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Abstract

Consider the classic infinite-horizon problem of stopping a one-dimensional diffusion
to optimise between running and terminal rewards, and suppose that we are given
a parametrised family of such problems. We provide a general theory of parameter
dependence in infinite-horizon stopping problems for which threshold strategies are
optimal. The crux of the approach is a supermodularity condition which guarantees that
the family of problems is indexable by a set-valued map which we call the indifference
map. This map is a natural generalisation of the allocation (Gittins) index, a classical
quantity in the theory of dynamic allocation. Importantly, the notion of indexability leads
to a framework for inverse optimal stopping problems.
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1. Introduction

Consider the following classical optimal stopping problem. Given a discount parameter and
a time-homogeneous diffusion started at a fixed point, we are asked to maximise an expected
payoff which is the sum of a discounted running reward up until the stopping time and a terminal
reward depending on the state of the diffusion at the stopping time. We call this problem the
forward optimal stopping problem and the expected payoff under the optimal stopping rule the
(forward) problem value.

The problem can be generalised to a parametrised family of reward functions to give a
parametrised family of forward problems. This generalisation is often natural. For instance,
in economics we may be interested in the effect of changes in a dividend or a tax rate on the
value of an investment and the optimal investment decision. In dynamic resource allocation
problems, a parameter may act as an index for different projects. In this context, the decision of
which project to engage requires an analysis of the parameter dependence of optimal stopping
rules and problem values.

The approach to solving forward problems in this article is motivated by previous work for
the case when there is no running reward. In the case of perpetual American puts, Ekström
and Hobson [12] establish convex duality relations between value functions and the Laplace
transform of first hitting times of the underlying diffusion. In related work by Lu [21], the
approach is developed to establish duality when the parameter space is a discrete set of strikes.
More generally, Hobson and Klimmek [17] employ generalized convex analysis to establish
duality between log-transformed value functions and log-transformed diffusion eigenfunctions
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for a general class of reward functions. The common strand in this previous work on inverse
stopping problems is the conversion of a stochastic problem into a deterministic duality relation
involving monotone optimisers.

This article provides a unifying view of the monotone comparative statics results for
optimal stopping developed previously and an extension to nonzero running rewards. We show
that a supermodularity condition on the reward functions guarantees monotonicity of optimal
thresholds in the parameter value. This monotonicity of the thresholds imposes a useful and
natural order on families of parametrised stopping problems through a generalisation of the so-
called allocation (or Gittins) index, an important quantity in the theory of dynamic allocation
problems (see, e.g. [28] and [19]). We utilise the notion of indexability to solve parametrised
families of stopping problems.

As well as solving families of forward problems, we consider the problem of recovering
diffusion processes consistent with given optimal stopping values. ‘Inverse optimal stopping
problems’ find natural motivation in mathematical finance and economics. When there is no
running reward, the problem has the interpretation of constructing models for an asset price
process consistent with given perpetual American option prices. Now suppose instead that
we are given an investor’s valuation for a dividend bearing stock which may be liquidated
for taxed capital gains. Given the valuation, we would like to recover the investor’s model.
Similar situations may arise in a real-options setup. A bidder for a resource extraction project
may submit a range of bids for a project depending on an economic parameter. In this case,
a regulator might naturally be interested in recovering the investor’s model which underlies
the bids. This article provides solutions to inverse problems in the presence of a nonzero
running reward (or cost). We show that the value function does not contain enough information
to recover a diffusion and that solutions to the inverse problem are parametrised by a choice
of indifference (allocation) index. The indifference index can be interpreted as representing
an investor’s preferences with respect to remaining invested or liquidating. Given consistent
preferences and valuations, it is possible to recover a diffusion model.

