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Abstract The topology of certain weighted inductive limits of Fréchet spaces of holomorphic functions
on the unit disc can be described by means of weighted sup-seminorms in case the weights are radial and
satisfy certain natural assumptions due to Lusky; in the sense of Shields and Williams the weights have
to be normal. It turns out that no assumption on the (double) sequence of normal weights is necessary
for the topological projective description in the case of o-growth conditions. For O-growth conditions,
we give a necessary and sufficient condition (in terms of associated weights) for projective description in
the case of (LB)-spaces and normal weights. This last result is related to a theorem of Mattila, Saksman
and Taskinen.
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1. Introduction

Weighted inductive limits of spaces of holomorphic functions play an important role in
fields like partial differential equations and convolution equations, distribution theory,
spectral theory and complex analysis. We deal with the case in which the topologies of
the step spaces of the inductive limit are given by weighted sup-seminorms. In general,
however, the locally convex inductive limit topology is very intricate. For applications and
direct calculations, it is useful to know when projective description holds, i.e. when the
inductive limit topology is also given by a (natural) system of weighted sup-seminorms.

The first general projective description results were given by Bierstedt, Meise and
Summers in [8] (see also [6]). It turned out that, in a very general framework, in the
case of o-growth conditions the weighted inductive limit V0C(X) of spaces of continuous
functions is always a topological subspace of its projective hull CV̄0(X). The proof of the
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corresponding result [8, Lemmas 1.1 and 1.2 and Theorem 1.3] worked with partitions
of unity and showed that the topologies of both spaces coincide on the dense subspace
of functions with compact support. The main projective description theorem for (LB)-
spaces VC(X) of continuous functions with O-growth conditions involved condition (D)
on the sequence V = (vn)n of weights (cf. [7]). Projective description for weighted (LF)-
spaces of continuous functions was treated in our article [4]; here the conditions (wQ)
and (Q), due to Vogt, are relevant.

Most of the techniques of proof used in the case of weighted inductive limits of spaces
of continuous functions do not work for spaces of holomorphic functions. In the case
of (semi-) Montel (LB)-spaces of holomorphic functions, the Baernstein Lemma applies
and helps to deduce projective description for weighted inductive limits of spaces of
holomorphic functions from results for the corresponding spaces of continuous functions.
But, unfortunately, for proper (LF)-spaces no analogue of the Baernstein Lemma holds,
and the situation is much more complicated in this case.

Counterexamples for projective description in (LB)-spaces of holomorphic functions
were given only relatively recently, by Bonet and Taskinen [13], Bonet and Melikhov [13]
and Bonet and Vogt [14]. The recent paper [11] of Bonet and Meise gives new insight
into counterexamples for (LF)-spaces of holomorphic functions. For a survey of the state
of the art in projective description for spaces of holomorphic functions see [3].

While most projective description results invoke only conditions on the sequence
of weights, but no additional conditions on the individual weights, Mattila, Saksman
and Taskinen [22] proved projective description for (LB)-spaces VH(D) of holomorphic
functions on the unit disc D with O-growth conditions under condition (D) if all the
weights belong to a certain class. Such weights had been called normal by Shields and
Williams [26], but it is the form of the conditions (L1), (L2) of Lusky [20, 21] which
we will use here. In fact, it is clear that the present paper owes much to the articles of
Lusky and Mattila, Saksman and Taskinen: we work in a similar setting and use certain
of their techniques, but in a somewhat different way.

Our main result on (LF)-spaces of holomorphic functions with o-growth conditions
(Theorem 3.1) asserts that, whenever all the weights vn,k in the (double) sequence V
are normal in the sense of [26], then the weighted inductive limit V0H(D) is always
a topological subspace of its projective hull HV̄0(D). This is somehow parallel to the
aforementioned result of [8] for spaces of continuous functions, which, in fact, is also
used in our proof. We again show that the topologies coincide on a dense subspace;
this time it is the subspace of all polynomials. It follows (Corollary 3.2) from a result
of [4] that V0H(D) = HV̄0(D) holds algebraically and topologically if the sequence of
normal weights satisfies condition (Q). There is a natural biduality between V0H(D)
and VH(D) (see [5]), but, unfortunately, this allows us to prove projective description
for VH(D) under condition (wQ) (Corollary 3.3) only if it is known that the inductive
limit topology has a system of 0-neighbourhoods which are closed in the compact open
topology.

