tðBÞ ¼
X

M<pW 2M
p��1 ðmod 5Þ

Z Z
B

jFpðg1ÞFpðg2Þj
2j f ðp5gkÞf ðp

5g‘Þj
15�tda db ð4:2Þ

and

N 1;tðBÞ ¼
X

M<pW 2M
p��1 ðmod 5Þ

Z Z
B

jFpðg3ÞFpðg4Þj
2j f ðp5gkÞf ðp

5g‘Þj
15�tda db: ð4:3Þ

Then after two applications of the Cauchy^Schwarz inequalities, we ¢nd that

NðmÞ � N 0;0ðmÞ
1=2
N 1;0ð½0; 1Þ2Þ1=2: ð4:4Þ

Now by condition (iii) of Lemma 3.2 we can write

gk ¼ ukg3 þ ukg4 and g‘ ¼ u‘g3 þ u‘g4

for some integers uk, uk, u‘ and u‘. Moreover, a simple calculation shows that

uku‘ � uku‘ ¼
ckd‘ � dkc‘
c3d4 � d3c4

6¼ 0;

so that on making the change of variables ða; bÞ ! ðg3; g4Þ in (4.3), we ¢nd that
Theorem 2.1 applies (with t ¼ 0) to show that

N 1;0ð½0; 1Þ2Þ � MQ30Pe�6: ð4:5Þ

It therefore suf¢ces to bound N 0;0ðmÞ, and for this we require an estimate of
Weyl-type. Although bounds of somewhat higher quality may be obtained by
working harder, the following estimate is adequate for the purpose at hand.

LEMMA 4.1. For every integer p with M < pW 2M, one has

sup
ða;bÞ2m

j f ðp5gkÞf ðp
5g‘Þj � Q2�s;

where s ¼ 3� 10�5.
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Proof. Suppose that ða; bÞ 2 m. By Dirichlet’s Theorem, there exist integers ak, a‘,
qk and q‘ satisfying ðqk; akÞ ¼ ðq‘; a‘Þ ¼ 1,

1W qk; q‘ WQ5P�d=2; jp5gkqk � akjWPd=2Q�5 and jp5g‘q‘ � a‘jWPd=2Q�5:

On applying Lemma 3.1 of Wooley [20], and making use of Lemma 2.2 above, one
obtains the estimate

j f ðp5giÞj � Q1þeðq�1
i þQ�5=2 þ qiQ�5Þ

1=162
ði ¼ k; ‘Þ: ð4:6Þ

Write

D ¼ ckd‘ � c‘dk and C ¼ 8ðjckj þ jc‘jÞðjdkj þ jd‘jÞjDj:

If qk > C�1Pd=2 or q‘ > C�1Pd=2, then the lemma follows at once from (4.6).
Suppose, on the other hand, that qk WC�1Pd=2 and q‘ WC�1Pd=2, and write
q ¼ jDjqkq‘p5. Then since

a ¼ D�1
ðgkd‘ � g‘dkÞ and b ¼ D�1

ðckg‘ � c‘gkÞ;

we ¢nd that

kqak ¼ kqkq‘p5ðgkd‘ � g‘dkÞkW jd‘jq‘kqkp5gkk þ jdkjqkkq‘p5g‘kWPdQ�5;

and similarly for kqbk. Thus, on noting that qWPdM5, we obtain a contradiction to
our assumption that ða; bÞ 2 m, and this completes the proof of the lemma. &

We can now complete our analysis of the minor arcs. Let t and s be positive
numbers with tW 10�3 and sW 3� 10�5. By applying Theorem 2.1 and Lemma 4.1,
one ¢nds that

N 0;0ðmÞ � max
M<pW 2M

sup
ða;bÞ2m

j f ðp5gkÞf ðp
5g‘Þj

 !t

�

�

Z Z
½0;1�2

X
M<pW 2M

p��1 ðmod 5Þ

jFpðg1ÞFpðg2Þj
2j f ðp5gkÞf ðp

5g‘Þj
15�tda db

� Qtð2�sÞMQ30�2tPe�6:

Thus we obtain

N 0;0ðmÞ � MQ30P�6�t; ð4:7Þ

for some positive number t, and on recalling (4.4) and (4.5), one arrives at the desired
conclusion (4.1).
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5. Pruning the Major Arcs

Although we have precise knowledge concerning the asymptotic behavior of the
exponential sums FpðgiÞ throughout the set of major arcs de¢ned by (3.6), such
detailed information for the sums f ðp5giÞ is currently available only on a much
thinner set. We must therefore perform a substantial amount of pruning.
Speci¢cally, we let L ¼ ðlogPÞd, and de¢ne N to be the union of the intervals

Nðq; a; bÞ ¼ fða; bÞ 2 ½0; 1Þ2 : ja� a=qjWLP�5 and jb� b=qjWLP�5g; ð5:1Þ

with 0W a; bW qWL and ðq; a; bÞ ¼ 1. Also, we take n ¼ ½0; 1Þ2nN. We aim to show
that

NðMnNÞ � MP�6Q30ðlogPÞ�1�t
ð5:2Þ

for some positive number t. In order to establish this bound, we ¢rst apply Cauchy’s
inequality as in the argument at the beginning of Section 4, thereby obtaining

NðMnNÞ � N 0;0ðMnNÞ
1=2
N 1;0ð½0; 1Þ2Þ1=2;

where N 0;t and N 1;t are de¢ned as in (4.2) and (4.3), and where the indices k and ‘

occurring in those de¢nitions satisfy rk 6¼ r‘. But by making the change of variables
ða; bÞ ! ðg3; g4Þ in (4.3), just as in the argument leading to (4.5), we ¢nd that
N 1;0ð½0; 1Þ2Þ is transformed into a mean value of the shape (4.2), and moreover
the coef¢cients of the generating functions in this new mean value satisfy the same
hypotheses as those imposed on the corresponding coef¢cients in (4.2). With a
modicum of contemplation, therefore, one ¢nds that whenever one can establish
the estimates