This article provides a direct approach to forward and inverse problems based on principles
from monotone comparative statics and dynamic allocation. In spirit, the direct approach is
related to recent seminal work by Dayanik and Karatzas [11] and Bank and Baumgarten [4].
The direct solution method in [11], based on the calculation of concave envelopes, is employed
by Bank and Baumgarten [4] to solve parameter dependent forward problems. However, the
method used in [4] is restricted to problems with linear parameter dependence and requires the
calculation of an auxiliary function which transforms general two-sided stopping problems into
one-sided threshold problems. The approach taken in this article is to focus on optimal stopping
problems for which one-sided threshold strategies are optimal. This restriction (which is usual
in the setting of dynamic allocation problems) leads to a tractable characterisation of parameter-
dependence. As an analysis of allocation indices and stopping problems, this article can be
seen to extend the work of Karatzas [19]. However, the aim here is not to prove the optimality
of the ‘play-the-leader’ policy for multiarmed bandits, but to generalise the approach to inverse
optimal stopping problems introduced in [17]. The fundamental aim is to establish qualitative
principles that govern the relationship between data (e.g. prices), economic behaviour (e.g.
investment indifference levels), and models (e.g. generalised diffusions).

2. Forward and inverse problems

Let X = (Xt )t≥0 be a diffusion process on an interval I and let ρ be a discount parameter.
LetG = {G(x, θ); θ ∈ �} be a family of terminal reward functions and c = {c(x, θ); θ ∈ �} a
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family of running reward functions, both parametrised by a real parameter θ lying in an interval
� with endpoints θ− and θ+. The classical approach in optimal stopping problems is to fix the
parameter, i.e. � = {θ}, and calculate

V (x) = sup
τ

Ex

[∫ τ

0
e−ρt c(Xt , θ) dt + e−ρτG(Xτ , θ)

]
for x ∈ int(I ) using variational techniques; see, e.g. [5].

In contrast, we are interested in the case when the starting value is fixed and the parameter
varies. Then the forward problem is to calculate V ≡ {V (θ); θ ∈ �}, where

V (θ) = sup
τ

EX0

[∫ τ

0
e−ρt c(Xt , θ) dt + e−ρτG(Xτ , θ)

]
. (1)

We will assume that the process underlying the stopping problem is a regular one-dimensional
diffusion process characterised by a speed measure and a strictly increasing and continuous scale
function. Such diffusions are ‘generalised’ because the speed measure need not have a density.

Let I ⊆ R be a finite or infinite interval with a left endpoint a and right endpoint b. Let m
be a nonnegative, nonzero Borel measure on R with I = supp(m), and s : I → R a strictly
increasing and continuous function. Let x0 ∈ I and let B = (Bt )t≥0 be a Brownian motion
started at B0 = s(x0) and supported on a filtration F

B = (F B
u )u≥0 with local time process

{Lzu; u ≥ 0, z ∈ R}. Define � to be the continuous, increasing, and additive functional

�u =
∫

R

Lzum(dz),

and define its right-continuous inverse by

At = inf{u : �u > t}.
If Xt = s−1(B(At )) then X = (Xt )t≥0 is a one-dimensional regular diffusion, started at x0
with speed measure m and scale function s. Moreover, Xt ∈ I almost surely for all t ≥ 0.

Let Hx = inf{u : Xu = x}. Then, for a fixed ρ > 0 (see, e.g. [25]),

ξ(x, y) = Ex[e−ρHy ] =

⎧⎪⎪⎨
⎪⎪⎩
ϕ(x)

ϕ(y)
, x ≤ y,

φ(x)

φ(y)
, x ≥ y,

(2)

where ϕ and φ are respectively a strictly increasing and a strictly decreasing solution to the
differential equation

1

2

d

dm

d

ds
f = ρf. (3)

In the smooth case, when m has a density ν so that m(dx) = ν(x) dx and s′′ is continuous,
(3) is equivalent to

1
2σ

2(x)f ′′(x)+ α(x)f ′(x) = ρf (x), (4)

where

ν(x) = σ−2(x)eM(x), s′(x) = e−M(x), M(x) =
∫ x

0−
2σ−2(z)α(z) dz.

