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Abstract

Let U(r(1)) denote the enveloping algebra of the two-dimensional nonabelian Lie algebra r(1) over a base
field K. We study the maximal abelian ad-nilpotent (mad) associative subalgebras and finite-dimensional
Lie subalgebras of U(r(1)). We first prove that the set of noncentral elements of U(r(1)) admits the
Dixmier partition, U(r(1))−K=

⋃5
i=1 1i , and establish characterization theorems for elements in 1i ,

i = 1, 3, 4. Then we determine the elements in 1i , i = 1, 3, and describe the eigenvalues for the inner
derivation adB x, x ∈1i , i = 3, 4. We also derive other useful results for elements in 1i , i = 2, 3, 4, 5.
As an application, we find all framed mad subalgebras of U(r(1)) and determine all finite-dimensional
nonabelian Lie algebras that can be realized as Lie subalgebras of U(r(1)). We also study the realizations
of the Lie algebra r(1) in U(r(1)) in detail.

2000 Mathematics subject classification: primary 17A36, 17B35; secondary 17B60.
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1. Introduction

Let K be an algebraically closed field of characteristic zero. Let A1 be the first
Weyl algebra over K, which is the K-algebra generated by generators p, q subject
to the commutator relation pq − qp = 1. Note that A1 is a primitive quotient
of the enveloping algebra of the three-dimensional Heisenberg Lie algebra. Early
motivations for the study of A1 and its higher degree analogs An were the applications
in physics, especially in quantum mechanics [18]. Nevertheless, the study of Weyl
algebras is closely related to the algebraic study of systems of linear differential
equations [7, 8, 14] and representation theory of Lie algebras [5].

The systematic study of A1 was first initiated by Dixmier in a seminal work [9] and
was continued in [10]. In [9], Dixmier proved that all noncentral elements of A1 can be
partitioned into five disjoint subsets: 1i , i = 1, 2, 3, 4, 5. This partition is now called
the Dixmier partition. Dixmier studied the generalized eigenspace F(x) of the linear
operator adA1 x and determined the generators of the automorphism group Aut(A1)

of A1. Following Dixmier, the elements in 11 (respectively in 13) are called strictly
nilpotent elements (respectively strictly semisimple elements). These elements were
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further explicitly classified by Dixmier up to the action of Aut(A1) in [9]. Furthermore,
for any strictly semisimple element x ∈ A1 −K, Dixmier proved that the eigenvalues
of the operator adA1 x are exactly the set Zρ for some ρ ∈K. In particular, at the end
of [9], Dixmier listed six problems concerning the first Weyl algebra A1, which have
stimulated further research. In [13], further important results were obtained by Joseph
for elements in 12, 14. Dixmier’s philosophy has been further studied by Bavula
in [2–4]. The maximal abelian ad-nilpotent (mad) associative subalgebras of A1 were
also determined by Dixmier in [9]. In [6], Berest and Wilson generalized Dixmier’s
result about mad algebras to algebras of differential operators over curves, which are
domains Morita equivalent to the first Weyl algebra A1.

A natural important question is to further determine all finite-dimensional
nonabelian Lie subalgebras which can be realized as Lie subalgebras of A1. It is
easy to see that the Lie algebras sl(2), sl(2)×K and sl(2)n H3 (where H3 denotes
the three-dimensional Heisenberg Lie algebra) can be realized as Lie subalgebras
of A1. In [11], Igusa proved a necessary condition for two elements of A1 to generate
an infinite-dimensional Lie subalgebra. In [16], Simoni and Zaccaria proved that
sl(2) is the only semisimple Lie algebra that can be realized in A1. In [12], Joseph
established a remarkable property of the realizations of sl(2) in A1. In [15], Rausch de
Traubenberg et al. determined all finite-dimensional nonabelian Lie algebras that can
be realized as Lie subalgebras of A1 and studied the action of Aut(A1)× Aut(sl(2))
on a particular family of realizations of sl(2) in A1.

Unfortunately, a direct generalization of these results to Weyl algebras An, n ≥ 2,
is not available. However, it is still of interest and possible to address this question
for other algebras closely related to A1. The main aim of this paper is to study the
mad associative subalgebras and finite-dimensional Lie subalgebras of U(r(1)), which
denotes the enveloping algebra of the two-dimensional nonabelian Lie algebra r(1)
according to the notation in [15]. As we will see, the enveloping algebra U(r(1)) is
indeed closely related to A1. Let B denote the Borel subalgebra of the first Weyl
algebra A1 generated by elements p, pq. Then it is easy to see that B is isomorphic to
the enveloping algebra U(r(1)). From now on, we will not distinguish B from U(r(1)).
Note that the determination of mad associative subalgebras and finite-dimensional Lie
subalgebras of B will be based on a detailed study of the Dixmier partition of B −K.

To proceed, we will first show that noncentral elements of B can also be partitioned
into five disjoint subsets1i , i = 1, . . . , 5, according to the behavior of the generalized
eigenspaces of their associated inner derivations adB x . Then we will further analyze
the generalized eigenspaces of these associated inner derivations in more detail and
prove some useful results. In particular, we will establish an important characterization
of these elements x such that F(x)= B, which immediately leads to a new and
elementary determination of the automorphism group Aut(B) of B. Note that the
automorphism group Aut(B) was first determined by Smith in [17] using a different
method; a simpler proof can be found in [1].

Using the above characterization, we give an explicit description of the strictly
nilpotent elements of B (elements in 11) and the strictly semisimple elements of B
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(elements in 13). Thanks to the simple nature of the group Aut(B), we are able
to completely determine the elements in 1i , i = 1, 3, and describe the set of all
eigenvalues of adB x for any x ∈13. As an application, we determine the structure
of all mad subalgebras of B and their framings. We also study the action of Aut(B)
on the set of all framed mad associative subalgebras of B. We get a similar picture
as in [6, 9]. In addition, by presenting some concrete examples, we prove that the 1i
(i = 2, 4, 5) are nonempty.

Pertaining to the determination of elements in 14, we are also able to provide a
useful reduction theorem. Using this reduction theorem, we are able to prove that the
eigenvalues of adB x, x ∈14, are included in the set Z≥0ρ for some ρ ∈K. It is very
tempting to claim that this inclusion is indeed equality. However, we do not know
how to prove such a claim. For elements x ∈13 ∪14, we prove that C(x)=K[x],
which further implies that f (x) ∈15 for any x ∈13 ∪14 and any polynomial f (X)
with deg f > 1. In addition, we prove that f (x) ∈11 (respectively 12) if and only
if f (x) ∈11 (respectively 12) whenever f (X) is a nontrivial polynomial. As an
application, we prove that K[x] −K⊂15 for any x ∈15.

Finally, to tie up all the ends, we determine all finite-dimensional nonabelian Lie
algebras which can be realized as Lie subalgebras of B. Indeed, we show that these
Lie algebras are exactly finite-dimensional nonnilpotent solvable Lie algebras of the
specific type r(i1, . . . , in) as defined in [15]. This determination is mainly based on
the results about the inner derivations adB x established in the first part of this paper
and the corresponding results for Lie subalgebras of A1 as obtained in [15]. It is easy
to see that the two-dimensional nonabelian Lie algebra r(1) itself can be realized as
a Lie subalgebra of B. Thus we will further study the realizations of r(1) in B in
detail. In particular, we give a partition of the set Br(1) of all realizations of r(1)
in B as Br(1)

= Br(1)
1 ∪ Br(1)

2 . We further prove that Br(1)
1 is the union of orbits of a

family N of realizations of r(1) in B under the action of Aut(B). We also construct
some examples of elements in Br(1)

2 . In what follows, unless otherwise stated, we will
always fix K as an algebraically closed field of characteristic zero.

The paper is organized as follows. In Section 2 we study the Dixmier partition of
noncentral elements in B and obtain various properties on the inner derivations adB x .
In Section 3 we characterize all strictly nilpotent elements and strictly semisimple
elements in B; we determine the mad subalgebras of B and their framings. In Section 4
we further derive some useful results on elements in 1i , i = 2, 3, 4, 5. In Section 5
we determine all finite-dimensional nonabelian Lie algebras that can be realized as Lie
subalgebras of B and construct some specific examples of Lie subalgebras of B; some
of these might be infinite-dimensional. In Section 6 we study the realizations of the
Lie algebra r(1) in B.