N 0;0ð½0; 1Þ2Þ � MP�6Q30ðlogPÞ�1 and N 0;0ðMnNÞ � MP�6Q30ðlogPÞ�1�t;

ð5:3Þ

for some positive number t, with suf¢cient uniformity in the underlying coef¢cients,
then the estimate

N 1;0ð½0; 1Þ2Þ � MP�6Q30ðlogPÞ�1;

and hence also (5.2), will follow immediately. In the remainder of this section we
establish the desired estimates (5.3) with the claimed uniformity, and hence achieve
the hard pruning required to complete the analysis of the major arcs.
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We begin by considering the major arc approximations to the functions FpðgiÞ, and
this requires some notation. When 1W iW 34, write

Siðq; a; bÞ ¼
Xq
r¼1

eððciaþ dibÞr5=qÞ; ð5:4Þ

Siðq; a; b; pÞ ¼ Siðq; a; bÞ � p�1Siðq; ap5; bp5Þ; ð5:5Þ

and

uiðx; z;BÞ ¼
Z B

0
eððcixþ dizÞg5Þ dg: ð5:6Þ

We de¢ne the function XiðpÞ ¼ Xiða; b; pÞ for ða; bÞ 2 ½0; 1Þ2 by taking

Xiða; b; pÞ ¼ q�1Siðq; a; b; pÞuiða� a=q; b� b=q;PÞ;

when ða; bÞ 2 Mðq; a; bÞ � M, and otherwise by taking Xiða; b; pÞ ¼ 0.

LEMMA 5.1.When p is an integer withM < pW 2Mand ða; bÞ 2 Mðq; a; bÞ � M, one
has

jFpðgiÞ � Xiða; b; pÞj � qeðqþ P5jqa� aj þ P5jqb� bjÞ1=2:

Proof. When ða; bÞ 2 Mðq; a; bÞ � M and M < pW 2M, it follows from Theorem
4.1 of Vaughan [15] that

FpðgiÞ ¼
X

1W xWP

eððciaþ dibÞx5Þ �
X

1W yWP=p

eðp5ðciaþ dibÞy5Þ

¼ q�1Siðq; a; bÞuiða� a=q; b� b=q;PÞ �

� q�1Siðq; ap5; bp5Þuiðp5ða� a=qÞ; p5ðb� b=qÞ;P=pÞ þ

þOðqeðqþ P5jqa� aj þ P5jqb� bjÞ1=2Þ:

But a change of variables demonstrates that

uiðp5x; p5z;BÞ ¼ p�1uiðx; z; pBÞ; ð5:7Þ

and the lemma now follows on recalling (5.5).
As our ¢rst step in the pruning procedure, we replace the exponential sums FpðgiÞ

by their major arc approximations Xiða; b; pÞ. In this context, when t is a real number
with 0W tW 1 and B � ½0; 1Þ2, we write

N
�

0;tðBÞ ¼
X

M<pW 2M
p��1 ðmod 5Þ

Z Z
B

jX1ða; b; pÞX2ða; b; pÞj2j f ðp5gkÞf ðp
5g‘Þj

15�tda db:

ON PAIRS OF DIAGONAL QUINTIC FORMS 79

https://doi.org/10.1023/A:1014704232631 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014704232631


LEMMA 5.2. Suppose that t is a real number with 0W tW 10�3. Then whenever
B � M, one has

N 0;tðBÞ ¼ N
�

0;tðBÞ þOðMP�6�tQ30�2tÞ;

for some positive number t.
Proof. Suppose that ða; bÞ 2 Mðq; a; bÞ � M. Then by Lemma 5.1, we have the

estimate

jFpðgiÞ � Xiða; b; pÞj � PdM5=2 ði ¼ 1; 2Þ:

On substituting into (4.2), we ¢nd that

jN 0;tðBÞ � N
�

0;tðBÞj � P4dM10T 0 þ P2dM5ðT 1 þ T 2Þ;

where

T 0 ¼
X

M<pW 2M

Z Z
½0;1�2

j f ðp5gkÞf ðp
5g‘Þj

15�tda db;

and for i ¼ 1; 2, we write

T i ¼
X

M<pW 2M
p��1 ðmod 5Þ

Z Z
½0;1�2

jFpðgiÞj
2j f ðp5gkÞf ðp

5g‘Þj
15�tda db:

A change of variables reveals that

T 0 � M
Z Z

½0;1�2
j f ðxÞf ðzÞj15�tdx dz:

Thus, as in the argument leading to (2.25), we ¢nd that

T 0 � MQ20:3503�2t:

On the other hand, since c2 ¼ d1 ¼ 0, it is apparent that T i ði ¼ 1; 2Þ is a mean value
of the type estimated in Lemma 2.5, whence

T i � PMQ20:3517�2t ði ¼ 1; 2Þ:

We therefore conclude that

jN 0;tðBÞ � N
�

0;tðBÞj � P4dM11Q20:3503�2t þ P1þ2dM6Q20:3517�2t;

and the desired conclusion follows from Equation (2.1) with a smattering of
computation. &

LEMMA 5.3. Suppose that t is a real number with 0W tW 10�3. Then for each posi-
tive number e, one has N�

0;tð½0; 1Þ
2
Þ � MPe�6Q30�2t:
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Proof. Under the hypotheses of the lemma, Theorem 2.1 shows that
N 0;tð½0; 1Þ2Þ � MPe�6Q30�2t. The desired conclusion is therefore immediate from
Lemma 5.2. &

It transpires that a nontrivial analysis is required to establish (5.3). In particular,
we need estimates for f ðp5giÞ that are valid over a somewhat larger range than
has previously been dealt with in the literature. Fortunately, such estimates are
obtainable by a simple modi¢cation of the argument of Lemma 7.2 of Vaughan
and Wooley [16]. For ease of comparison with [16], we temporarily adopt the
notation

gðaÞ ¼
X

x2AðP;RÞ

eðaxkÞ;

and write L ¼ logP and L2 ¼ log logP. The following provides the required
extension of the aforementioned lemma.