On the other hand, in the case of (LB)-spaces of holomorphic functions with O-growth
conditions, a slight modification of the proof of Theorem 3.1 allows us to prove (Theo-
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rem 4.1) that if V = (vn)n is a decreasing sequence of normal weights on D, then VH(D)
is always a topological subspace of the corresponding inductive limit VC(D) of spaces
of continuous functions. From the main result of [7], one then obtains (Corollary 4.2)
that VH(D) = HV̄ (D) algebraically and topologically whenever the sequence V = (vn)n

of normal weights satisfies condition (D), recovering the projective description result
of [22]. In terms of the associated weights (cf. [10]), it is even possible to give a nec-
essary and sufficient condition (Theorem 4.4) for the topological projective description
VH(D) = HV̄ (D) in the case of normal weights on D.

The paper is organized as follows. We collect definitions and preliminaries in § 2. In
§ 2.1, a class W of weights is introduced; for the weights in this class and a sequence (Rn)n

of operators from the space H(D) of all holomorphic functions on D into itself, certain
conditions (P1) and (P2) are considered. Later on, in the final section, § 5, it is shown that
the conditions (L1) and (L2) on the weights, recalled in § 2.1, imply the conditions (P1)
and (P2), where Rn is the arithmetic mean of the partial sums of the Taylor series of
order 2n, . . . , 2n+1 − 1. In § 2.2, weighted (LF)-spaces of holomorphic functions on the
disc and their projective hulls are introduced, and projective description is discussed in
more detail. Our main results and their proofs are collected in §§ 3 and 4. Section 3 is
devoted to the results on (LF)-spaces of holomorphic functions with o-growth conditions;
§ 4 deals with (LB)-spaces of holomorphic functions with O-growth conditions.

2. Notation, preliminaries

2.1. Class W, operators Rn, conditions (P1), (P2), (L1), (L2)

Let W be a class of strictly positive continuous radial weights v on the unit disc D which
satisfy limr→1− v(r) = 0 and for which the restriction of v to [0, 1) is non-increasing.
We suppose that the class W is stable under finite minima and under multiplication by
positive scalars.

For each v ∈ W we define the following weighted Banach spaces of holomorphic func-
tions on D:

Hv(D) :=
{

f ∈ H(D); ‖f‖v := sup
z∈D

v(z)|f(z)| < ∞
}

,

Hv0(D) := {f ∈ H(D); v|f | vanishes at ∞ on D}.

Next, we assume that there is a sequence Rn : H(D) → H(D), n ∈ N, of linear operators
which are continuous for the compact open topology (co) and such that the range of
each Rn is a finite-dimensional subspace of the polynomials. It is also assumed that
RnRm = Rmin(n,m) holds for each n, m with n �= m and that for each polynomial p there
is n such that Rnp = p, from which it follows that Rmp = p for each m � n. Moreover,
we suppose that there is c > 0 such that sup|z|=r |Rnp(z)| � c sup|z|=r |p(z)| for each n,
each r ∈ (0, 1) and each polynomial p.

Finally, setting R0 := 0, and putting rn := 1 − 2−n, n ∈ N ∪ {0}, we assume that the
following conditions are satisfied by the class W.
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(P1) There is C � 1 such that for each v ∈ W and for each polynomial p,

1
C

sup
n

(
sup

|z|=rn

|(Rn+2 − Rn−1)p(z)|
)
v(rn) � ‖p‖v

� C sup
n

(
sup

|z|=rn

|(Rn+1 − Rn)p(z)|
)
v(rn).

(P2) For each v ∈ W there is D(v) � 1 such that for each sequence (pn)n of polynomials
of which only finitely many are non-zero,

sup
z∈D

∣∣∣∣
∞∑

n=1

(Rn+1 − Rn)pn(z)
∣∣∣∣v(z) � D(v) sup

k

(
sup

|z|=rk

|pk(z)|
)
v(rk).

The main example for W will be the set of all the strictly positive continuous radial
weights v on D which satisfy limr→1− v(r) = 0, which are non-increasing on [0, 1), and
such that there are ε0 > 0 and k(0) ∈ N with the following conditions:

(L1) inf
k

v(rk+1)
v(rk)

� ε0,

(L2) lim sup
k→∞

v(rk+k(0))
v(rk)

< 1 − ε0.

In this case, Rn is the convolution with the de la Vallée Poussin kernel. The conditions
(L1) and (L2) form a uniform version of the conditions introduced by Lusky in [20,21],
and they also appear in the sequence space representations for weighted (LB)-spaces
given by Mattila, Saksman and Taskinen [22]. We will show in the last section that the
conditions (L1), (L2) imply the conditions (P1), (P2).