2. Dixmier partition of elements in B −K

In this section, we prove that noncentral elements of B can be partitioned into five
disjoint sets. We give a characterization of these elements x satisfying F(x)= B,
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where F(x) is the generalized eigenspace associated with the inner derivation adB x .
As a first application, we give a new determination of the automorphism group of B.

2.1. A partition of elements in B −K. Note that the first Weyl algebra A1 is
the K-algebra generated by p, q subject to the relation pq − qp = 1 and B is the
Borel subalgebra of A1 generated by p, pq . It is easy to show that the center of B
is also reduced to the base field K. In this subsection, we give a partition of the
noncentral elements of B according to the properties of the generalized eigenspaces of
the associated inner derivations adB x , x ∈ B.

First of all, we recall some background and notation from [9] and we refer the reader
to [9] for more details. Let A be any associative algebra over any base field k. For any
x ∈ A, we denote by adA x , or simply by ad x , the linear operator on A defined by
adA x(a)= xa − ax for any a ∈ A. For any x ∈ A, λ ∈ k, we denote by F(x, λ, A),
or simply by F(x, λ), the set of all elements y ∈ A such that (adA x − λ)n(y)= 0 for
sufficiently large n. We denote by F(x, A)=

⊕
λ∈k F(x, λ), or simply by F(x), the

direct sum of all such F(x, λ, A). It is obvious that F(x) is a subalgebra of A graded
by F(x, λ), λ ∈ k. Denote by N (x, A), or simply by N (x), the set of all elements
y ∈ A such that (adA x)n(y)= 0 for sufficiently large n. It is easy to verify that
N (x) is also a subalgebra of A, which is a filtered algebra filtered by N (x, n), n ∈ N.
Let D(x, λ, A) be the set of all elements y ∈ A such that adA x(y)= λy, and set
D(x, A)=

⊕
λ∈k D(x, λ, A); we denote this simply as D(x). Then D(x) is a

subalgebra of A, which is graded by D(x, λ), λ ∈ k.
Let C(x, A), or simply C(x), denote the centralizer of the element x in A. We state

following simple lemma.

LEMMA 2.1. For any x ∈ B, we have N (x) ∩ D(x)= C(x).

PROOF. The proof is a direct verification and we omit it. 2

LEMMA 2.2. Let λ ∈K and z ∈ B such that (adA x − λ)2z = 0. Then

(adA x − nλ)nzn
= n!((adA x − λ)z)n, n = 1, 2, 3, . . .

and
(adA x − nλ)n+1zn

= 0.

PROOF. Since B is a subalgebra of A1, then z is also an element of A1 and the linear
operator adB x on B can be extended to a linear operator adA1 x on A1. Thus, [9, Proof
of Lemma 6.4] can be adopted here without modification, and we will not reproduce
it here. 2

For the algebra B, we have the following result.

LEMMA 2.3. B is a domain and has GK-dimension two.

PROOF. Note that B can be regarded as the universal enveloping algebra of the two-
dimensional nonabelian Lie algebra. Thus the result follows from the Poincaré–
Birkhoff–Witt theorem for the universal enveloping algebras of Lie algebras. 2
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In addition, we have the following result for B, which is an analog of
Proposition 6.5 for A1 in [9].

PROPOSITION 2.4. For any λ ∈K∗ and any a ∈ B, we have D(a, λ, B)=
F(a, λ, B).

PROOF. Note that [9, Proof of Proposition 6.5] depends only on the fact that A1 is
a domain and has GK-dimension two. Thanks to Lemma 2.3, we know that B is a
domain and has GK-dimension two. Thus we can copy [9, Proof of Proposition 6.5]
word for word and we will not reproduce it here. 2

As a result, we also have the following corollary.

COROLLARY 2.5. For any x ∈ B, either F(x)= D(x) or F(x)= N (x).

PROOF. This follows directly from Proposition 2.4 and Lemma 2.2. 2

Note that the center of B is reduced to the base field K, so the set of noncentral
elements in B is the set B −K. The following result gives a partition of B −K into
five disjoint subsets.

THEOREM 2.6. The set B −K is the disjoint union of the following subsets:

(1) 11, the set of all elements x ∈ B −K such that N (x)= B, D(x)= C(x);
(2) 12, the set of all elements x ∈ B −K such that N (x) 6= B, N (x) 6=

C(x), D(x)= C(x);
(3) 13, the set of all elements x ∈ B −K such that D(x)= B, N (x)= C(x);
(4) 14, the set of all elements x ∈ B −K such that D(x) 6= B, D(x) 6=

C(x), N (x)= C(x);
(5) 15, the set of all elements x ∈ B −K such that D(x)= N (x)= C(x).

PROOF. It is obvious that 1i , i = 1, . . . , 5, are disjoint subsets of B −K. If x /∈15,
then either N (x) 6= C(x) or D(x) 6= C(x). Note that F(x)= D(x) or F(x)= N (x),
so D(x) ∩ N (x)= F(x) ∩ N (x)= N (x) or D(x) ∩ N (x)= D(x) ∩ F(x)= D(x).
Thus C(x)= D(x) or C(x)= N (x). If N (x) 6= C(x), then D(x)= C(x). Thus
x ∈11 ∪12. If D(x) 6= C(x), then N (x)= C(x). Thus x ∈13 ∪14. We have
proved the theorem. 2

REMARK 2.7. Following Dixmier [9], we call the elements in 11 ∪12 (respectively
11) nilpotent (respectively strictly nilpotent), elements in 13 ∪14 (respectively 13)
semisimple (respectively strictly semisimple) and elements in15 generic. We will call
this partition the Dixmier partition.

2.2. A characterization of elements x satisfying F(x)= B. In this subsection we
further study the generalized eigenspaces F(x) of the associated linear operator adB x .
We give a useful characterization of elements x such that F(x)= B. As an immediate
application, we give a new and elementary determination of the generators of the
automorphism group Aut(B) of B.
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For any a ∈K∗, any λ ∈K and any integer n ≥ 0, let 8a,n,λ be an automorphism
of B defined by

8a,n,λ(p)= ap, 8a,n,λ(pq)= pq + λpn.

Indeed, it is easy to verify that these maps can be extended to automorphisms
of B. When a = 1, these automorphisms can be regarded as the restrictions of the
corresponding automorphisms of A1. We denote by G the subgroup of Aut(B)
generated by all such automorphisms 8a,n,λ of B; we shall prove that G = Aut(B)
at the end of this subsection.

First of all, we recall some notation and technical lemmas about polynomials
from [9, Section 1]. Let f =

∑
αi, j X i Y j

∈K[X, Y ] be a polynomial in X, Y . We
denote by E( f ) the set of integer couples (i, j) such that αi, j 6= 0. Let ρ, σ be any
two real numbers. We set

νρ,σ ( f )= sup
(i, j)∈E( f )

(ρi + σ j).

As a convention, we set νρ,σ (0)=−∞. We denote by E( f, ρ, σ ) the set of
integer couples (i, j) in E( f ) such that ρi + σ j = νρ,σ ( f ). If f 6= 0, then
E( f, ρ, σ ) is not empty. If E( f )= E( f, ρ, σ ), then f is called (ρ, σ )-
homogeneous with (ρ, σ )-degree νρ,σ ( f ). Let x =

∑
αi, j pi q j . In a similar

fashion, we can define E(x), νρ,σ (x), E(x, ρ, σ ). Correspondingly, the polynomial∑
(i, j)∈E(x,ρ,σ ) αi, j X i Y j is called the (ρ, σ )-associated polynomial of x .

LEMMA 2.8 [9, Lemma 1.3]. Let f ∈K[X, Y ] be a (ρ, σ )-homogeneous polynomial
of (ρ, σ )-degree ν. Then:

(1) ρX (∂ f/∂X)+ σY (∂ f/∂Y )= ν f ;
(2) if ρ and σ are linearly independent over Q, then f is a monomial.