We will call the solutions to (3) the ρ-eigenfunctions of the diffusion. For a fixed diffusion
with a fixed starting point we will scale ϕ and φ so that ϕ(X0) = φ(X0) = 1. The boundary
conditions of the differential equation (3) depend on whether the endpoints of I are inaccessible,
absorbing, or reflecting; see [7] for details. We will denote by int(I ) all the points accessible to
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X (i.e. the interior of I as well as any accessible boundary points). We will make the following
assumption about the boundary behaviour of X.

Assumption 1. Either the boundary of I is nonreflecting (absorbing or killing) orX is started
at a reflecting endpoint and the other endpoint is nonreflecting.

Now, for θ ∈ �, let

R(x, θ) = Ex

[∫ ∞

0
e−ρt c(Xt , θ) dt

]
.

Define U : I × � → R by U(x, θ) = G(x, θ) − R(x, θ) and, for all θ ∈ � and x ∈ I , let
cθ (x) = c(x, θ) and Rθ(x) = R(x, θ).

Assumption 2. We have Ex[
∫ ∞

0 e−ρs |cθ (Xs)| ds] < ∞ for all x ∈ int(I ) and θ ∈ �.

Under our assumptions it is well known (see, e.g. [2]) that Rθ : int(I ) → R solves the
differential equation

1

2

d

dm

d

ds
f = ρf − cθ . (5)

Example 1. In some casesRθ can be calculated directly. Letμ < ρ, dXt = σXt dBt+μXt dt ,
and c(x, θ) = xθ . Then Ex[

∫ ∞
0 e−ρtXtθ dt] = xθ

∫ ∞
0 e(μ−ρ)t dt = xθ/(ρ − μ).

Example 2. Suppose that m(dx) = 2x2 dx and s(x) = −1/x. Then X is known as the three-
dimensional Bessel process and solves the stochastic differential equation dXt = dBt +dt/Xt .
Let c : R

2 → R be defined as c(x, θ) = θ cos(x) and ρ = 1
2 . Then Rθ solves 1

2f
′′(x) +

f ′(x)/x− 1
2f (x) = −θ cos(x)with f (0) = 0. The solution isRθ(x) = θ(cos(x)−sin(x)/x).

In order to rule out the case of negative value functions, we also make the following
assumption.

Assumption 3. For all θ ∈ �, there exists x̂ ∈ int(I ) such that U(x̂, θ) > 0.

2.1. Summary of the main results

Our main result for the forward problem can be summarised as follows.
Solution to the forward problem. Given a generalised diffusion X, if U(x, θ) = G(x, θ)−

R(x, θ) is log-supermodular then a threshold strategy is optimal on an interval (θ−, θR) and an
optimal finite stopping rule does not exist for θ > θR . Furthermore, if U is sufficiently regular
and V is differentiable at θ ∈ (θ−, θR) then

V ′(θ) = Uθ(x
∗(θ), θ)

ϕ(x∗(θ))
,

where x∗ : � → I is a monotone increasing function such that τ = Hx∗(θ) is the optimal
stopping rule.

Now suppose that we are given V = {V (θ); θ ∈ �}, G = {G(x, θ); x ∈ R, θ ∈ �},
c = {c(x); x ∈ R}, and X0. Then the inverse problem is to construct a diffusion X such
that VX = V is the value function corresponding to an optimal threshold strategy. (To keep
the inverse problem tractable we focus on the case when the running cost is not parameter
dependent.) Our analysis hinges on specifying the parameters for which it is optimal to stop
immediately (i.e. τ = 0) for a given level of the underlying diffusion. If we consider V to be
the value of an investment as a function of a parameter (e.g. a level of capital gains tax), then
the indifference map specifies the parameters for which an investor would be indifferent about
the investment opportunity as it would be optimal to sell immediately.
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The indifference map is a natural extension of the allocation (Gittins) index which occurs
naturally in the theory of multiarmed bandits. We provide a novel application of this classical
quantity in the context of inverse investment problems and real option theory. The indifference
map can be seen to represent investor preferences with respect to liquidating for capital gains
or remaining invested for future returns. Depending on the valuation of an investment as a
function of the parameter, we will show how to recover diffusion models for the underlying
risky asset consistent with given preferences (indifference maps).