LEMMA 5.4. Suppose that 2WRWMWP, and suppose also that a 2 Z, q 2 N and
a 2 R satisfy ða; qÞ ¼ 1 and qþ Pkjqa� ajWTM. Then one has

gðaÞ � L
3qe Pðqþ Pkjqa� ajÞ�1=2k

þ ðPMRÞ1=2 þ PR1=2ðT=MÞ
1=4
 �

:

Proof. We apply the argument of the proof of Lemma 7.2 of [16], noting that in
view of the ¢rst part of Theorem 4.1 of Vaughan [15] the estimate (7.5) of [16]
may be replaced by the upper bound

S2 � S3 þ L2UV þ RU2qe qþ ð4UV Þ
k
jqa� aj


 �1=2
:

Moreover, one has U < P=V , so it follows from the hypothesis in the statement of
the lemma that

S2 � S3 þ L2UV þ RU2qeðTMÞ
1=2: ð5:8Þ

It now suf¢ces to note that the upper bound provided in (5.8) differs from that in
(7.5) of [16] only insofar as the third term of (5.8) is replaced by RU2q1=2þe in (7.5)
of [16]. Since MWV < MR, one ¢nds from (7.1) and (7.3) of [16] that

gðaÞ � L
3qe Pðqþ Pkjqa� ajÞ�1=2k

þ ðPMRÞ1=2

 �

þ S;

where the new term S is bounded in the shape

S � L
2
ðVL2RU2qeðTMÞ

1=2
Þ
1=2

� L
3qePR1=2ðT=MÞ

1=4;

and the claimed version of the lemma now follows. &

We are now in a position to obtain estimates for f ðp5giÞ when ða; bÞ 2 M.
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LEMMA 5.5. Suppose that ða; bÞ 2 Mðq; a; bÞ � M and that p is an integer with
M < pW 2M. Write Li ¼ ciaþ dib, and suppose in addition that Z is a suf¢ciently
small positive number, and that s is a positive number with sW 1=10. Then the
estimate

f ðp5giÞ � ðqþ P5jqgi � LijÞ
s�1=10Qðq; p5LiÞ

1=10�s
þQ1�d=5

holds uniformly for qWPdM5.
Proof. Write A ¼ 4s�1 and D ¼ ðq; p5LiÞ, and suppose ¢rst of all that

qþ P5jqgi � LijXDðlogQÞA: ð5:9Þ

We seek to apply Lemma 5.4 with M ¼ PdM5=2 and T ¼ CM5=2, for some suitable
positive constant C. On writing q0 ¼ q=D and L0

i ¼ p5Li=D, we ¢nd that

q0 þQ5jq0p5gi � L0
ijWPdM5 þ 32P5ðjciðqa� aÞj þ jdiðqb� bÞjÞ;

so that on taking C ¼ 1þ 64ðjcij þ jdijÞ, it follows from (3.6) that Lemma 5.4 applies
with M and T as above. We therefore deduce that

f ðp5giÞ � ðlogQÞ3ðq0Þe�

�
Q

ðq0 þQ5jq0p5gi � L0
ijÞ

1=10 þ R1=2 Pd=2Q1=2M5=4 þQ1�d=4
 � !
;

and the lemma now follows under the assumption (5.9). Now suppose instead that
(5.9) does not hold. Then by Lemma 8.5 of Vaughan and Wooley [16], one has

f ðp5giÞ �
ðq0ÞeQ

ðq0 þQ5jq0p5gi � L0
ijÞ

1=5 þQ expð�c
ffiffiffiffiffiffiffiffiffiffiffi
logQ

p
Þð1þQ5jp5ðgi � Li=qÞjÞ;

where the constant cmay depend on Z and A. Since (5.9) fails to hold, one sees easily
that the ¢rst term in the above expression dominates the second, and the lemma now
follows easily in this case as well. &

We are now ready to replace the functions f ðp5giÞ by the approximations given in
Lemma 5.5. For convenience, we take s ¼ 1=110 in our application of Lemma 5.5,
this being suf¢cient for our purposes. We also introduce the function DpðgiÞ, which
we de¢ne for ða; bÞ 2 ½0; 1Þ2 by taking

DpðgiÞ ¼
Qðq; p5LiÞ

1=11

ðqþ P5jqgi � LijÞ
1=11 ;

when ða; bÞ 2 Mðq; a; bÞ � M, and otherwise by taking DpðgiÞ ¼ 0. Here, as in the
statement of Lemma 5.5, we write Li ¼ ciaþ dib. The following lemma allows
us to replace f ðp5giÞ by DpðgiÞ.
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LEMMA 5.6. Whenever B � M, one has

N 0;0ðBÞ �
X

M<pW 2M
p��1 ðmod 5Þ

Z Z
B

jX1ðpÞX2ðpÞj2ðDpðgkÞDpðg‘ÞÞ
15da dbþMQ30P�6�t;

for some positive number t.
Proof. Suppose that B � M, and let t be a positive number with tW 10�3. By

Lemma 5.5, one has for each prime p with M < pW 2M,

j f ðp5gkÞf ðp
5g‘Þj

t � ðDpðgkÞ
t
þQtð1�d=5ÞÞðDpðg‘Þ

t
þQtð1�d=5ÞÞ;

whence it follows from the trivial estimate DpðgiÞ � Q that

N
�

0;0ðBÞ �
X

M<pW 2M
p��1 ðmod 5Þ

Z Z
B

jX1ðpÞX2ðpÞj2j f ðp5gkÞf ðp
5g‘Þj

15�tðDpðgkÞDpðg‘ÞÞ
tda db

þQtð2�d=5ÞN
�

0;tð½0; 1Þ
2
Þ:

If the second term on the right hand side of this inequality dominates the ¢rst, then
the proof of the lemma follows immediately from Lemma 5.3. Otherwise, following
two applications of Ho« lder’s inequality, one ¢nds that

N
�

0;0ðBÞ � N
�

0;0ðBÞ
1�t=15

X
M<pW 2M

p��1 ðmod 5Þ

Z Z
B

jX1ðpÞX2ðpÞj2ðDpðgkÞDpðg‘ÞÞ
15da db

0BB@
1CCA

t=15

;

whence

N
�

0;0ðBÞ �
X

M<pW 2M
p��1 ðmod 5Þ

Z Z
B

jX1ðpÞX2ðpÞj2ðDpðgkÞDpðg‘ÞÞ
15da db:

The conclusion of the lemma is now immediate from Lemma 5.2. &

Before concluding our pruning operation, we pause to evaluate a sum and an
integral that are critical to the remainder of our analysis. De¢ne

SðqÞ ¼
Xq
a¼1

Xq
b¼1

ðq;a;bÞ¼1

q�30=11ðq; ckaþ dkbÞ
15=11

ðq; c‘aþ d‘bÞ
15=11: ð5:10Þ

Also, when W denotes either M or MnN, de¢ne

Iðq; a; b;WÞ ¼

Z Z
Wðq;a;bÞ

ð1þ P5jgk � Lk=qjÞ
�15=11

ð1þ P5jg‘ � L‘=qjÞ
�15=11da db;

ð5:11Þ
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where Wðq; a; bÞ denotes Mðq; a; bÞ when W ¼ M, and Wðq; a; bÞ denotes

Mðq; a; bÞnNðq; a; bÞ

when W ¼ MnN. Here again, we write Li for ciaþ dib ði ¼ k; ‘Þ.

LEMMA 5.7. The function SðqÞ is multiplicative, and one has SðqÞ � q�1=3:

Proof. Suppose that q and r are natural numbers with ðq; rÞ ¼ 1. Following the
pattern provided in Lemmata 2.10 and 2.11 of Vaughan [15], given integers a
and b, we may apply Euclid’s algorithm to obtain unique integers u, u, x, y, with
1W u; xW r and 1W u; yW q, such that

a � uqþ ur ðmod qrÞ and b � xqþ yr ðmod qrÞ:

Furthermore, one has ðqr; a; bÞ ¼ 1 if and only if ðq; u; yÞ ¼ 1 and ðr; u; xÞ ¼ 1. On
changing variables in (5.10) and noting that ðqr;CqþDrÞ ¼ ðq;DÞðr;CÞ, it now
follows easily that SðqrÞ ¼ SðqÞSðrÞ. This establishes that the function SðqÞ is
multiplicative.

Suppose next that p is a prime number, and let h be a positive integer. Consider the
sum (5.10) with q ¼ ph, and consider a ¢xed choice of a and b. Suppose that
pAkðckaþ dkbÞ and pBkðc‘aþ d‘bÞ. We may assume without loss of generality that
AWB, and further, in view of the condition ðph; a; bÞ ¼ 1 imposed in the sum (5.10),
that p does not divide b. On eliminating a between the congruences

ckaþ dkb � 0 ðmodpAÞ and c‘aþ d‘b � 0 ðmodpBÞ;

we therefore deduce that ckd‘ � dkc‘ � 0 ðmod pAÞ. But rk 6¼ r‘, and so the left hand
side of this congruence is non-zero. Consequently, one ¢nds that pA is absolutely
bounded in terms of the coef¢cients ci and di ði ¼ k; ‘Þ. Next we note that
c‘a � �d‘b ðmodpBÞ. Since d‘ 6¼ 0, one ¢nds that ðpB; d‘Þ is absolutely bounded
in terms of d‘. But after dividing through by ðpB; d‘Þ and ¢xing a, one sees that
the residue class of b modulo pB=ðpB; d‘Þ is determined. We therefore conclude from
this discussion that when pAkðckaþ dkbÞ and pBkðc‘aþ d‘bÞ, then there is no loss
of generality in supposing that pA � 1 and that the total number of possible choices
for a and b is Oðp2h�BÞ. We may thus infer that

SðphÞ �
X

AWBW h

p2h�Bp�30h=11ðpAþBÞ
15=11

� h2p�4h=11:

The ¢nal assertion of the lemma now follows from the multiplicativity of SðqÞ
already established, since this yields SðqÞ � qe�4=11 � q�1=3. &

LEMMA 5.8. Suppose that W is either M or MnN, and de¢ne Y by taking

Y ¼
1; when W ¼ M; or when W ¼ MnN and q > L;
L; when W ¼ MnN and qWL:

�
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Then one has

Iðq; a; b;WÞ � P�10Y�4=11:

Proof. Suppose that W is eitherM or MnN, and de¢ne Y as in the statement of the
lemma. Then on setting W ¼ 0 when W ¼ M, or when W ¼ MnN and q > L, and
otherwise setting W ¼ L, it follows by making a change of variables that

Iðq; a; b;WÞ �

Z 1

�1

Z 1

�1

maxfjxj;jzjgXWP�5

ð1þ P5jckxþ dkzjÞ
�15=11

�

� ð1þ P5jc‘xþ d‘zjÞ
�15=11dx dz:

Since ckd‘ � c‘dk 6¼ 0, a second change of variables reveals that

Iðq; a; b;WÞ � P�10
Z 1

0

Z 1

0
maxfm;ngX lW

ð1þ mÞ�15=11
ð1þ nÞ�15=11dm dn;

where l is a positive number depending at most on ci and di ði ¼ k; ‘Þ. Thus we
conclude that