LEMMA 2.9 [9, Lemma 2.7]. Suppose x, y are any two nonzero elements of A1 and
ρ, σ are any two real numbers such that ρ + σ > 0. Let us set ν = νρ,σ (x), ω =
νρ,σ (y). And let f1, g1 be the (ρ, σ )-associated polynomials of x, y, respectively.
Then we have the following.

(1) There exists a unique pair (t, u) of elements in A1 satisfying the following
properties:

(a) [x, y] = t + u;
(b) E(t)= E(t, ρ, σ ) and νρ,σ (t)= ν + ω − (ρ + σ);
(c) νρ,σ (u) < ν + ω − (ρ + σ).

(2) In addition, the following conditions are equivalent:

(a) t = 0;
(b) ∂X ( f1)∂Y (g1)− ∂Y ( f1)∂X (g1)= 0.

If ν, ω are integers, then these conditions are further equivalent to the condition
that gν1 is proportional to f ω1 .
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(3) If t 6= 0, then the (ρ, σ )-associated polynomial of [x, y] is just ∂X ( f1)∂Y (g1)−

∂Y ( f1)∂X (g1).

We now prove an important lemma concerning the generalized eigenspace of the
inner derivation adB x .

LEMMA 2.10. Let x =
∑
αi, j pi (pq) j with αi, j0 6= 0 for some j0 ≥ 2 or αi0,1 6= 0 for

some i0 ≥ 1; then F(x) 6= B.

PROOF. Since B is a subalgebra of A1 and x ∈ B, then x is an element of A1. Thus x
can be written as x =

∑
m,n βm,n pmqn where m ≥ n. Let r be the smallest nonnegative

integer such that βm,0 = 0 for m ≥ r + 1 and s be the smallest nonnegative integer such
that β0,n = 0 for any n ≥ s + 1. Since m ≥ n, then β0,n = 0 for any n ≥ 1. Thus s = 0.

Because of the conditions imposed on x , we have βm1,n1 6= 0 for some m1 ≥ n1 ≥ 1.
It is obvious that we can choose positive real numbers σ, ρ with an irrational ratio such
that

σm1 + ρn1 > ρs, σm1 + ρn1 > rσ.

Thus there exist m2 ≥ 0 and n2 ≥ 0 such that

βm2,n2 6= 0, σm2 + ρn2 = νσ,ρ(x).

Note that
σm2 + ρn2 > ρs, σm2 + ρn2 > rσ.

If n2 = 0, then m2 > r . Thus βm2,n2 = βm2,0 = 0, which is a contradiction to the
definition of r . So m2 ≥ n2 ≥ 1. In addition, if m2 = n2 = 1, then

σ + ρ ≤ σm1 + ρn1 ≤ σm2 + ρn2 = σ + ρ.

Thus m1 = m2 and n1 = n2, which is a contradiction. So m2 ≥ 2 or n2 ≥ 2.
By the second part of Lemma 2.8 about the associated polynomial of elements

in A1, we know that the (σ, ρ)-associated polynomial of x is βm2,n2 Xm2Y n2 . Note that
m2 ≤ n2. For n = 0, 1, 2, . . . , we set yn = (ad x)n p. We will show by induction on n
that the (σ, ρ)-associated polynomial of yn is βn Xn(m2−1)+1Y n(n2−1) with βn ∈K∗.
The statement is obviously true for n = 0. Suppose that the statement is true for n.
Note that

m2(n(m2 − 1))− n2(n(m2 − 1)+ 1)=−n2 + nn2 − nm2 ≤−n2 < 0.

As a result of Lemma 2.9, the (σ, ρ)-associated polynomial of yn+1 = [x, yn] is given
by

(−n2 + nn2 − nm2)βm2,n2βn Xm2+n(m2−1)Y n2+n(n2−1)−1.

Thus the statement is true for n + 1. In addition, νσ,ρ(yn)= σ(n(m2 − 1)+ 1)+
ρn(n2 − 1). Since m2 ≥ 2 or n2 ≥ 2 and m2 ≥ n2 ≥ 1, then νσ,ρ(yn) approaches ∞
as n becomes large. Thus we have proved that p /∈ F(x). So F(x) 6= B. 2
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THEOREM 2.11. If F(x)= B, then x = λpq + f (p) for some λ ∈K and some
polynomial f (X) ∈K[X ].

PROOF. Let x =
∑

i, j αi, j pi (pq) j . Note that F(x)= B. By Lemma 2.10, αi, j = 0
for all j ≥ 2 and αi,1 = 0 for all i ≥ 1. Thus x = α0,1 pq +

∑
i αi,0 pi . We have proved

the theorem. 2

2.3. The automorphism group Aut(B) of B. In this subsection we give a new
determination of the automorphism group Aut(B) of B using the results from the
previous subsection.

LEMMA 2.12. If x ∈K[p], then N (x)= B.

PROOF. Since x = f (p) ∈K[p], then [x, pq] = [ f (p), pq] ∈K[p]. So (adB x)2

(pq)= 0. Thus pq ∈ N (x). Since p, pq ∈ N (x) and B is generated by p, pq , then
N (x)= B. 2

PROPOSITION 2.13. We have D(pq)= B and C(pq)=K[pq]. In particular,
N (pq)= C(pq)=K[pq].

PROOF. Note that [pq, p] = −p, [pq, pq] = 0 and B is generated by p, pq; then
D(pq)= B. It is easy to verify that C(pq)=K[pq]. Thus

C(pq)= D(pq) ∩ N (pq)= B ∩ N (pq)= N (pq)

as desired. 2

LEMMA 2.14. We have N (p)= B, C(p)=K[p]. In particular, D(p)=K[p].

PROOF. Since [p, pq] = p, then (adB p)2(pq)= 0. So pq ∈ N (p). Note that B
is generated by p, pq , thus B = N (p). It is obvious that C(p)=K[p]. Thus
D(p)=K[p]. 2

LEMMA 2.15. Let 8 be an automorphism of B, then N (8(x))=8(N (x)),
D(8(x))=8(D(x)) and F(8(x))=8(F(x)).

PROOF. Since 8 is a K-algebra automorphism, 8(N (x))⊂ N (8(x)). Conversely, if
y∈N (8(x)), then adB(8(x))n y=0 for sufficiently large n. So (adB x)n(8−1(y))=0
for sufficiently large n. Thus y ∈8(N (x)). The rest of the proof is similar. 2

THEOREM 2.16. Let 8 be an automorphism of B; then 8(p)= λp, λ ∈
K∗, 8(pq)= pq + f (p) for some polynomial f (X) ∈K[X ].

PROOF. Let 8 be an automorphism of B; then N (8(p))=8(N (p))=8(B)= B.
So F(8(p))= B. Thus, 8(p)= f (p)+ apq by Theorem 2.11. Since D(pq)= B,
then (D(8(pq)))=8(B)= B. Hence, 8(pq)= bpq + g(p) by Theorem 2.11. If
a 6= 0, then p /∈ N ( f (p)+ apq); thus N (8(p)) 6= B, which is a contradiction. Since
[p, pq] = p and8 is an automorphism of B, then [8(p), 8(pq)] =8(p). Therefore,

https://doi.org/10.1017/S0004972710000407 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000407


[9] Mad subalgebras and Lie subalgebras 409

[ f (p), bpq + g(p)] = [ f (p), bpq] = f (p). Suppose that f (p)=
∑

fi pi ; then∑
b fi i pi

=

∑
fi pi .

So fi (bi − 1)= 0. Now we need to show that b = 1, which will imply that fi = 0
for i 6= 1. It is obvious that f0 = 0. Now we must have b = 1/ i0 for some i0 ≥ 1;
otherwise f = 0. Suppose that i0 > 1,8(p)= fi0 pi0 where i0 ≥ 2. This is impossible
due to the fact that 8(p) and 8(pq) should generate B as an algebra. So b = 1 and
fi = 0 for i 6= 1. Thus 8(p)= λp for some λ ∈K∗. 2

COROLLARY 2.17 (See [1, 17]). We have Aut(B)= G, where G is the subgroup of
Aut(B) generated by the automorphisms 8a,n,λ.