A function f defined on an interval of the real line is called almost decreasing (respec-
tively, almost increasing) if there is C > 0 such that x < y implies f(y) � Cf(x)
(respectively, f(x) � Cf(y)). By [15, Lemma 1.(a)], a radial weight v on D satisfies (L1)
for a certain ε0 if and only if it satisfies the following condition (U) of Shields and
Williams [26, p. 5].

There is q > 0 such that for the function ψ, ψ(t) := 1/v(1 − (1/t)) for t � 1,
t → ψ(t)/tq is almost decreasing.

In fact, ε0 and q depend on each other. On the other hand, [15, Lemma 1.(b)] implies
that a radial weight v on D satisfies (L2) for a certain ε0 and a certain k(0) if and only
if v satisfies the following condition (L) of Shields and Williams [26, p. 5].

There is p > 0 such that, for the function ψ defined above, t → ψ(t)/tp is
almost increasing.

Again, ε0 and k(0) depend on p and vice versa. Shields and Williams called weights
satisfying both (L) and (U) normal weights.
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2.2. Weighted (LF)-spaces of holomorphic functions, projective description

We now recall the definition of the weighted (LF)-spaces of holomorphic functions on
D. Let V = (vn,k)n,k∈N be a (double) sequence of strictly positive continuous weights on
D which satisfies

vn+1,k � vn,k � vn,k+1, n, k ∈ N.

For each n we put Vn := (vn,k)k, and we define the Fréchet spaces

HVn(D) := projk Hvn,k(D), H(Vn)0(D) := projk H(vn,k)0(D)

as well as the (LF)-spaces

VH(D) := indn HVn(D), V0H(D) := indn H(Vn)0(D).

In order to describe the topology of these (LF)-spaces by means of weighted sup-
seminorms, Bierstedt, Meise and Summers [8] associated with V the system V̄ of all
those weights v̄ : D → [0, ∞) which are upper semicontinuous and have the property that
for each n there are αn > 0 and k = k(n) such that v̄ � αnvn,k on D. The projective hulls
of the weighted inductive limits are defined by

HV̄ (D) :=
{

f ∈ H(D); ‖f‖v̄ := sup
z∈D

v̄(z)|f(z)| < ∞ for each v̄ ∈ V̄
}

,

HV̄0(D) := {f ∈ H(D); v̄|f | vanishes at ∞ for each v̄ ∈ V̄ },

both endowed with the Hausdorff locally convex topology which is given by the system
{‖ · ‖v̄; v̄ ∈ V̄ } of seminorms. The projective hulls are complete locally convex spaces,
and VH(D) and V0H(D) are contained in their projective hulls HV̄ (D) and HV̄0(D),
respectively, with continuous inclusions.

Below we will also make use of the corresponding spaces CVn(D), C(Vn)0(D), VC(D),
V0C(D), CV̄ (D), CV̄0(D) of continuous functions, defined exactly as above, only replacing
H(D) by the space C(D) of all continuous complex-valued functions on D. Moreover, in
one result in § 4, weighted (LB)-spaces of holomorphic functions on general open sets
G ⊂ C

N , N � 1, will be considered, but we have preferred to state the definitions here
only for the case G = D, which is treated in the rest of the article.

The problem of projective description for spaces of holomorphic functions on D is to
determine when

(1) VH(D) = HV̄ (D) or V0H(D) = HV̄0(D) holds algebraically; and

(2) the space VH(D) or V0H(D) is a topological subspace of its projective hull HV̄ (D)
or HV̄0(D), respectively.

A positive answer to question (2), i.e. when VH(D) or V0H(D) is a topological subspace
of its projective hull, is of particular importance because it permits us to describe the
topology of the weighted (LF)-space of holomorphic functions by means of the weighted
sup-seminorms ‖ · ‖v̄, v̄ ∈ V̄ .
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In case vn,k = vn,k+1 =: vn holds for each n, k, the space VH(D) is in fact an (LB)-
space. As a consequence of the main result of Bierstedt, Meise and Summers [8, 1.6], in
this case the projective description holds algebraically and topologically in particular if
the sequence V = (vn)n satisfies the following condition: (S) for each n there is m > n

such that vm/vn vanishes at infinity on D. Positive results for (LB)-spaces of holomorphic
functions on the disc can also be found in [22]. There condition (S) is not needed,
but all the weights must be normal. In general, the problem of projective description
for weighted inductive limits of Banach spaces of holomorphic functions has a negative
answer (cf. [12–14]).