Iðq; a; b;WÞ � P�10
Z 1

lW
ð1þ oÞ�15=11do � P�10Y�4=11;

as desired. &

As a ¢nal preparation for the impending pruning operation, we sharpen the
information concerning the function X1ðpÞX2ðpÞ available to us on the major arcs
M, paying particular attention to those Mðq; a; bÞ with q divisible by p. Recall
from Lemma 3.2 (i) that c2 ¼ d1 ¼ 0. It is therefore convenient to introduce the
notation

Sðq; aÞ ¼
Xq
r¼1

eðar5=qÞ ð5:12Þ

and

Sðq; a; pÞ ¼ Sðq; aÞ � p�1Sðq; ap5Þ:

Finally, we de¢ne the multiplicative function kðqÞ on prime powers ph by taking

kðphÞ ¼ 4p�1=2; when h ¼ 1;
p�h=5; when h > 1:

�
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LEMMA 5.9. Suppose that p is a prime number with M < pW 2M and
p � �1 ðmod 5Þ. Write

Upðq; a; bÞ ¼
kðqÞ; when p 6 jq;
p�2ðab; pÞkðp�1qÞ; when pkq;
0; when p2jq:

8<:
Then whenever ða; bÞ 2 Mðq; a; bÞ � M, one has

jX1ða; b; pÞX2ða; b; pÞj � P2Upðq; a; bÞ:

Proof. Suppose that ða; bÞ 2 Mðq; a; bÞ � M. Then by making a trivial estimate for
uiðx; z;PÞ, one obtains from the de¢nition of Xiða; b; pÞ the estimate

jX1ðpÞX2ðpÞj � P2q�2Sðq; c1a; pÞSðq; d2b; pÞ: ð5:13Þ

Observe next that when Mðq; a; bÞ � M, then one has ðq; a; bÞ ¼ 1. Since p > M, we
may therefore suppose without loss of generality that ðp; c1aÞ ¼ 1. Also, since
qWPdM5, one ¢nds that p6 6 jq. De¢ne j by taking pj ¼ ðq; p5Þ, and write
qj ¼ qp�j . Then we deduce from Lemma 4.5 of Vaughan [15] that

Sðq; c1aÞ ¼ Sðqj; c1ap4jÞSðpj; c1aq4j Þ:

Moreover, by two changes of variable, one ¢nds that

Sðq; c1ap5Þ ¼ pjSðqj; c1ap5�jÞ ¼ pjSðqj; c1ap4jÞ:

Thus we deduce that

Sðq; c1a; pÞ ¼ Sðqj; c1ap4jÞðSðpj; c1aq4j Þ � pj�1Þ: ð5:14Þ

When jX 2, it follows from Lemma 4.4 of [15] that Sðpj; c1aq4j Þ ¼ pj�1, whence the
relation (5.14) yields

q�2Sðq; c1a; pÞSðq; d2b; pÞ ¼ 0: ð5:15Þ

Suppose next that j ¼ 1. Since p � �1 ðmod 5Þ, every element of ðZ=pZÞ� is a
¢fth-power residue, and thus it follows that Sðp; c1aq41Þ ¼ 0 (or see Lemma 4.3 of
[15]). We therefore deduce from (5.14) that

Sðq; c1a; pÞ ¼ �Sðq1; c1ap4Þ;

and with little additional effort one also deduces that

jSðq; d2b; pÞjW ðb; pÞjSðq1; d2bp4Þj:
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Thus we deduce from Lemma 4.3 and Theorem 4.2 of Vaughan [15] that

jq�2Sðq; c1a; pÞSðq; d2b; pÞjW j p�2ðb; pÞq�2
1 Sðq1; c1ap4ÞSðq1; d2bp4Þj

� p�2ðb; pÞ
kðq1Þ

kððq1; c1ap4ÞÞ

� �
kðq1Þ

kððq1; d2bp4ÞÞ

� �
:

But since ðq; a; bÞ ¼ 1, one has ðq1; c1ap4; d2bp4Þ � 1, and hence

kððq1; c1ap4ÞÞkððq1; d2bp4ÞÞ � kðq1Þ:

We therefore conclude that in this case

jq�2Sðq; c1a; pÞSðq; d2b; pÞj � p�2ðb; pÞkðq1Þ: ð5:16Þ

Finally, when j ¼ 0, it follows by a change of variable that

Sðq; c1a; pÞSðq; d2b; pÞ ¼ ð1� 1=pÞ2Sðq; c1aÞSðq; d2bÞ;

and we ¢nd, as in the treatment of the case j ¼ 1 above, that

jq�2Sðq; c1a; pÞSðq; d2b; pÞj � kðqÞ: ð5:17Þ

The conclusion of the lemma follows immediately on collecting together
(5.15)^(5.17), and substituting into (5.13). &

Our collection of estimates now assembled, the end of the pruning process lies
within our grasp. We begin by estimating N 0;0ðMÞ, noting that with W ¼ M, it
follows from Lemmata 5.6 and 5.9 that

N 0;0ðWÞ � Q30P4
X

M<pW 2M
p��1 ðmod 5Þ

X
qWPdM5

p26 j q

YpðqÞ þMQ30P�6�t; ð5:18Þ

for some positive number t, where

YpðqÞ ¼
Xq
a¼1

Xq
b¼1

ðq;a;bÞ¼1

Upðq; a; bÞ
2Iðq; a; b;WÞmpðq; a; bÞ;

and

mpðq; a; bÞ ¼ q�30=11ðq; p5ðckaþ dkbÞÞ
15=11

ðq; p5ðc‘aþ d‘bÞÞ
15=11:

Suppose ¢rst that pkq, and write q1 ¼ p�1q. Then by Lemma 5.8 and the de¢nition
of Upðq; a; bÞ, we have

YpðqÞ � p�4kðq1Þ
2P�10�

�
Xq
a¼1

Xq
b¼1

ðq;a;bÞ¼1

ðp; abÞ2q�30=11
1 ðq1; ckaþ dkbÞ

15=11
ðq1; c‘aþ d‘bÞ

15=11:
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On making use of Lemma 5.7, one ¢nds that the contribution to the double sum
arising from those terms with pja or pjb is at most p3Sðq1Þ � p3q�1=3

1 , while the
corresponding contribution arising from those terms with ðp; abÞ ¼ 1 is at most
p2Sðq1Þ � p2q�1=3

1 . Thus we deduce that

YpðqÞ � p�1P�10kðq1Þ
2q�1=3

1 :

It follows that the contribution to (5.18) arising from those terms with pkq is of order

Q30P�6M�1
X

M<pW 2M

X1
q1¼1

kðq1Þ
2q�1=3

1 � P�6Q30
Y

p prime

ð1þ 19p�4=3Þ

� P�6Q30:

Suppose next that p 6 jq. In this case Lemma 5.8 and the de¢nition of Upðq; a; bÞ lead
to the upper bound

YpðqÞ � kðqÞ2P�10SðqÞ:

On recalling Lemma 5.7, it follows that the contribution to (5.18) arising from those
terms with p 6 jq is of order

Q30P�6
X

M<pW 2M

X1
q¼1

kðqÞ2q�1=3 � MQ30P�6ðlogPÞ�1
Y

p prime

ð1þ 19p�4=3Þ

� MQ30P�6ðlogPÞ�1:

We therefore deduce from (5.18) and the conclusion of the previous paragraph that

N 0;0ðMÞ � MQ30P�6ðlogPÞ�1;

whence by (4.7),

N 0;0ð½0; 1Þ2Þ ¼ N 0;0ðMÞ þ N 0;0ðmÞ � MQ30P�6ðlogPÞ�1:

This con¢rms the ¢rst of the estimates recorded in (5.3).
Turning our attention next to N 0;0ðMnNÞ, we conclude from Lemmata 5.6 and

5.9 that when W ¼ MnN, the estimate (5.18) again holds. The analysis of the
contribution to (5.18) arising from those terms with pkq is identical in this case
to that above, and so we concentrate on the terms with p 6 jq. In such cases,
Lemma 5.8 and the de¢nition of Upðq; a; bÞ establish that

YpðqÞ � kðqÞ2P�10Y�4=11SðqÞ;

where Y is de¢ned as in the statement of Lemma 5.8. On recalling Lemma 5.7, it now
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follows that the contribution to (5.18) arising from those terms with p 6 jq is of order

Q30P�6
X

M<pW 2M

L�4=11
X1
q¼1

kðqÞ2q�1=3 þ
X
q>L

ðq=LÞ1=15kðqÞ2q�1=3

 !
� MQ30P�6ðlogPÞ�1L�1=15

Y
p prime

ð1þ 19p�19=15Þ

� MQ30P�6ðlogPÞ�1L�1=15:

On recalling our comments concerning the terms in (5.18) with pkq, we therefore
conclude that

N 0;0ðMnNÞ � MQ30P�6ðlogPÞ�1�t;

for some positive number t. This con¢rms the second of the estimates recorded in
(5.3) and completes our pruning operation.

We summarise the deliberations of this section in the form of a lemma.

LEMMA 5.10. For some positive number t, one has

NðnÞ � MP�6Q30ðlogPÞ�1�t:

Proof. The desired conclusion is immediate from (4.7) and the discussion
surrounding (5.3) above, since n is the union of MnN and m.

6. A Narrow Set of Major Arcs

A¢cionados of the circle method will recognize that the arcs comprising the setN are
suf¢ciently few and narrow that an essentially routine analysis will suf¢ce. We begin
by recording some notation. Recall the de¢nitions of Siðq; a; bÞ and uiðx; z;BÞ from
(5.4) and (5.6). Further, de¢ne the functions Wiða; bÞ for 1W iW 4 and wjða; bÞ
for 5W jW 34 by taking

Wiða; bÞ ¼ q�1Siðq; a; bÞuiða� a=q; b� b=q;PÞ ð6:1Þ

and

wjða; bÞ ¼ ðpqÞ�1Sjðq; a; bÞujða� a=q; b� b=q;QpÞ; ð6:2Þ

when ða; bÞ 2 Nðq; a; bÞ � N, and otherwise by taking Wiða; bÞ ¼ 0 and wjða; bÞ ¼ 0.
The functions Wiða; bÞ and wjða; bÞ provide major arc approximations to FpðgiÞ
and f ðp5gjÞ, as the following lemma demonstrates.

LEMMA 6.1. When p is a prime with M < pW 2M, one has

sup
ða;bÞ2N

jFpðgiÞ � ð1� 1=pÞWiða; bÞj � L2 ð1W iW 4Þ
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and, for a certain positive number c depending at most on Z,

sup
ða;bÞ2N

j f ðp5gjÞ � cwjða; bÞj � QL�10 ð5W jW 34Þ:

Proof.When ða; bÞ 2 Nðq; a; bÞ � N andM < pW 2M, one has p > M > LX q, so
that by a change of variable, the consequent coprimality of p and q ensures that

Siðq; ap5; bp5Þ ¼ Siðq; a; bÞ ð1W iW 34Þ; ð6:3Þ

and the ¢rst conclusion of the lemma now follows instantly from Lemma 5.1 on
noting that, when ða; bÞ 2 Nðq; a; bÞ � N, one has

qeðqþ P5jqa� aj þ P5jqb� bjÞ1=2 � L1þe � L2:

Next, from Lemma 8.5 of Wooley [18] (see also Lemma 5.4 of Vaughan [14]) it
follows that there exists a positive number c, depending only on Z, such that
whenever ða; bÞ 2 Nðq; a; bÞ � N, one has

f ðp5gjÞ ¼ cq�1Sjðq; ap5; bp5Þujðp5ða� a=qÞ; p5ðb� b=qÞ;QÞ þ

þO
Q

ðlogQÞ1=4
ðqþQ5p5jqa� aj þQ5p5jqb� bjÞ

� �
:

By employing (5.7) and (6.3), we ¢nd that whenM < pW 2M and ða; bÞ 2 N, one has

j f ðp5gjÞ � cwjða; bÞj � QL2ðlogQÞ�1=4
� QL�10:

This completes the proof of the lemma. &

We are now prepared to replace the major arc contribution by the product of a
truncated singular series and a truncated singular integral. To this end, we write

T ðq; a; bÞ ¼ q�34
Y34
i¼1

Siðq; a; bÞ; ð6:4Þ

upðx; zÞ ¼
Y4
i¼1

uiðx; z;PÞ
Y34
j¼5

ujðx; z;QpÞ; ð6:5Þ

and then de¢ne

SðLÞ ¼
X

1W qWL

Xq
a¼1

Xq
b¼1

ðq;a;bÞ¼1

T ðq; a; bÞ;

JðLÞ ¼
X

M<pW 2M
p��1 ðmod 5Þ

p�30ð1� 1=pÞ4
Z Z

½�LP�5;LP�5�2
upðx; zÞdx dz:
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LEMMA 6.2. One has

NðNÞ ¼ c30SðLÞJðLÞ þOðMP�6Q30ðlogPÞ�1�t
Þ;

for some positive number t.
Proof. On making use of the estimates from Lemma 6.1, one ¢nds that whenever

ða; bÞ 2 N, one has

Y4
i¼1

FpðgiÞ
Y34
j¼5

f ðp5gjÞ � c30ð1� 1=pÞ4
Y4
i¼1

Wiða; bÞ
Y34
j¼5

wjða; bÞ

�����
������ P4Q30L�10:

But on recalling (5.1), one ¢nds that the measure of N is OðL5P�10Þ, and hence it
follows that

X
M<pW 2M

p��1 ðmod 5Þ

Z Z
N

Y4
i¼1

FpðgiÞ
Y34
j¼5

f ðp5gjÞ da db� c30SðLÞJðLÞ

���������

���������
� ðL5P�10ÞðP4Q30L�10Þ

X
M<pW 2M

1:

The desired conclusion therefore follows from the prime number theorem. &

Before completing the singular series and singular integral to in¢nity, it is
convenient to remark on some simple estimates for Siðq; a; bÞ and ujðx; z;BÞ. Observe
¢rst that in view of Lemma 3.2(ii), one may relabel the indices i for 1W iW 34 so
that for 1W iW 17 the two coef¢cient ratios r2i�1 and r2i are distinct. But then a
change of variables demonstrates that

Xq
a¼1

Xq
b¼1

ðq;a;bÞ¼1

S2i�1ðq; a; bÞS2iðq; a; bÞ
�� ��h WXq

u¼1

Xq
u¼1

ðq;u;uÞW l

Sðq;CiuÞSðq;DiuÞ
�� ��h;

where l, Ci andDi are positive integers depending only on c2i�1, c2i, d2i�1 and d2i, and
where Sðq; aÞ is the exponential sum de¢ned in (5.12). But in view of Theorem 4.2 of
Vaughan [15], one has

Sðq; aÞ � q4=5ðq; aÞ1=5;

so that whenever ðq; u; uÞ � 1, just as in the proof of Lemma 5.9, one has that

Sðq;CiuÞSðq;DiuÞ � q8=5ðq; uÞ1=5ðq; uÞ1=5 � q9=5: ð6:6Þ

Suppose that the indices have been arranged as in the previous paragraph. Then by
making a suitable change of variables, and assuming that B and B0 are large real
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numbers with B $ B0, one ¢nds as in the proof of Lemma 5.8 thatZ 1

0

Z 1

0
maxfx;zgXH

u2i�1ðx; z;BÞu2iðx; z;B0Þ
�� ��hdx dz

�

Z 1

0

Z 1

0
maxfm;ngX lH

uðEim;BÞuðFin;B0Þ
�� ��hdm dn;

where l, Ei and Fi are positive numbers depending only on c2i�1, c2i, d2i�1 and d2i, and
where we write

uðb;T Þ ¼
Z T

0
eðbg5Þ dg:

But from Theorem 7.3 of Vaughan [15], for example, one has

uðb;T Þ � T ð1þ jbjT 5Þ
�1=5;

and hence

juðEim;BÞuðFin;B0Þj � BB0ð1þ jmjB5Þ
�1=5

ð1þ jnjðB0Þ
5
Þ
�1=5: ð6:7Þ

We now complete the truncated singular series SðLÞ to the series

S ¼
X1
q¼1

Xq
a¼1

Xq
b¼1

ðq;a;bÞ¼1

T ðq; a; bÞ;

and extend the truncated singular integral JðLÞ to the in¢nite integral

J ¼
X

M<pW 2M
p��1 ðmod 5Þ

p�30ð1� 1=pÞ4
Z Z

½�1;1�2
upðx; zÞ dx dz:

LEMMA 6.3. One has

S�SðLÞ � L�2=5 and J � JðLÞ � MP�6Q30ðlogPÞ�1L�2:

Proof. Arranging the indices i as in the preamble to this lemma, we obtain by an
application of Ho« lder’s inequality the upper bound