PROOF. Let8 ∈ Aut(B) be an automorphism of B. Then8(p)= ap for some a ∈ K ∗

and 8(pq)= pq + g(p) for some polynomial g(X) ∈K[X ]. So 8 is a composition
of automorphisms of the form 8a,n,λ. Hence 8 ∈ G. Thus G = Aut(B). 2

REMARK 2.18. This result was first obtained by Smith as a corollary of her main
result in [17] by a different method. We can find a simpler determination which works
for both zero and positive characteristics in [1].

3. Strictly nilpotent elements and strictly semisimple elements in B

In this section, we characterize all strictly nilpotent elements and strictly semisimple
elements in B. As an application, we determine all mad associative subalgebras of B
and their framings.

3.1. Strictly nilpotent and strictly semisimple elements in B. We are now ready
to give a complete description of strictly nilpotent elements and strictly semisimple
elements of B in terms of the characterization given in the previous section and the
automorphism group Aut(B).

First of all, we state the following important characterization of strictly nilpotent
elements.

THEOREM 3.1. Let x ∈ B −K be a noncentral element. The following conditions are
equivalent to each other:

(1) x is strictly nilpotent;
(2) there exists an automorphism 8 of B such that 8(x) ∈K[p].

Furthermore, the following conditions are equivalent to each other:

(1) x is strictly nilpotent and C(x)=K[x];
(2) there exists an automorphism 8 of B such that 8(x)= p + β for some β ∈K.

PROOF. Suppose that x is strictly nilpotent; then N (x)= B. Thus F(x)= B.
Therefore, x = f (p)+ λpq for some f (X) ∈K[X ] and λ ∈K∗. Since N (x)= B,
then λ= 0. So x = f (p) ∈K[p]. Let 8 ∈ Aut(B) be any automorphism of B; then
8(x)=8( f (p)) ∈K[p]. Conversely, if there exists an automorphism 8 ∈ Aut(B)
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such that 8(x) ∈K[p], then we know x = f (p) ∈K[p] by the definition of the
automorphism 8. So N (x)= N ( f (p))= B. In addition, C(x)= D(x) ∩ N (x)=
D(x). The proof of the second equivalence is the same. 2

In particular, we have the following corollary.

COROLLARY 3.2. The set K[p] −K is exactly the set of all strictly nilpotent elements
of B.

PROOF. This follows from the structure of Aut(B). 2

Now we give a description of strictly semisimple elements of B.

THEOREM 3.3. An element x is a strictly semisimple element of B if and only if there
exists an automorphism 8 ∈ Aut(B) such that 8(x)= λpq for some λ ∈K∗.

PROOF. Since D(x)= B and D(x)⊂ F(x), then B = F(x)= D(x). Thus x =
λpq + g(p). Supposing that λ= 0, then N (x)= B; thus C(x)= N (x) ∩ D(x)=
N (x)= B, which implies that x ∈K due to the fact that the center of B is reduced
to K. So λ 6= 0. Now we can choose a 8 ∈ G such that 8(pq)= pq − 1/λg(p).
Thus 8(x)= λpq. Conversely, if 8(x)= λpq for some λ 6= 0 ∈K and some 8 ∈ G,
then D(x)=8−1(D(8(x)))= B. Hence x is strictly semisimple. 2

In particular, we have the following explicit description of elements in 13.

COROLLARY 3.4. The following is true:

13 = {y ∈ B | y = λpq + g(p), where λ ∈K∗, g(p) ∈K[p]}.

PROOF. This follows from Theorem 3.3 and the structure of the automorphism group
Aut(B). 2

Furthermore, we have the following result concerning the eigenvalues of adB x for
those elements x ∈13.

COROLLARY 3.5. Let x ∈ B −K be strictly semisimple; then there exists a ρ ∈K
such that the set of eigenvalues of adB x is Z≥0ρ.

PROOF. Suppose x is a strictly semisimple element of B. From the above theorem,
there exists some8 ∈ Aut(B) such that8(x)= λpq for some λ 6= 0 ∈K. Note that the
set of eigenvalues for the inner derivation adB(λpq) is the set Z≥0(−λ). Therefore, the
set of all eigenvalues of adB x is the set Z≥0(−λ) as desired. 2

3.2. Maximal abelian ad-nilpotent associative subalgebras of B. The mad
associative subalgebras of A1 were also determined by Dixmier in [9]. In [6], Berest
and Wilson further determined the structure of the mad subalgebras of domains which
are Morita equivalent to A1. For more information about mad subalgebras and their
applications, we refer the reader to [6] and the references therein. In this subsection,
we determine the set of all mad subalgebras of B and their framings. We will also
study the action of Aut(B) on the set of framed mad subalgebras of B.
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DEFINITION 3.6. A maximal abelian subalgebra M of B is called a mad subalgebra
if every noncentral element of M is strictly nilpotent.

It is easy to see that K[p] is a mad subalgebra of the algebra B. There are maximal
abelian subalgebras of B that are not mad subalgebras. For example, K[pq] is a
maximal abelian subalgebra of B that is not a mad subalgebra of B. Indeed, we will
prove that K[p] is actually the only mad subalgebra of B.

First of all, we give the following description of mad subalgebras of B.

THEOREM 3.7. Every mad subalgebra M of B is of the form M =K[m] for some
noncentral element m in B. In particular, M =K[p].

PROOF. Since M is a maximal abelian subalgebra of B, then by [9, Remark 4.9], we
have M = C(m) for some noncentral element m ∈ B. Since m ∈ C(m) and M = C(m)
is a mad subalgebra of B, then m is strictly nilpotent and m ∈K[p]. Thus m = g(p)
for some g(p) ∈K[p]. Therefore M = C(m)=K[p] as desired. 2

If M is a mad subalgebra of B such that M =K[m], then we shall call a choice of
the generator m for M a framing of M , and the pair (M, m) is called a framed mad
subalgebra of B. Though the algebra B has only one mad subalgebra M =K[p], the
mad subalgebra M has different framings other than p. However, it easy to see the
following result.

LEMMA 3.8. The elements m = αp + β, α ∈K∗, β ∈K, are precisely the framings
of the mad subalgebra M =K[p].

Let Mad B denote the set of all framed mad subalgebras of B. It is easy to see
that the automorphism group Aut(B) is acting on the set Mad B. For any β ∈K, let
Mad Bβ denote the subset consisting of all framed mad subalgebras (M, αp + β)
where α ∈K∗. Then it is easy to see that Aut(B) acts transitively on Mad Bβ .
Let 0 ⊂ Aut(B) denote the subgroup of Aut(B) consisting of all automorphisms
8 ∈ Aut(B) such that 8(pq)= pq + g(p), 8(p)= p, for some g(p) ∈K[p].

THEOREM 3.9. We have the following:

Mad B=
⋃
β∈K

Mad Bβ

and
Aut(B)/0 ∼=Mad Bβ .

PROOF. It is obvious that Mad B=
⋃
β Mad Bβ . The second equality follows from

the fact that 0 is the stabilizer of (M, p + β) in Aut(B) and Aut(B) acts transitively
on Mad Bβ . 2

4. Some useful results on elements in 1i , i = 2, 3, 4, 5

In this section, we investigate some useful properties of elements in 1i , i = 2,
3, 4, 5. We first construct some specific elements to show that 12, 14, 15 are
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nonempty. In particular, for elements in13, 14, 15, we derive some important results
which will serve as a foundation for the study of Lie subalgebras of B.

4.1. Elements in 12 and 14. In this subsection we prove that 12 and 14 are
nonempty by constructing concrete examples. Let x ∈ B; then N (x) is a filtered
subalgebra of B, which is filtered by N (x, n), n ∈ Z≥0. First of all, we have the
following proposition.

PROPOSITION 4.1. Let x be an element of B. Noting that

N (x, n)= {b ∈ B | (adB x)n+1(b)= 0},

then:

(1) the graded algebra G =
⊕

N (x, n + 1)/N (x, n) associated with the filtered
algebra N (x) is a commutative domain;

(2) considered as a C(x)= N (x, 0)-module, each N (x, n + 1)/N (x, n) is of finite
type.