The case of (LF)-spaces of holomorphic functions is more complicated. Ehrenpreis [16,
pp. 557, 558] showed that the space of real analytic functions A(RN ) on R

N is not
analytically uniform. This implies that the topology of the weighted (LF)-space of entire
functions which is isomorphic to the strong dual of the space of real analytic functions
cannot be described by means of the canonical weighted sup-seminorms (see also [2,17]).
Bonet and Meise [11] recently showed that the topological projective description also
fails for the natural weighted inductive limits of spaces of entire functions which arise
as the Fourier–Laplace transforms of spaces of ultradistributions of compact support in
the non-quasianalytic case. We note that this shows that our Theorem 3.1 ceases to hold
for non-radial weights on the complex plane. We refer to the recent survey article by
Bierstedt [3] for more details, motivations and open problems.

Our first main result asserts that if the weights vn,k are chosen in a class W as described
above, then V0H(D) is a topological subspace of its projective hull. Moreover, the same
method of proof shows that in the (LB)-case, whenever the weights vn of the decreasing
sequence V = (vn)n are all chosen from W, then VH(D) is a topological subspace of the
corresponding weighted inductive limit VC(D) = indn Cvn(D) of spaces of continuous
functions. Hence by the main result of [7], we obtain VH(D) = HV̄ (D) algebraically and
topologically when the sequence V satisfies condition (D) of [7]. This last result should be
compared with [22, Theorem 3.7], where condition (D) is required in a slightly different
form.

Our notation concerning inductive limits, (LB)- and (LF)-spaces, etc., is standard. We
refer to [18,19,23,24]. For our notation concerning complex analysis see [25].

3. Results for (LF)-spaces and o-growth conditions

We start directly with the main theorem of this section.

Theorem 3.1. If V = (vn,k)n,k is a sequence of weights in the class W, then V0H(D)
is a topological subspace of its projective hull HV̄0(D).

Proof. By [9, Theorem 1.5], the polynomials are contained and dense in each step
H(Vn)0(D), hence also in the inductive limit V0H(D). According to [8, Lemma 1.2], the
conclusion follows if we prove that V0H(D) and HV̄0(D) induce the same topology on
the space P of all polynomials.
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To see this we fix an absolutely convex 0-neighbourhood U in V0H(D). For each n we
choose k(n) ∈ N and εn > 0 such that

Un := {f ∈ H(Vn)0(D); ‖f‖vn,k(n) � εn} ⊂ 2−nU.

For each n let us denote by Dn � 1 the constant D(vn,k(n)) of condition (P2), and let
λn := CDn(εn)−1, where C is the constant in condition (P1). For each m we define
wm := min(λ1v1,k(1), . . . , λmvm,k(m)). According to our assumptions on the class W, we
have wm ∈ W for every m; moreover, the sequence (wm)m is decreasing.

We now need the corresponding spaces of continuous functions. We set

Wm := {g ∈ C(Vm)0(D); ‖g‖wm � 1}.

Clearly, Wm ⊂ Wm+1 for each m, and Wm is a 0-neighbourhood in C(Vm)0(D) since

{
g ∈ C(Vm)0(D); sup

z∈D

vm,k(m)(z)|f(z)| < (λm)−1
}

⊂ Wm.

Therefore, W :=
⋃

m Wm is an absolutely convex 0-neighbourhood in the weighted induc-
tive limit V0C(D) = indm C(Vm)0(D) of spaces of continuous functions. By [8, Theo-
rem 1.3], there is v̄ ∈ V̄ such that

{
g ∈ V0C(D); sup

z∈D

v̄(z)|g(z)| � 1
}

⊂ W.

Put

W0 :=
{

g ∈ HV̄0(D); sup
z∈D

v̄(z)|g(z)| � 1
}

,

which is a 0-neighbourhood in the projective hull. Hence it remains to be seen that every
polynomial q ∈ (c2 + 1)−1W0 belongs to U , where c � 1 is the constant defined before
condition (P1). Putting p := (c2 + 1)q, we obtain p ∈ P ∩ W0, and we have to show that
p ∈ (c2 + 1)U . Since p ∈ W0 ∩ V0C(D) ⊂ W , there is m such that wm|p| � 1 on D.

We have

p =
∞∑

n=0

(Rn+1 − Rn)p = R1p +
∞∑

n=1

(Rn+1 − Rn)p,

and the sum is in fact finite. We first treat the term R1p.
By the condition before (P1) and the estimate on wm|p|, we get

wm(r1) sup
|z|=r1

|R1p(z)| � cwm(r1) sup
|z|=r1

|p(z)| � c.