S�SðLÞ ¼
X
q>L

Xq
a¼1

Xq
b¼1

ðq;a;bÞ¼1

q�34
Y34
i¼1

Siðq; a; bÞ

W
X
q>L

Y17
i¼1

Xq
a¼1

Xq
b¼1

ðq;a;bÞ¼1

q�34 S2i�1ðq; a; bÞS2iðq; a; bÞ
�� ��170B@

1CA
1=17

:
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Then in view of the discussion leading to (6.6), we ¢nd that

S�SðLÞ �
X
q>L

Xq
a¼1

Xq
b¼1

q�17=5 � L�2=5;

as desired.
Proceeding similarly in our treatment of JðLÞ, we now apply Ho« lder’s inequality in

combination with (6.7) to deduce that

J � JðLÞ ¼
X

M<pW 2M
p��1 ðmod 5Þ

p�30ð1� 1=pÞ4 �

�

Z 1

�1

Z 1

�1

maxfjxj;jzjgXLP�5

Y4
i¼1

uiðx; z;PÞ
Y34
j¼5

ujðx; z;QpÞdxdz

� M�29ðlogPÞ�1
Z 1

0

Z 1

0
maxfx;zg�LP�5

P34ð1þ xP5Þ
�17=5

ð1þ zP5Þ
�17=5dxdz

� P34M�29ðlogPÞ�1
ðP�10L�12=5Þ;

and the desired conclusion follows once again, on recalling that PM�1 ¼ Q. &

The proof of our main theorem is now rapidly completed. We see from the argu-
ment of the proof of Lemma 6.3 that both S and J are absolutely convergent.
In particular, it follows from the theory familiar to practitioners of the circle method
(see, for example, Section 2.6 of Vaughan [15], or Section 10 of Davenport and
Lewis [9]) that S may be written as an absolutely convergent in¢nite product
S ¼

Q
p $p, where

$p ¼ lim
h!1

p�32hMðphÞ;

and where MðphÞ denotes the number of solutions of the pair of congruences

X34
i¼1

cix5
i �

X34
i¼1

dix5
i � 0 ðmod phÞ

with 1W xi W ph. In view of Lemma 3.2 (iv), one ¢nds via an application of Hensel’s
Lemma (as in Lemma 6.7 of [18], for example) that $p > 0 for all primes p.
Moreover, when p is large, the argument of the proof of Lemma 2.12 of [15], together
with the discussion leading to (6.6), shows that

MðphÞ ¼ p32hð1þOðp�7=5ÞÞ;
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whence $p ¼ 1þOðp�7=5Þ. Consequently, one may conclude that

S ¼

 Y
pW p0

$p

! Y
p>p0

$p

!
;

where p0 is chosen large enough so that $p X 1� p�6=5 for p > p0, and hence

S �
Y
p>p0

ð1� p�6=5Þ � 1: ð6:8Þ

As for the singular integral J, we observe thatZ Z
½�1;1�2

upðx; zÞ dx dz ¼
Z Z

½�1;1�2

Z
D

eðxL1ðcÞ þ zL2ðcÞÞ dc dx dz;

where we write

L1ðcÞ ¼
X34
i¼1

cig5i and L2ðcÞ ¼
X34
i¼1

dig5i ;

and where D denotes the box ½0;P�4 � ½0;Qp�30. Put m ¼ P5x and n ¼ P5z, and
substitute also li ¼ ðP�1giÞ

5 for 1W iW 34. Then with these changes of variables,
we discover thatZ Z

½�1;1�2
upðx; zÞ dx dz ¼ 5�34P24

Z Z
½�1;1�2

Z
D0

eðmL1ðkÞ þ nL2ðkÞÞ

ðl1 � � � l34Þ
4=5 dk dm dn;

where

L1ðkÞ ¼ c1l1 þ � � � þ c34l34 and L2ðkÞ ¼ d1l1 þ � � � þ d34l34;

and where D0 ¼ ½0; 1�4 � ½0; ðp=MÞ
5
�
30. The equations L1ðkÞ ¼ L2ðkÞ ¼ 0 de¢ne a

32-dimensional linear space, which passes through the point ðZ51; . . . ; Z
5
34Þ. Moreover,

Lemma 3.2 (iv) ensures that the latter point lies in the interior of D0. Applying
Fourier’s integral formula twice, in the shape

lim
l!1

Z T

�T

Z l

�l
V ðtÞeðtoÞ do dt ¼ V ð0Þ;

we therefore obtainZ Z
½�1;1�2

upðx; zÞ dx dz � P24
Z

D0

L1ðkÞ¼L2ðkÞ¼0

ðl1 � � � l34Þ
�4=5 dl3 � � � dl34 � P24;

whence X
M<pW 2M

p��1 ðmod 5Þ

p�30ð1� 1=pÞ4
Z Z

½�1;1�2
upðx; zÞ dx dz � P24

X
M<pW 2M

p��1 ðmod 5Þ

p�30ð1� 1=pÞ4:
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The prime number theorem for arithmetic progressions therefore gives the lower
bound

J � M�29ðlogPÞ�1P24 ¼ MP�6Q30ðlogPÞ�1: ð6:9Þ

On arranging the conclusions of Lemmata 6.2 and 6.3 in concert with the lower
bounds (6.8) and (6.9), we ¢nally deduce that

NðNÞ ¼ c30ðSþOðL�2=5ÞÞðJ þOðMP�6Q30ðlogPÞ�1L�2ÞÞ þ

þOðMP�6Q30ðlogPÞ�1�t
Þ

� MP�6Q30ðlogPÞ�1:

Thus, in view of the bound recorded in Lemma 5.10, we may conclude that

Nð½0; 1Þ2Þ ¼ N ðNÞ þ N ðnÞ � MP�6Q30ðlogPÞ�1:

Since Nð½0; 1Þ2Þ ! 1 as P ! 1, the conclusion of Theorem 1 follows at last.
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