PROOF. Since B is a subalgebra of A1, then x can be regarded as an element of A1.
By [9, Proposition 10.2], we know that

G1 =
⊕

N (x, A1, n + 1)/N (x, A1, n)

is a commutative domain. In addition, G is a subalgebra of G1. Thus it is a
commutative domain. Using the same argument used in [9, Proof of Proposition 10.2],
we can show that N (x, n + 1)/N (x, n) is an ideal of C(x). Note that C(x) is
a commutative noetherian algebra. Thus N (x, n + 1)/N (x, n) is of finite type
considered as a C(x)-module. 2

PROPOSITION 4.2. Let x, y be two nonscalar commuting elements of B. Then
N (x, n)= N (y, n) for n ≥ 0; in particular, N (x)= N (y).

PROOF. Since B is a subalgebra of A1 and N (x, A1), N (x, A1) are filtered
algebras, then N (x, B, n)= B ∩ N (x, A1, n), N (y, B, n)= B ∩ N (y, A1, n). Thus
the proposition follows from [9, Proposition 10.3]. 2

COROLLARY 4.3. Let C be a maximal commutative subalgebra of B. If C ∩11 is
nonempty, then C −K⊂11. If C ∩12 is nonempty, then C −K⊂12.

PROOF. If the intersection C ∩11 is nonempty, then there exists an element x ∈
C ∩11 such that N (x)= B. Since x, y commute with each other, then N (y)= N (x)
for any b ∈ C −K . The second statement can be proved in the same way. 2

PROPOSITION 4.4. Let x ∈ B, then the eigenvalues of adB x are linearly independent
over Q.

PROOF. The eigenvalues of adB x are also eigenvalues of adA1 x . Thus the result
follows from [9, Proposition 10.5]. 2
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PROPOSITION 4.5. Let x, y be two nonzero elements of B such that [x, y] = λy,
where λ ∈K∗. Then:

(1) x + y is a semisimple element;
(2) y is a nilpotent element and x i y j

∈ N (y) for any integers i, j ≥ 0;
(3) if C(x)=K[x], then

∑
D(x,−λr)⊂ N (y).

PROOF. First of all, [x + y, y] = λy. Thus D(x + y) 6= C(x + y). By the
classification, we know that x + y is a semisimple element. Now [y, x] 6= 0 and
(adB y)2x = 0, thus y is a nilpotent element and x, y ∈ N (y). We have thus proved
part (2). Now let us suppose that C(x)=K[x]; then C(x)⊂ N (x). In addition,
(adB y)D(x,−λr)⊂ D(x,−λr + λ). Thus

(adB y)r D(x,−λr)⊂ D(x, 0)= C(x)⊂ N (y)

for all r ≥ 0, and we are done. 2

We now look at an example.

EXAMPLE 4.6. Let a =−pq, b = p(pq)= p2q; then [a, b] = b. So p2q − pq is
semisimple and p2q is nilpotent. In addition, F(p2q) 6= B and F(p2q − pq) 6= B by
Lemma 2.10. So b = p(pq) is in 12 and a + b = p(pq)− pq is in 14.

We now state the following proposition.

PROPOSITION 4.7. The subsets 12, 14 of B are nonempty.

4.2. Elements in 15. In this short subsection we show that 15 is also nonempty.
To succeed, we only need to find some element x ∈ B −K such that C(x)= N (x)=
D(x). In [9], Dixmier found a practical way to determine whether an element is in15
or not; and he also gave a concrete example to show that 15 is nonempty. Since B is
a subalgebra of A1, then N (x, B)= B ∩ N (x, A1), C(x, B)= B ∩ C(x, A1). So it
is enough to find some element in 15(A1) ∩ B, that will automatically be an element
in 15.

First of all, we quote two results from [9] for the purposes of this subsection.

LEMMA 4.8 [9, Lemma 7.3]. Let ρ, σ ≥ 1 be integers. Let x ∈ A1, y ∈ F(x),
and ν = νρ,σ (x), ω = νρ,σ (y); f, g are (ρ, σ )-polynomials associated with x, y,
respectively. We suppose that ν ≥ ρ + σ + 1 and f are not monomials. Then one
of the following cases is true:

(1) f ω is proportional to gν;
(2) σ ≥ ρ + 1, σ is a multiple of ρ and f (X, Y ) is of the form λXα(Xσ/ρ + µY )β

where λ, µ ∈K and α, β ≥ 0 are integers;
(3) ρ ≥ σ + 1, ρ is a multiple of σ and f (X, Y ) is of the form λY α(Y ρ/σ + µX)β

where λ, µ ∈K and α, β ≥ 0 are integers;
(4) ρ = σ , and f (X, Y ) is of the form λ(µX + νY )α(µ′X + ν′Y )β where

λ, µ, ν, µ′, ν′ ∈K and α, β ≥ 0 are integers.
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LEMMA 4.9 [9, Proposition 7.4]. Let ρ, σ ≥ 1 be integers, and x ∈ A1, ν = νρ,σ (x),
and f be the (ρ, σ )-polynomial associated to x. Suppose that:

(1) ν ≥ ρ + σ + 1;
(2) f is not a monomial;
(3) we are not in cases (2)–(4) of the previous lemma.

Then F(x)= C(x).

Here is another example.

EXAMPLE 4.10. Let

x = p5
+ (pq)2 = p5

+ p2q2
− pq;

then υ2,3(x)= 10. So the (2, 3)-associated polynomial of x is X5
+ X2Y 2. By the

previous lemmas, F(x, A1)= C(x, A1). Thus F(x, B)= C(x, B). Note that x ∈ B,
so x ∈15.

As a result, we have the following proposition.

PROPOSITION 4.11. The subset 15 of B is nonempty.

4.3. Further results on elements in 1i , i = 3, 4, 5. We now use the method of
polarization to study elements in 1i , i = 3, 4, 5. Note that

ad(pq)(pn f (pq))=−npn f (pq);

we call n the weight of pn f (pq). So

B =
⊕
n≥0

pnK[pq]

is a decomposition of B with respect to the weight spaces of adB(pq). Hence B is a
Z≥0-graded algebra.

First of all, we state a reduction theorem for elements in 14.

THEOREM 4.12. Let x ∈14; then there exists an automorphism 8 ∈ Aut(B) such
that

8(x)= αpq +
∑
s≥1

ps fs(pq)

where α 6= 0 and fs(X) are polynomials in X.

PROOF. Since x ∈14, then D(x) 6= C(x). So we can choose an element y ∈ D(x)
such that [x, y] = λy where λ 6= 0. Let x ′, y′ be the lowest weight components of x, y
with respect to the action of adB(pq). Then x ′ ∈K[pq] and [x ′, y′] = λy′. By a direct
calculation, x ′ = αpq + β where α 6= 0. If β = 0, then we are done. Otherwise, we
can choose a8 ∈ Aut(B) such that8(pq)= pq − β/α. Thus8(x ′)= αpq. We have
thus shown that

8(x)= αpq +
∑
s≥1

ps fs(pq)

for some 8 ∈ Aut(B). 2
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THEOREM 4.13. Given any element x ∈13 ∪14, then C(x)=K[x].

PROOF. If x ∈13, the result is obvious. Suppose that x ∈14 and we choose an
element y ∈ C[x]. Let y′ be the lowest weight component of8(y), where8 is chosen
as in the proof of the former theorem for x . Since y ∈ C(x), then 8(y) ∈ C(8(x)).
Hence y′ ∈K[pq] by the reduction theorem. Let y′ = f (pq) for some polynomial
f (X) and let us set z = y − f (1/αx). Then z ∈ C(x). Suppose that z 6= 0; then
the lowest weight of 8(z) is strictly positive. Since [8(z), 8(x)] = 0, the lowest
weight of 8(z) has to be zero. Thus we have a contradiction. So z = 0. Hence
y = f (1/αx) ∈K[x] as desired. 2

THEOREM 4.14. Let x ∈14; then there exists a ρ such that 3(x)⊂ Z≥0ρ.