Choose s ∈ {1, . . . , m} with wm(r1) = λsvs,k(s)(r1). From the second inequality in (P1),
applied to the polynomial R1p and vs,k(s), and once more the condition before (P1), we
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conclude

sup
z∈D

vs,k(s)(z)|R1p(z)| � C sup
n

vs,k(s)(rn)
(

sup
|z|=rn

|(Rn+1 − Rn)R1p(z)|
)

= Cvs,k(s)(r1) sup
|z|=r1

|(R2 − R1)R1p(z)|

= C(λs)−1wm(r1) sup
|z|=r1

|(R2 − R1)R1p(z)|

� 2cC(λs)−1wm(r1) sup
|z|=r1

|R1p(z)|

� 2c2C(λs)−1 � 2c2CDs(λs)−1 = 2c2εs.

This implies R1p ∈ 2c2Us ⊂ c2U .
To treat the other term p − R1p =

∑∞
n=1(Rn+1 − Rn)p, we first apply the first inequal-

ity in (P1) for wm and the estimate for wm|p| to get

wm(rn)
(

sup
|z|=rn

|(Rn+2 − Rn−1)p(z)|
)

� C (∗)

for each n ∈ N.
Inductively, we can write N as a disjoint union

⋃m
s=1 Js such that

wm(rj) = λsvs,k(s)(rj) for j ∈ Js.

Now put, for s = 1, . . . , m, gs :=
∑

j∈Js
(Rj+1 − Rj)p, which is a polynomial; clearly

p − R1p =
∑m

s=1 gs.
We fix s = 1, . . . , m and let ps

n := (Rn+2 − Rn−1)p if n ∈ Js and ps
n := 0 otherwise.

The properties of the sequence (Rn)n imply

gs =
∑
n∈Js

(Rn+1 − Rn)(Rn+2 − Rn−1)p =
∞∑

n=1

(Rn+1 − Rn)ps
n,

and all the sums are finite; hence

sup
z∈D

vs,k(s)(z)|gs(z)| = sup
z∈D

vs,k(s)(z)
∣∣∣∣

∞∑
n=1

(Rn+1 − Rn)ps
n

∣∣∣∣.
Since only a finite number of the ps

n are non-zero and all the weights belong to the class
W, we can apply (P2) and the estimate (∗) to conclude

sup
z∈D

vs,k(s)(z)|gs(z)| � Ds sup
n

(
sup

|z|=rn

|ps
n(z)|

)
vs,k(s)(rn)

� Ds sup
n∈Js

(
sup

|z|=rn

|ps
n(z)|

)
vs,k(s)(rn)

= Ds sup
n∈Js

(
sup

|z|=rn

|(Rn+2 − Rn−1)p(z)|
)
vs,k(s)(rn)

� Ds(λs)−1 sup
n∈Js

(
sup

|z|=rn

|(Rn+2 − Rn−1)p(z)|
)
wm(rn)

� Ds(λs)−1C = εs.
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This yields gs ∈ Us ⊂ 2−sU . Thus

p − R1p =
m∑

s=1

gs ∈
m∑

s=1

2−sU ⊂ U,

hence p ∈ (c2 + 1)U , as desired. �

The conditions (wQ) and (Q) which appear in the following corollaries were introduced
by Vogt [27]. Note that (wQ) is always satisfied in the (LB)-case while condition (Q)
in this case exactly corresponds to V regularly decreasing in the sense of [8]. We remark
that in [4, Definitions 2.1 and 3.1] the conditions (wQ) and (Q) are explicitly formulated
in terms of the sequence V. It follows directly from [4, Proposition 2.4] that under condi-
tion (wQ) on the sequence V, every bounded subset of HV̄ (D) is contained and bounded
in HVn(D) for some n ∈ N, whence the inductive limit VH(D) = indn HVn(D) is regu-
lar. As a direct consequence of [4, Theorem 3.3], under condition (Q) on the sequence
V every bounded subset of HV̄0(D) is contained and bounded in H(Vn)0(D) for some
n ∈ N, whence in this case V0H(D) = indn H(Vn)0(D) is also regular.

Corollary 3.2. If V = (vn,k)n,k is a sequence of weights in the class W which satisfies
condition (Q), then

V0H(D) = HV̄0(D)

algebraically and topologically; in particular, in this case V0H(D) is complete.

Proof. Corollary 3.2 is an easy consequence of Theorem 3.1 and [4, Theorem 3.3]. �

Corollary 3.3. If V = (vn,k)n,k is a sequence of weights in the class W which satisfies
condition (wQ) and if VH(D) has a basis of 0-neighbourhoods which are closed for the
compact open topology, then we also have

VH(D) = HV̄ (D)

algebraically and topologically; in particular, in this case VH(D) is also complete.

Proof. By [4, Proposition 2.4], condition (wQ) implies the algebraic equality

VH(D) = HV̄ (D).

