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Abstract

Let a(i) be a meromorphic function with only simple poles, and let k e N. Suppose that f(z) is
meromorphic. We first set up an inequality in which T(r, f) is bounded by the counting function of the
zeros of / ( t ) + af2, and then we prove a corresponding normal criterion. An example shows that the
restriction on the poles of a(z) is best possible.
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Introduction

One version of the Bloch principle asserts that if we consider a property of mero-
morphic functions such that every meromorphic function in the plane with that prop-
erty must be constant, then the class of meromorphic functions in the unit disc with
that property uniformly forms a normal family.

Concerning this principle, Drasin [2] proved the following result.

THEOREM A. A family of holomorphic functions is normal if every function in the
family satisfies f — af ^ b, where a ^ O and b are two constants and n > 3.

The case n = 2 was proved by Ye [6].
It is natural to ask whether or not the above results hold if we generalize the constant

a to a meromorphic function a(z). If a(z) has no zeros, then the case is easy. The
difficult case is when a(z) has zeros and poles.

hi this paper, we shall solve this problem. Our main results are the following.
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THEOREM 1. Let f{z)bea transcendental entire function, a be a non-zero constant,
k > 1 and n>2. Then

(1) T(r, / ) < (1 + 2W (r, l/(/(*> + af)) + S(r, / ) .

THEOREM 2. Let F be a family of holomorphic functions, a{z) and b(z) be mero-
morphic functions with the property that a(z) has only simple poles and a(z) # 0,
and let n > 2. If every function f in F satisfies

(2) /w+a/-#&,

then F is a normal family.

We point out that the restriction on the poles of a(z) in Theorem 2 is best possible
and necessary. For example, let F = [ fn(z) = nz, n > 2 }; then F is not normal at
zero. However, /„<*> + /n

2/z2 / 1.

REMARK 1. From our proof it is easy to see that Theorem 2 still holds if we replace
condition (2) by

/<*> + a*_,/(*-1) + • • • + aj' + aof +afn ± b,

where a0, ax,..., a*_i are meromorphic functions.

REMARK 2. The special case '& = 1 and a(z) and b(z) are holomorphic' was
considered by Chen-Fang [1] and Fang-Chen [3]. However, their method does not
work for the present cases.

We assume that the reader is familiar with Nevanlinna theory.

Some lemmas

To prove our results, we need some preliminaries.

LEMMA 1. (HUA [4, THEOREM 2]) Let f(z) be a non-constant meromorphic func-
tion, and let </ = / " + P(f), where n > 2 and P(f) is a differential polynomial of
f with degree d(P) < n — 1. Then we have at least one of the following:

(i) there exists a small proximity function c(z) (that is, m(r, c) = S(r, / ) ) such
that * = a ( / + c/n)n and

N(r, c) < max{0, w(P) -n + l) (F(r, l /¥ ) + iV(r, /)) + S(r, / ) ,

where a is a non-zero constant and a = 1 provided that N(r, f) = S(r, / ) ;
here w(P) is the weight of P;
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(») T(r, / ) < (1 + 2max{0, w(P) -n + l})7f(r, 1/*)
+ (3 + 2max{0, w(P) -n + l})N(r, / ) + S(r, / ) .

LEMMA 2. (XUE-PANG [5]) If the family F of holomorphic functions is not normal
at z0, then for any positive number a, there exist a sequence zn —*• z0, a positive
sequence pn ->• 0 and a sequence {/„} C F such that p"fn(zn + pn£) is uniformly
convergent to a non-constant entire function on any disk {|£ | < /?}.

LEMMA 3. Suppose that the sequence {/„} of holomorphic functions is uniformly
divergent to oo on the unit disk. Then for any positive integer k and any positive
number a, /n

(*V/n
1+a '5 uniformly convergent to 0 on any closed subset of the unit disk.

PROOF. We only need to prove that /n
(t)//n

1+or is uniformly convergent to 0 near
z = 0. Without loss of generality, we suppose that log | /n | is always non-negative.
By applying Poisson's formula to log \fn \, we obtain

Now take a small positive number r0 such that

4

For |z| < ro/2, we have

< ^ ^ l / n ( 0 ) | 1 + a / 2 ,

And so, /^V/n"1^* is uniformly convergent to 0. This completes the proof of the
lemma.