PROOF. Let x ∈14; we choose an element y ∈ D(x) such that [x, y] = λy where
λ 6= 0. Let l be the lowest weight of 8(y) where 8 is chosen for x as in the proof of
the reduction theorem. Then λ=−αl. Let us set −α = ρ; then 3(x)⊂ Z≥0ρ. The
proof is complete. 2

LEMMA 4.15. Given y ∈ B such that f (y) ∈13 (respectively f (y) ∈14) where
f (X) is a polynomial, then f (X) is linear polynomial and y ∈13 (respectively 14).

PROOF. Suppose that y ∈ B and f (y) ∈13 ∪14 for some polynomial f (X); then
C( f (y))=K[ f (y)]. Since y ∈ C( f (y)), there exists a polynomial g(X) such that
y = g( f (y)). Since B is a domain, f, g are linear polynomials. We have proved the
lemma. 2

LEMMA 4.16. Let x ∈ B. Then x ∈11 (respectively 12) if and only if f (x) ∈11
(respectively 12) where f (X) is a nontrivial polynomial.

PROOF. The lemma follows directly from Corollary 4.3. 2

PROPOSITION 4.17. Let x ∈13 ∪14 and f (X) be a polynomial such that
deg( f ) > 1; then f (x) ∈15.

PROOF. The proposition follows from the previous two lemmas. 2

PROPOSITION 4.18. Given x ∈15, then K[x] −K⊂15.

PROOF. The result follows directly from the previous two lemmas. 2

5. Finite-dimensional Lie subalgebras of B = U(r(1))

In this section we determine all the finite-dimensional nonabelian Lie algebras that
can be realized as Lie subalgebras of B = U(r(1)), based on the results derived in
the previous sections and the corresponding classification results for nonabelian Lie
subalgebras of A1 in [15]. From now on, we will assume that K= C.
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5.1. Finite-dimensional nonabelian Lie subalgebras that can be realized in A1.
In this subsection we recall some results on the realizations of finite-dimensional
nonabelian Lie algebras as Lie subalgebras of A1 and the necessary notation from [15].

It is well known that the Lie algebras sl(2), sl(2)× C and sl(2)n H3 (where
H3 denotes the three-dimensional Heisenberg Lie algebra) can be realized as Lie
subalgebras of the first Weyl algebra A1. In [16], Simoni and Zaccaria proved that
the only complex semisimple Lie algebra that can be realized in A1 is sl(2), and a
remarkable property of realizations of sl(2) in A1 was proved by Joseph in [12], where
he showed that the spectrum of the realization in A1 of suitably normalized semisimple
elements of sl(2) is either Z or 2Z. In [11], Igusa proved a necessary condition for two
elements of A1 to generate an infinite-dimensional Lie subalgebra.

In [15], Rausch de Traubenberg et al. determined all the finite-dimensional complex
nonabelian Lie algebras that can be realized in A1. Suppose that g is a complex
finite-dimensional nonabelian Lie algebra and let Ag

1 denote the set of all injective
Lie algebra homomorphisms from g to A1. The following classification theorem was
proved in [15] for A = A1.

THEOREM 5.1 [15]. Let g be a complex finite-dimensional nonabelian Lie algebra.
Then Ag

1 6= ∅ if and only if g is isomorphic to one of the following:
• sl(2), sl(2)× C, sl(2)n H3;
• Ln, (n ≥ 2), L̃n, (n ≥ 2);
• r(i1, . . . , in) where i1 < · · ·< in are positive integers.

Note that Ln is a nilpotent, in fact filiform, Lie algebra, L̃n is isomorphic to a
semidirect product C n Ln , and r(i1, . . . , in) is isomorphic to a semidirect product
C n Cn . Indeed, there are only a finite number of nonsolvable Lie algebras and only a
discrete family of solvable Lie algebras that can be realized as Lie subalgebras of A1.
For more details, we refer the reader to [15].

Since B = U(r(1)) is a subalgebra of A1, a finite-dimensional complex Lie algebra
can be realized in A1 as long as it can be realized in B. Thus a finite-dimensional
nonabelian Lie subalgebra of B is among the Lie algebras listed in the previous
theorem. To further determine the finite-dimensional complex nonabelian Lie algebras
that can be realized in B, it suffices to determine which algebras listed in the previous
theorem can indeed be realized in B. This can be done thanks to the results obtained
in the previous sections. In particular, we will prove that the only finite-dimensional
complex nonabelian Lie algebras that can be realized in B are of the type r(i1, . . . , in).

5.2. A characterization of 11 ∪13 in terms of exponentiation.

DEFINITION 5.2 (See [15, Definition 2.4]). Let z ∈ B. One says that adB(z) can be
exponentiated if there exists a group homomorphism φ : C−→ Aut(B) such that:

(1) for all a ∈ B, the vector space Va = 〈φ(t)(a) : t ∈ C〉 is finite-dimensional;
(2) φa : C−→ Va is holomorphic and d/(dt)|0φa(t)= [z, a] where φa(t)=

φ(t)(a).
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EXAMPLE 5.3. If z ∈ B is such that adB(z) is locally nilpotent, then adB(z) can be
exponentiated in this sense. If z = λpq for some λ ∈ C∗, then adB(z) can be also
exponentiated by the group homomorphism

φ : C−→ Aut(B)

which is given on the canonical basis {(pq)i p j
| i, j ∈ Z≥0} by

φ(t)((pq)i p j )= eλt (− j)(pq)i p j .

As in [15], we have the following lemma.

LEMMA 5.4. Suppose that adB z can be exponentiated in the above sense. Then:

(1) for all a ∈ B, the vector space Va is stable under the action of adB z;
(2) φ(t)(a)= et adB z|Va (a) for all a ∈ B.

We now have the following characterization of elements in 11 ∪13 in terms of
exponentiation.

PROPOSITION 5.5. Let z ∈ B be noncentral. Then adB z can be exponentiated if and
only if z ∈11 ∪13.

PROOF. The proof is analogous to that for A1 in [15]. Suppose that z /∈11 ∪13.
Recall that

F(z)= {b ∈ B | dim(〈adn(z)(b), n ∈ N〉) <∞}

and F(z)= D(z) ∪ N (z). Since z /∈11 ∪13, then F(z) 6= B. Let b ∈ B − F(z).
Then by the hypothesis, Vb is a finite-dimensional vector space containing b and
stable under the inner derivation adB(z). Thus 〈adn

B(z)(b) | n ∈ N〉 ⊆ Vb is also finite-
dimensional, which is a contradiction.

Conversely, suppose that z ∈11 ∪13. Then by Theorems 3.1 and 3.3, up to an
automorphism of B, z is equal to λpq for some λ ∈ C∗ or to a polynomial g(p)
in p. Both adB(λpq) and adB(g(p)) can be exponentiated. Thus adB z can be
exponentiated. 2

5.3. Examples of Lie subalgebras of B = U(r(1)). In this subsection we will
construct some examples of both infinite- and finite-dimensional Lie subalgebras of B.
Though we are particularly interested in finite-dimensional Lie nonabelian subalgebras
of B, we will also discuss some examples of infinite-dimensional abelian subalgebras
of B.

Since all maximal abelian Lie subalgebras of B (which is regarded as a Lie algebra)
are precisely maximal abelian associative subalgebras of B (which is regarded as an
associative algebra), we can state the following result.

PROPOSITION 5.6. Any maximal abelian Lie subalgebra of B is the centralizer C(b)
of some noncentral element b in B.
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PROOF. This follows from the fact that maximal abelian Lie subalgebras of B are
precisely maximal abelian associative subalgebras of B. By [9, Remark 4.9], we
know that all maximal abelian associative subalgebras of B are precisely centralizers
of noncentral elements of B. Thus we are done. 2

EXAMPLE 5.7. The set {pi
| i ≥ 0} spans a maximal abelian Lie subalgebra of B,

which is infinite-dimensional.

EXAMPLE 5.8. The set {(pq)i | i ≥ 0} spans a maximal abelian Lie subalgebra of B,
which is infinite-dimensional.