Solution to the inverse problem. Solutions to the inverse problem are parametrised by a
choice of allocation index θ∗ : I → �: The functions ϕ and R, defined by

ϕ(x) = Gθ(x, θ
∗(x))

V ′(θ∗(x))
, R(x) = G(x, θ∗(x))− ϕ(x)V (θ∗(x)),

determine the speed measure and scale function of the solution through (3) and (5).

3. The forward problem: threshold strategies

Threshold strategies are a natural class of candidates for the optimal stopping time in the
forward problem. Our first aim is to establish necessary and sufficient conditions for the
optimality of a threshold strategy.

By the strong Markov property of one-dimensional diffusions, the value function for the
optimal stopping problem can be decomposed into the reward from running the diffusion forever
and an early stopping reward:

V (x, θ) = R(x, θ)+ sup
τ

Ex[e−ρτ (G(Xτ , θ)− R(Xτ , θ))]. (6)

We letE(x, θ) = V (x, θ)−R(x, θ)denote the optimal early stopping reward, and letU(x, θ) =
G(x, θ)− R(x, θ) denote the early stopping reward function.

Lemma 1. Stopping at the first hitting time of z ≥ X0, z ∈ int(I ), is optimal if and only if
U(y, θ)/ϕ(y) attains its global maximum on int(I ) at z.

Proof. Suppose that the global maximum is achieved at z ≥ X0. Let

Ê(θ) = U(z, θ)

ϕ(z)
.

We will show that E(X0, θ) = Ê(θ). On the one hand, E(X0, θ) ≥ Ê(θ) since the supremum
over all stopping times is larger than the value when stopping upon hitting a given threshold.
Moreover, e−ρtϕ(Xt ) is a nonnegative local martingale and, hence, a supermartingale. We have,
for all stopping times τ ,

1 ≥ EX0 [e−ρτ ϕ(Xτ )] ≥ EX0

[
e−ρτ U(Xτ , θ)

Ê(θ)

]
,

and, hence, Ê(θ) ≥ EX0 [e−ρτ (G(Xτ , θ)− R(Xτ , θ))] for all stopping times τ . Hence, Hz is
optimal.

For the converse, suppose that there exists z′ ∈ int(I ), z′ �= z, such that U(z′, θ)/ϕ(z′) >
U(z, θ)/ϕ(z). We will show that there exists a stopping time which is better than Hz. First, if
z′ ≥ X0 then stopping at τ = Hz′ is a better strategy than stopping at τ = Hz. Now suppose
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that z′ < X0. Then

U(z, θ)EX0 [e−ρHz ]
= U(z, θ)EX0 [e−ρHz 1{Hz<Hz′ }] + U(z, θ)EX0 [e−ρHz′ 1{Hz′<Hz}] Ez′ [e−ρHz ]
= U(z, θ)EX0 [e−ρHz 1{Hz<Hz′ }] + U(z′, θ)EX0 [e−ρHz′ 1{Hz′<Hz}]

U(z, θ)/ϕ(z)

U(z′, θ)/ϕ(z′)
< U(z, θ)EX0 [e−ρHz 1{Hz<Hz′ }] + U(z′, θ)EX0 [e−ρHz′ 1{Hz′<Hz}],

so stopping at H(z′,z) is better than stopping at Hz.

Remark 1. There is a parallel result for stopping at a threshold below X0. A threshold below
X0 is optimal if and only if U/φ attains a global maximum below X0.