The condition on the closed neighbourhoods yields by [5, Proposition 5] that VH(D) is a
topological subspace of HV̄ (D) whenever V0H(D) is a topological subspace of HV̄0(D).
At this point it only remains to invoke Theorem 3.1 to finish the proof. �

According to [5, Corollary 2 and its proof ], the condition on the closed neighbourhoods
in Corollary 3.3 is satisfied in the (LB)-case if the sequence V = (vn)n is regularly
decreasing in the sense of [8]. But in the next section we will prove a better result for
the (LB)-case, replacing the regularly decreasing condition by the weaker condition (D)
of [7].
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4. Results for (LB)-spaces and O-growth conditions

We start this section directly with our main result for weighted (LB)-spaces of holomor-
phic functions with O-growth conditions.

Theorem 4.1. Let V = (vn)n be a decreasing sequence of weights vn in the class W.
Then VH(D) is always a topological subspace of the corresponding weighted inductive
limit VC(D) of spaces of continuous functions.

Proof. We modify the method of proof of Theorem 3.1 in the following way. Let U

denote an arbitrary absolutely convex 0-neighbourhood in the (LB)-space VH(D). For
each n ∈ N there is εn > 0 such that

Un := {f ∈ Hvn(D); ‖f‖vn
� εn} ⊂ 2−nU.

For each n denote by Dn � 1 the constant D(vn) of condition (P2), and with the
constant C � 1 of condition (P1) let again λn := CDn(εn)−1, n ∈ N. We define wm :=
min(λ1v1, . . . , λmvm), m = 1, 2, . . . , and note that then wm ∈ W for each m and that
the sequence (wm)m is decreasing.

We again pass to the corresponding spaces of continuous functions and put

Wm := {g ∈ Cvm(D); ‖g‖wm � 1}, m ∈ N.

Then W :=
⋃

m Wm is an absolutely convex 0-neighbourhood in VC(D); let us denote
W0 := W ∩ VH(D). We will prove that (2c2 + 1)−1W0 ⊂ U , where c � 1 is the constant
defined before condition (P1). Fix F ∈ (2c2 + 1)−1W0. Then f := (2c2 + 1)F belongs
to W0, hence there is m ∈ N such that wm|f | � 1 on D. It remains to show that
f ∈ (2c2 + 1)U .

Using the Cesàro means of (the partial sums of) the Taylor series of f about 0 as
in [9, Proposition 1.2 and its proof ], one obtains a sequence (pj)j of polynomials with

wm|pj | � wm|f | � 1 for each j ∈ N

and pj → f in (H(D), co). From this point on we repeat the arguments in the proof of
Theorem 3.1 to obtain that

pj = R1pj +
∞∑

n=1

(Rn+1 − Rn)pj ,

where R1pj ∈ 2c2Us(0) for some s(0) ∈ {1, . . . , m} and

∞∑
n=1

(Rn+1 − Rn)pj ∈
m∑

s=1

Us.

It follows that each pj belongs to (2c2 + 1)
∑m

s=1 Us. By Montel’s Theorem each such
Us is compact in (H(D), co), and since pj → f in the compact-open topology, we can
conclude that f ∈ (2c2 + 1)

∑m
s=1 Us. Finally, we obtain from Us ⊂ 2−sU that we have

f ∈ (2c2 + 1)(
∑m

s=1 2−s)U ⊂ (2c2 + 1)U , as desired. �
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We recall that a sequence V = (vn)n of weights vn on D satisfies condition (D) of [7]
if there exists an increasing sequence X = (Xm)m of subsets of D so that the following
two conditions (N, X ) and (M, X ) are satisfied.

(N, X ) ∀m∃nm � m : infXm

vk

vnm

> 0 ∀k > nm.

(M, X ) ∀n∀Y ⊂ D with Y ∩ (D \ Xm) �= ∅ for all m∃n′ = n′(n, Y ) : infY
vn′

vn
= 0.

Corollary 4.2. Let V = (vn)n be a decreasing sequence of weights vn in the class W
which satisfies condition (D). Then we have the algebraic and topological identity

VH(D) = HV̄ (D).

Proof. This corollary is an immediate consequence of Theorem 4.1 and of the fact
that condition (D) implies the (algebraic and) topological identity VC(D) = CV̄ (D)
by [7, Theorem 6.9]. �

Theorem 3.7 of [22] is very similar to our Corollary 4.2, but our proof is more direct
and seems a bit more natural.

By Bastin [1], condition (D) is equivalent to the following condition:

∀(λj)j , λj > 0, ∃v̄ ∈ V̄ ∀n ∈ N ∀M > 0 ∃m > n : min
(

M

vn
,
1
v̄

)
�

m∑
j=1

λj

vj
.