We now look at some examples of finite-dimensional nonabelian Lie subalgebras
of B.

EXAMPLE 5.9. The set {pq, p} spans a nonnilpotent solvable Lie subalgebra of B.
Indeed, the Lie subalgebra spanned by {pq, p} is isomorphic to the Lie algebra r(1).

EXAMPLE 5.10. Let ik, k = 1, . . . , n, be distinct nonnegative integers which are not
all zero. Then the set {pq, pi1, . . . , pin }, for n ≥ 2, spans a nonnilpotent solvable Lie
subalgebra r(i1, . . . , in) of B. The derived algebra of r(i1, . . . , in) is n-dimensional
and abelian. Let X0 = pq, Xk = pik for k = 1, . . . , n; then the only nonabelian
relations are

[X0, Xk] = −ik Xk .

It is easy to see that

r(i1, . . . , in)≡ r(mi1, . . . , min),

for any m ≥ 1, and
r(i1, . . . , in)≡ r(iσ(1), . . . , iσ(n)),

for any permutation σ ∈ Sn .

5.4. Finite-dimensional Lie algebras that can be realized in B = U(r(1)). In this
subsection we prove that r(i1, . . . , in) are the only finite-dimensional nonabelian Lie
algebras that can be realized as Lie subalgebras of B.

First of all, we need the following definition for realizations of Lie algebras in B.

DEFINITION 5.11. Let g be a complex Lie algebra. Let us set

Bg
= {r ∈ Hom(g, B) | r is an injective linear map such that

r([a, b])= r(a)r(b)− r(b)r(a) for a, b ∈ B}.

If Bg
6= ∅, then we will say that the Lie algebra g can be realized as a Lie subalgebra

of B and an element of Bg will be called a realization of g in B.

LEMMA 5.12. The Lie algebras sl(2), sl(2)× C and sl(2)n H3 cannot be realized
as Lie subalgebras of B.
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PROOF. Since all these Lie algebras have a Lie subalgebra which is isomorphic to
sl(2), it suffices to prove that sl(2) cannot be realized as a Lie subalgebra of B.
Suppose that r : sl(2)−→ B is a realization of sl(2) as a Lie subalgebra of B; and
let {e0, e1, e2} be a standard basis of sl(2) with e0 denoting the semisimple element.
Then r(e0) is a semisimple element of B. Note that the set of the eigenvalues of
adB r(e0) contains the set 2Z as a subset, which is a contradiction to Corollary 3.5
and Theorem 4.14. Thus sl(2) cannot be realized as a Lie subalgebra of B. We have
proved the lemma. 2

LEMMA 5.13. The Lie algebras Ln and L̃n cannot be realized as Lie subalgebras
of B.

PROOF. Since these Lie algebras have a Lie subalgebra isomorphic to Ln , it suffices to
prove that Ln cannot be realized as a Lie subalgebra of B. Suppose that r : Ln −→ B
is a realization of Ln in B. By [15, Lemma 4.14], there exist elements a, b ∈ Ln such
that [r(a), r(b)] = 1, which is impossible in B. Thus we have proved that Ln cannot
be realized in B as a Lie subalgebra. 2

THEOREM 5.14. The Lie algebras r(i1, . . . , in) are the only finite-dimensional
nonabelian Lie algebras that can be realized as Lie subalgebras of B.

PROOF. It is easy to see that r(i1, . . . , in) can be realized as Lie subalgebras of B.
Thus by Theorem 5.1 and Lemmas 5.12 and 5.13, r(i1, . . . , in) are the only finite-
dimensional nonabelian Lie algebras that can be realized as Lie subalgebras of B. 2

6. Realizations of the Lie algebra r(1) in B

Let u, v denote the basis elements of the Lie algebra r(1) which satisfy the
commutator relation [u, v] = v. It is obvious that r(1) can be realized as a Lie
subalgebra of B by sending u, v to −pq, p, respectively. In this section we study
the family of all realizations of the Lie algebra r(1) in B. Recall that Br(1) denotes the
set of all realizations of the Lie algebra r(1) in B.

6.1. A partition of Br(1). In this subsection we prove some results on the
realizations of r(1) in B, which will be used to partition Br(1) into a disjoint union
of two sets.

Let r ∈ Br(1) be a realization of r(1) in B; then we have the following lemma.

LEMMA 6.1. The element r(u) is in 13 ∪14 and the element r(v) is in 11 ∪12.

PROOF. Since u is semisimple considered as an element of the Lie algebra r(1),
then there exists an element z ∈ r(1) such that [u, z] = λz for some λ ∈ C∗. Thus
r(z) ∈ D(r(u)) and r(z) /∈ C(r(u)). Therefore, C(r(u)) 6= D(r(u)), which implies
r(u) ∈13 ∪14. Similarly, we can prove that r(v) ∈11 ∪12. 2
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THEOREM 6.2. Let r ∈ Br(1) be a realization of r(1) in B. Then there exists an
automorphism 8 ∈ Aut(B) such that

8(r(u))=
−1
n

pq +
∑
s≥1

ps gs(pq)

and
8(r(v))=

∑
j≥n

p j h j (pq)

for some n ∈ N and gs(pq), h j (pq) ∈ C[pq].

PROOF. By Lemma 6.1, r(u) ∈13 ∪14. Thus by Theorems 3.3 and 4.12, there exists
a 8 ∈ Aut(B) such that

8(r(u))= λpq +
∑
s≥1

ps gs(pq)

for some λ 6= 0. Since [u, v] = v, then [r(u), r(v)] = r(v). Since 8 is an
automorphism of B, then [8(r(u)), 8(r(v))] =8(r(v)). By a direct calculation,
λ=−1/n and 8(r(v))=

∑
j≥n p j h j (pq). Thus we have proved the theorem. 2

The following result is obvious.

COROLLARY 6.3. If r(v) is strictly nilpotent in B, then r(u) is strictly semisimple
in B.

Let us set
Br(1)

1 = {r ∈ Br(1)
| r(v) ∈11}

and
Br(1)

2 = {r ∈ Br(1)
| r(v) ∈12}.

Then it is easy to see that we have the following partition of Br(1).

PROPOSITION 6.4. We have Br(1)
= Br(1)

1 ∪ Br(1)
2 .

PROOF. This follows directly from Lemma 6.1. 2

LEMMA 6.5. Let a ∈ B, µ ∈ C∗ be such that [a, p] = −µp. Then there exists 8 ∈
Aut(B) such that 8(a)= µpq.

PROOF. Note that [a, p] = −µp if and only if [a − µpq, p] = 0 if and only if
a − µpq ∈ C(p). Since C(p)= C[p], then a = µpq + f (p) for some f (p) ∈ C[p].
Thus there exists an automorphism 8 ∈ Aut(B) such that 8(a)= µpq . 2

LEMMA 6.6. Let a ∈ B, λ ∈ C∗ and let g(p)=
∑n

k=0 bk pk be a polynomial in p of
degree n. If [a, g(p)] = λg(p), then there exists an automorphism 8 ∈ Aut(B) such
that [8(a), p] = (λ/n)p.

PROOF. Since [a, g(p)] = λg(p) for some λ 6= 0, then C(a) 6= D(a). By
Theorem 2.6, we know that a is semisimple (in 13 ∪14). By Theorems 3.3 and 4.12,
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we know that there exists an automorphism 8 ∈ Aut(B) such that

8(a)= βpq +
∑
i≥1

pi fi (pq)

for some β ∈ C∗. By direct calculations, we further know that we can choose 8 such
that 8(a)= (−λ/n)pq. Thus we are done. 2

PROPOSITION 6.7. Let r ∈ Br(1) be a realization of r(1) in B. Then r ∈ Br(1)
1 if and

only if 8(r(u))= (−1/n)pq and 8(r(v))= pn for some n ∈ N, 8 ∈ Aut(B).

PROOF. This follows from the previous two lemmas. 2

Furthermore, we have the following corollary.

COROLLARY 6.8. Let r ∈ Br(1) be a realization of r(1) in B. Then r ∈ Br(1)
1 if

and only if r(u)= (−1/n)pq + g(p) and r(v)= λpn for some n ∈ N, λ ∈ C∗, g(p) ∈
C[p].