Example 3. Recall Example 1, and let X be a geometric Brownian motion started at 1 with
volatility parameter σ and drift parameter μ < ρ. Suppose that � = R

+, G(θ) = θ , and
c(x, θ) = x. ThenU(x, θ) = G(x, θ)−R(x, θ) = θ−x/(ρ−μ). SinceU(x, θ) is decreasing

we look for a stopping threshold below 1. Now φ(x) = x−
√
ν2+2ρ/σ 2−ν for 0 < x ≤ 1, where

ν = μ/σ 2− 1
2 . Let c− = √

ν2 + 2ρ/σ 2 + ν and x(θ) = c−θ(ρ−μ)/(1+c−). If 0 < x(θ) ≤ 1
then x(θ) is the optimal stopping threshold. If x(θ) = 0 then it is optimal to ‘wait forever’. If
x(θ) > 1 then it is optimal to stop immediately.

The following lemma shows that if a threshold strategy is optimal then the optimal threshold
is either above or below the starting point. This rules out the case that both an upper threshold
and a lower threshold are optimal for a fixed parameter.

Lemma 2. For a fixed parameter θ , let U(s) = U(s, θ). Let

− = {z : z ∈ argmaxs[U(s)/φ(s)]} and + = {z : z ∈ argmaxs[U(s)/ϕ(s)]}.
If x ∈ + and y ∈ − then x ≤ y.

Proof. Suppose that y < x. It follows that

ϕ(y)

φ(y)
= U(y, θ)/φ(y)

U(y, θ)/ϕ(y)
≥ U(x, θ)/φ(x)

U(x, θ)/ϕ(x)
= ϕ(x)

φ(x)
,

contradicting the fact that ϕ/φ is strictly increasing.

Example 4. LetX be Brownian motion on [0, 2π ], killed at 0 and at 2π . Let c ≡ 0,� = R
+,

G(x, θ) = θ | sinh(x sin(x))|, and ρ = 1
2 . Then ϕ(x) = sinh(x) and φ(x) = sinh(2π − x).

Now fix θ = 1 and define + and − as in Lemma 2. We calculate + = {π/2, 3π/2} and
− ≈ {5.14}. If X0 lies to the left (right) of an element in + (−) then an upper (lower)
threshold is optimal. If X0 lies between the largest element in + and the smallest element in
− then a threshold strategy is not optimal (see Figure 1).

In general, given a family of forward problems over an interval�, we may find that threshold
stopping is optimal on the whole interval �, on a subset of �, or nowhere on �. We will
temporarily assume that the forward problem (1) is such that a threshold strategy is optimal on
the whole parameter space. Later, in Section 3.2 we will see how to relax the assumption.

Assumption 4. For all θ ∈ �, it is optimal to stop at a threshold above X0.

There is, as will always be the case, a parallel theory when the optimal thresholds are
below X0 (cf. Remark 1).
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Figure 1: Picture for θ = 1, where U/φ is represented by the dashed line and − is a singleton, and
U/ϕ is represented by the solid line and+ consists of two points. There is no optimal threshold strategy

if X0 lies on the axis beneath the shaded region.

3.1. The envelope theorem

We now derive our main result for the parameter dependence of the value function through
an envelope theorem. The aim is to derive an expression for the derivative of V .

For a fixed parameter θ , let X∗(θ) = argmaxx∈int(I )[U(x, θ)/ϕ(x)]. Then X∗(θ) is the set
of possible threshold strategies for a fixed parameter θ . We let X∗(�) denote the collection of
all threshold strategies for the parameter space. Setting x+ = sup{x : x ∈ X∗(�)}, we have
X∗(�) ⊆ [X0, x+]. Recall the definition of the early stopping reward. We abuse the notation
slightly by setting E(θ) = V (X0, θ)−R(X0, θ), making the dependence on the starting value
implicit. Let us also set η(θ) = log(E(θ)).The following proposition follows from an envelope
theorem; see Corollary 4 of [22].