A similar condition, in which the associated weights of [10] are used, turns out to be
necessary for projective description. This is the only place in the present article in which
domains G different from D occur and in which the weights are not required to satisfy
conditions (L1), (L2).

Proposition 4.3. Let G denote an open subset of C
N , N � 1, and V = (vn)n a

decreasing sequence of strictly positive continuous functions on G. Then the topological
identity VH(G) = HV̄ (G) implies

∀(λj)j , λj > 0, ∃v̄ ∈ V̄ ∀n ∈ N ∀M > 0 ∃m > n :
(

min
(

M

vn
,
1
v̄

))∼
�

m∑
j=1

λj

vj
, (+)

where for a strictly positive continuous function w on G the associated function w̃ is
defined by

w̃(z) = sup{|f(z)|; f ∈ H(G), |f | � w on G}, z ∈ G.

Proof. Given a sequence (λj)j of positive numbers, we put

W :=
⋃

m∈N

m∑
j=1

{g ∈ Hvj(G); ‖g‖vj
� λj},
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which defines a 0-neighbourhood in VH(G). By assumption there is v̄ ∈ V̄ such that
{f ∈ VH(G); ‖f‖v̄ � 1} ⊂ W . Now fix n ∈ N, M > 0 and f ∈ H(G) with

|f | � min
(

M

vn
,
1
v̄

)
.

We have vn|f | � M , hence f ∈ Hvn(G) ⊂ VH(G), and v̄|f | � 1, hence ‖f‖v̄ � 1. From
this we conclude f ∈ W ; thus, there is m ∈ N with

f ∈
m∑

j=1

{g ∈ Hvj(G); ‖g‖vj � λj},

whereby f =
∑m

j=1 gj with |gj | � λj/vj on G. This finally yields

|f | �
m∑

j=1

λj

vj
,

from which the conclusion follows. �

In the case in which V = (vn)n is a decreasing sequence of weights vn on D all of which
belong to the class W, the converse of Proposition 4.3 is also true.

Theorem 4.4. Let V = (vn)n be a decreasing sequence of weights vn in the class W.
Then the topological equality VH(D) = HV̄ (D) holds if and only if

∀(λj)j , λj > 0, ∃v̄ ∈ V̄ ∀n ∈ N ∀M > 0 ∃m > n :
(

min
(

M

vn
,
1
v̄

))∼
�

m∑
j=1

λj

vj
. (+)

Proof. From Proposition 4.3 we know that the condition (+) is necessary. To show
the sufficiency, we follow the method of proof of Theorem 4.1. Let U denote an arbitrary
absolutely convex 0-neighbourhood in VH(D) and choose for each n ∈ N a number εn > 0
with

Un := {f ∈ Hvn(D); ‖f‖vn
� εn} ⊂ 2−nU.

Again, for each n denote by Dn � 1 the constant D(vn) of condition (P2), and with the
constant C � 1 of condition (P1) put γj := 2−j(CDj)−1εj = 2−j(λj)−1, j ∈ N, where
λj is as in the proof of Theorem 4.1. Applying the condition with the sequence (γj)j

(instead of (λj)j), there is v̄ ∈ V̄ such that (+) holds. We want to prove that with the
constant c > 0 defined before condition (P1) the following inclusion is true:

(2c2 + 1)−1{g ∈ VH(G); ‖g‖v̄ � 1} ⊂ U.

Then the topologies of VH(D) and HV̄ (D) coincide.
Fix F in the set on the left-hand side of the desired inclusion. Then f := (2c2 + 1)F

is a holomorphic function on D which, as an element of VH(D), satisfies

|f | � min
(

M

vn
,
1
v̄

)
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for some M > 0 and some n ∈ N. As a consequence of condition (+), there is m ∈ N

such that

|f | �
m∑

j=1

γj

vj
=

m∑
j=1

2−j (CDj)−1εj

vj

holds. The sum on the right-hand side of the last inequality is less than or equal to

( m∑
j=1

2−j

)
max

j=1,...,m

(
(CDj)−1εj

vj

)
� max

j=1,...,m

(
(CDj)−1εj

vj

)
.

Hence we obtain

min(λ1v1, λ2v2, . . . , λmvm)|f | = min
j=1,...,m

(CDj(εj)−1vj)|f | � 1.