6.2. A family N of realizations of r(1) in B. In this subsection, we study the orbits
of a particular family N of realizations of r(1) in B under the action of Aut(B). Indeed,
we will prove that Br(1)

1 is the union of these orbits.
Let us set

N = {rn | n ∈ N}

where rn are realizations of r(1) in B, which are defined by rn(u)=
(−1/n)pq, rn(v)= pn .

It is easy to see that the automorphism group Aut(B) is acting on the set Br(1) and
we have the following proposition.

PROPOSITION 6.9. The elements in N are not equivalent to each other under the
action of Aut(B).

PROOF. This is obvious and we omit the details. 2

DEFINITION 6.10. We fix the following notation:
• D = {r ∈ Br(1)

| there exists8 ∈ Aut(B) such that8(r) ∈N };
• D1 = {r ∈ Br(1)

| there exists z ∈ r(1)− {0} such that r(z) ∈11};
• D′1 = {r ∈ Br(1)

| there exists z ∈ r(1)− {0} such that [r(z), b] = 0
for some b ∈11};

• E = {r ∈ Br(1)
| there exists a nilpotent element z ∈ r(1)− {0}

such that adB r(z) can be exponentiated}.

We have the following equivalent descriptions of Br(1)
1 .

THEOREM 6.11. We have

Br(1)
1 =D =D1 =D′1 = E .
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PROOF. If r ∈ Br(1)
1 , then r(v)= µpn and r(u)= (−1/n)pq + g(p) for some n ∈

N, µ ∈ C∗, g(p) ∈ C[p] by Corollary 6.8. It is easy to see that there exists an
automorphism 8 ∈ Aut(B) such that 8(r) ∈N . Thus r ∈D, which implies that
Br(1)

1 ⊂D.
If r ∈D, then there exists an automorphism 8 ∈ Aut(B) such that 8(r) ∈N . In

particular, 8(r)(u)= (−1/n)pq and 8(r)(v)= pn for some n ∈ N. So r(v)= λpn

for some λ ∈ C∗. Thus r(v) ∈11, which implies that r ∈D1. So D ⊆D1.
It is obvious that D1 ⊆D′1. Now we prove that D′1 ⊆ E . Let r ∈D′1; then there exists

z ∈ r(1)− {0} such that [r(z), b] = 0 for some b ∈11. Thus r(z) ∈ C(b)=11 ∪ C.
However, r(z) is not in C, which implies that z = αv for some α ∈ C∗. Thus r ∈ E ,
which implies that D′1 ⊆ E .

If r ∈ E , there exists a nilpotent element z ∈ −{0} such that adB r(z) can be
exponentiated. Since z is nilpotent in r(1), then r(z) ∈11 ∪12. Since r(z) can be
exponentiated, then r(z) ∈11. Once again, since z is nilpotent in the Lie algebra
r(1), then we must have z = αv for some α ∈ C∗. Thus r(v) ∈11, which implies that
r ∈ Br(1)

1 . The proof is thus complete. 2

It is easy to see the following corollary.

COROLLARY 6.12. Let r ∈ Br(1) be a realization of r(1) in B. The following are
equivalent:

(1) r(r(1)− {0})⊆11 ∪13;
(2) for all z ∈ r(1)− {0}, r(z) can be exponentiated;
(3) there exists an automorphism 8 ∈ Aut(B) such that 8(r)= rn for some n ∈ N.

6.3. Other realizations of r(1) in B. In this subsection, we present some examples
of realizations of r(1) in B that are not in Br(1)

1 . Unfortunately, the question of

explicitly determine all elements in Br(1)
2 remains open.

Let us set

M =

{
rn,h ∈ Br(1)

| rn,h(u)=
−1
n

pq, rn,h(v)= pnh(pq),

for some h(pq) ∈ C[pq] − C
}
.

Then it is obvious that no element of M is in the set Br(1)
1 and no two elements of M

are equivalent under the action of Aut(B).

DEFINITION 6.13. Let us fix the following notation:
• D′ = {r ∈ Br(1)

| there exists8 ∈ Aut(B) such that8(r) ∈M};
• D2 = {r ∈ Br(1)

| there exists z ∈ r(1)− {0} such that r(z) ∈12}.

It is easy to prove the following result.

PROPOSITION 6.14. We have D′ ⊆D2 ⊆ Br(1)
2 .
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6.4. The isotropy groups. Recall that if a group G acts on a set X , the isotropy of
x ∈ X in G is by definition the subgroup {g ∈ G | g · x = x}. In this subsection we
calculate the isotropy group of the elements fn, fn,h under the action of the group
Aut(B). It is easy to see the following.

PROPOSITION 6.15. The isotropy groups of rn and rn,h are trivial.

REMARK 6.16. It might be useful to consider the orbits of elements in Br(1)
2 under the

action of the group Aut(B)× AutLie(r(1)) where AutLie(r(1)) denotes the Lie algebra
automorphism group of the Lie algebra r(1).

References
[1] J. Alev and F. Dumas, ‘Invariants du corps de Weyl sous l’action de groupes finis (in French)

[Invariants of the Weyl field under the action of finite groups]’, Comm. Algebra 25 (1997),
1655–1672.

[2] V. V. Bavula, ‘Dixmier’s problem 5 for the Weyl algebra’, J. Algebra 283 (2005), 604–621.
[3] V. V. Bavula, ‘Dixmier’s problem 6 for somewhat commutative algebras and Dixmier’s problem 3

for the ring of differential operators on a smooth irreducible affine curve’, J. Algebra Appl. 4
(2005), 577–586.

[4] V. V. Bavula, ‘Dixmier’s problem 6 for the Weyl algebra (the generic type problem)’, Comm.
Algebra 34 (2006), 1381–1406.

[5] A. Beı̆linson and J. Bernstein, ‘Localisation de g-modules’, C. R. Acad. Sci. Paris 292 (1981),
15–18.

[6] Y. Berest and G. Wilson, ‘Mad subalgebras of rings of differential operators on curves’, Adv. Math.
212 (2007), 163–190.

[7] I. N. Bernšteı̆n, ‘Modules over a ring of differential operators. Study of the fundamental solutions
of equations with constant coefficients’, Funct. Anal. Appl. 5 (1971), 89–101.

[8] I. N. Bernšteı̆n, ‘The analytic continuation of generalized functions with respect to a parameter’,
Funct. Anal. Appl. 6 (1972), 273–285.

[9] J. Dixmier, ‘Sur les algèbres de Weyl’, Bull. Soc. Math. France 96 (1968), 209–242.
[10] J. Dixmier, ‘Sur les algèbres de Weyl. II’, Bull. Sci. Math. (2) 94 (1970), 289–301.
[11] J. Igusa, ‘On Lie algebras generated by two differential operators’, Progr. Math. 14 (1981),

187–195.
[12] A. Joseph, ‘A characterization theorem for realizations of sl(2)’, Proc. Cambridge Philos. Soc. 75

(1974), 119–131.
[13] A. Joseph, ‘The Weyl algebra—semisimple and nilpotent elements’, Amer. J. Math. 97 (1975),

597–615.
[14] M. Kashiwara, ‘B-functions and holonomic systems. Rationality of roots of B-functions’, Invent.

Math. 38 (1976), 33–53.
[15] M. Rausch de Traubenberg, M. Slupinski and A. Tanasa, ‘Finite-dimensional Lie subalgebras of

the Weyl algebra’, J. Lie Theory 16 (2006), 427–454.
[16] A. Simoni and F. Zaccaria, ‘On the realization of semi-simple Lie algebras with quantum canonical

variables’, Nuovo Cimento A (10) 59 (1969), 280–292.
[17] M. K. Smith, ‘Automorphisms of enveloping algebras’, Comm. Algebra 11 (1983), 1769–1802.
[18] H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New York, 1950).

XIN TANG, Department of Mathematics & Computer Science,
Fayetteville State University, Fayetteville, NC 28301, USA
e-mail: xtang@uncfsu.edu

https://doi.org/10.1017/S0004972710000407 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710000407