Proof of theorem 1

For the sake of simplicity, we only prove the case n = 2. The case n > 2 is similar.
Put P(f) = /<*> and * = bP(f) + f2, where b = I/a. Then w(P) = k + 1. It is
obvious that case (ii) of Lemma 1 is what we need. Thus, by Lemma 1, we only need
to consider case (i), that is,
(3) 4> = ( / + c/2)2,
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where c(z) is a small proximity function. From (3) and the definition of * we obtain

(4) c2 = 4bf(k) - 4c/.

From (4) we see that c has no poles. Thus

T(r, c) = S(r, / ) .

Let u = f + c/2. Then (3) becomes

(5) * = M2.

Substituting / = u — c/2 into (4) we have

(6) c2 - 2bc(k) = 4cu - 4bu(k).

Now we consider two cases.
Case (a): c2 — 2bc(k) = 0. If c is not a constant, then c = 2b c(k)/c. Thus

which is a contradiction. If c is a constant, then c = 0 by the hypothesis of case (a).
From this and (4) we deduce that / (z) is a polynomial, a contradiction.

Case (b): c2 - 2bc(k) # 0. From (6) we have

1 _ 4c 4b u(k)

U V V U

and so
(8) m(r, l/u) = S(r, / ) + S(r, u) = S(r, / ) ,

where v(z) = c2 — 2bc{k). On the other hand, from (7) we see that any zero of u of
order n > k is either a pole of 4c/v with order not less than n or a pole of 4b/v with
order n — k. Hence, noting (5) and the fact that v and c are small functions of / , we
have

N(r, l/u) < kN(r, l/u) + N(r, c/v) + N(r, b/v)

< kN(r, l/u) + S(r, f) = kN(r, 1/*) + S(r, / ) .

Combining this and (8) we obtain

T(r, f) = T(r, u) + S(r, f) = T(r, l/u) + S(r, f)

This completes the proof of Theorem 1.
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Proof of Theorem 2

As in the proof of Theorem 1, we only need to consider the case n — 2. Let z0 be
a point which satisfies
(9) a(z0) ? 0, oo, b(z0) + oo.

If F is not normal at z0, then, by Lemma 2, there exists a sequence

which is uniformly convergent to a non-constant entire function g(£). We claim that
there exists a point f0 such that

(10) g(*)(£o) + a(zo)£2(?o) = O.

In fact, if g(£) is a non-constant polynomial, then g(t)(f) + a (zo)g(£)2 is also a non-
constant polynomial with degree 2 deg(g(£)) by the fact that a(z0) ^ 0, oo; thus (10)
is obvious in this case. If g(£) is transcendental, then (10) follows from Theorem 1.

Now near fo> the function g(t)(£) + a(zo)g
2(£) is the uniform limit of

*<*>(£) + a(zn +
(11) = pf {/„<%„ + M ) + a(zn + PnK)fn{zn + Pnt) ~ Hzn + A,?)} •

By (2) we see that the right-hand side of (11) has no zeros. It follows from (10) and
Hurwitz's theorem that

As in the proof of Theorem 1, case (a), we deduce that g(£) = 0, a contradiction.
Thus, F is normal at the points which satisfy (9).
Now let z' be a point which does not satisfy (9). Then there exists a positive number

r0 such that (9) holds in the set D = {0 < \z — z'\ < r0}. From the above proof we
know that F is normal in D, so for any sequence in F, there exists a subsequence {/„}
such that /„ is uniformly convergent or uniformly divergent to oo on any closed subset
of D. If the first case occurs, then /„ is uniformly convergent on any closed subset of
{|z — z'| < r0} by the maximum modulus theorem. If the second case occurs, then by
Lemma 3,

\tik)-b\<\afn\2

holds on \z — z'\ = ro/2 for sufficiently large n. Now Rouch6's theorem asserts that

(12) = n Q , z', af2 = 0)-n Q, z', af2 = oo) ,
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where <pn — / n
( t ) — b + af%. If /„ has zeros in the disk [\z — z'\ < ro/2], then the right

hand side of (12) is positive by the assumption that a(z) has at most simple poles.

On the other hand, from (2) we see that n(ro/2, z \ <pn = 0) = 0. Thus, the left hand

side of (12) cannot be positive. This contradiction shows that /„ has no zeros in the

set {|z — z'| < ro/2}. By applying the maximum modulus theorem to l / / n we deduce

that /„ is uniformly divergent to oo on [\z — z'\ < r o /2}. Combining the two cases

above, we see that F is normal at z'.

This completes the proof of Theorem 2.
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