As in the proof of Theorem 4.1, it now follows that f ∈ (2c2 + 1)
∑m

s=1 Us, so that we
get F ∈

∑m
s=1 Us ⊂ U , as desired. �

5. Main example

Let ε0 > 0 and k(0) ∈ N be given. We denote by W = W(ε0, k(0)) the set of all the
strictly positive continuous radial weights v on D which satisfy limr→1− v(r) = 0, which
are non-increasing on [0, 1), and such that the following conditions hold:

(L1) inf
k

v(rk+1)
v(rk)

� ε0,

(L2) lim sup
k→∞

v(rk+k(0))
v(rk)

< 1 − ε0.

The class W is stable under multiplication by positive scalars and under the formation
of finite minima, which follows, for example, from the equivalence of (L1), (L2) with the
conditions (U), (L) of Shields and Williams (cf. the end of § 2.1).

As in [21, p. 310] the operator Rn, n ∈ N, is defined for a holomorphic function f on
D, f(z) =

∑∞
k=0 akzk, as the convolution with de la Vallée Poussin kernel, i.e.

Rnf(z) :=
2n∑

k=0

akzk +
2n+1∑

k=2n+1

2n+1 − k

2n
akzk.

In fact, Rn is nothing but the arithmetic mean of the partial sums of index 2n, . . . , 2n+1−1
of the Taylor series of f . It is easy to see (cf. [20–22]) that Rn : H(D) → H(D) is a
linear operator which is continuous for the compact open topology and that its range
is a finite-dimensional subspace of the polynomials; moreover, RnRm = Rmin(n,m) holds
for each n, m with n �= m, and for each polynomial p there is n such that Rnp = p.
For the fact that the sequence (Rn)n is uniformly bounded on Hv0(D) for each v ∈ W,
see [20, 2.1].
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By [22, 3.2], for each r ∈ (0, 1) and each f ∈ H(D), we have

sup
|z|=r

|Rnf(z)| � 3 sup
|z|=r

|f(z)|. (∗∗)

This implies, for each v ∈ W and each polynomial p,

sup
n

(
sup

|z|=rn

|(Rn+2 − Rn−1)p(z)|
)
v(rn) � 6 sup

n
sup

|z|=rn

|p(z)|v(rn) � 6‖p‖v,

from which the first inequality in condition (P1) follows. The second inequality is for-
mula (3.12) in [22, Lemma 3.3].

To check the condition (P2), we fix v ∈ W and a sequence (pt)t of polynomials of
which only finitely many are non-zero. We adapt the arguments in the proofs of [21, 3.8]
and [22, 3.5].

We have to estimate supz∈D v(z)|
∑∞

t=1(Rt+1 − Rt)pt(z)|. Since all the terms are poly-
nomials, the sum is finite and v ∈ W, we can apply the second inequality in (P1) (i.e. for-
mula (3.12) in [22, Lemma 3.3]) to conclude

sup
z∈D

v(z)
∣∣∣∣

∞∑
t=1

(Rt+1 − Rt)pt(z)
∣∣∣∣ � C sup

n
sup

|z|=rn

∣∣∣∣
∞∑

t=1

(Rn+1 − Rn)(Rt+1 − Rt)pt(z)
∣∣∣∣v(rn)

with a constant C > 0 which depends on v. As in formula (3.40) in [22], one has

(Rn+1 − Rn)(Rt+1 − Rt) =




(Rn − Rn−1)(Rn+1 − Rn) if t = n − 1,

(Rn+1 − Rn)2 if t = n,

(Rn+2 − Rn+1)Rn+1 if t = n + 1,

0 for any other t.

Therefore, the last term above can be estimated (redefining only for this formula p0 := 0)
by

C sup
n

‖(Rn − Rn−1)(Rn+1 − Rn)pn−1‖v + C sup
n

‖(Rn+1 − Rn)2pn‖v

+ C sup
n

‖(Rn+2 − Rn+1)Rn+1pn+1‖v.

Invoking the second inequality in (P1) once more, the above sum is estimated by

C2 sup
n

sup
|z|=rn−1

|(Rn − Rn−1)(Rn+1 − Rn)pn−1(z)|v(rn−1)

+ C2 sup
n

sup
|z|=rn

|(Rn+1 − Rn)2pn(z)|v(rn)

+ C2 sup
n

sup
|z|=rn+1

|(Rn+2 − Rn+1)Rn+1pn+1(z)|v(rn+1),
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which by (∗∗) is less than or equal to

C2c sup
n

sup
|z|=rn−1

|pn−1(z)|v(rn−1) + C2c sup
n

sup
|z|=rn

|pn(z)|v(rn)

+ C2c sup
n

sup
|z|=rn+1

|pn+1(z)|v(rn+1)

for a constant c which depends on v. This implies condition (P2).
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