Proposition 1. If [X0, x+] ⊆ int(I ), U(x, θ) is upper-semicontinuous in x, and Uθ(x, θ) is
continuous on [X0, x+] × �, then V is Lipschitz continuous on (θ−, θ+) and the one-sided
derivatives are given by

E′(θ−) = min
x(θ)∈X∗(θ)

Uθ (x(θ), θ)

ϕ(x(θ))
, E′(θ+) = max

x(θ)∈X∗(θ)

Uθ (x(θ), θ)

ϕ(x(θ))
.

Moreover E is differentiable at θ if and only if {Uθ(x, θ)/ϕ(x) : x(θ) ∈ X∗(θ)} is a singleton.
In particular, we then have

d

dθ
η(θ) = uθ (x(θ), θ) (7)

for x(θ) ∈ X∗(θ), where u(x, θ) = log(U(x, θ)).

Remark 2. Equation (7) follows by combining the equations E′(θ) = Uθ(x(θ), θ)/ϕ(x(θ))

(a consequence of the envelope theorem in [22]) and E(θ) = U(x(θ), θ)/ϕ(x(θ)) (Lemma 1).

Remark 3. The condition [X0, x+] ⊆ int(I ) is satisfied if the boundary points of I are
accessible.

Corollary 1. If the conditions in Proposition 1 are satisfied then, for any θ, θ ′ ∈ �,

E(θ)− E(θ ′) =
∫ θ

θ ′
Uθ(x(s), s)

ϕ(x(s))
ds,

where x(s) is a selection from X∗(s).
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Corollary 2. Suppose thatG(x, θ) ≡ G(θ) is continuously differentiable and c(x, θ) = c(x).
If V is differentiable at θ then

V ′(θ) = G′(θ)EX0 [e−ρHx(θ) ] for x(θ) ∈ X∗(θ).

Example 5. In Example 3, if μ < ρ,

V ′(θ) =

⎧⎪⎪⎨
⎪⎪⎩

(
θc−(ρ − μ)

c− + 1

)c−
, 0 < θ <

1 + c−
(ρ − μ)c−

,

1, θ ≥ 1 + c−
(ρ − μ)c−

.

Parameter dependence of stopping problems is a common theme in the literature on multi-
armed bandits in which a special case, which we will call the standard problem, of the general
forward problem is studied.

Definition 1. IfG(x, θ) = G(θ) and c(x, θ) ≡ c(x) then the forward problem (1) is called the
standard (forward) problem.

The preceding Corollary 2 is the analogue in a diffusion setting of Lemma 2 of [28].
As in [28], our setup allows for points of nondifferentiability and for the possibility of multiple
optimal thresholds above the starting point. In contrast, existing results in the diffusion setting
(see, e.g. Lemma 4.1 of [19]) make strong assumptions on the diffusion and on c which ensure
that X∗(θ) is single-valued and that the value function is differentiable in the parameter.

In general, the optimal stopping thresholds for a parameter are given by a set-valued map
X∗ : � → I . We now define the inverse map from the domain of the diffusion to the parameter
space.

Definition 2. The indifference map at x, �∗(x), is the set of parameters θ ∈ � for which it is
optimal to stop immediately when X0 = x.

Remark 4. Under additional assumptions, the indifference map can be represented as a
monotone function; see Corollary 4.

The indifference map �∗ is a natural generalisation of the allocation index common in
the theory of multiarmed bandits: while we make few assumptions on the reward functions,
the multiarmed bandit or dynamic allocation literature is restricted to the standard problem
(c(x, θ) = c(x) and G(x, θ) = θ ); see, e.g. [14] and [28], and, for a diffusion setting closer to
the setting of this article, see [19] and [2].

The following example illustrates our approach to parameter dependent stopping problems
and the idea of calculating critical parameter values. Although we focus on the case when the
forward problem is indexed by a single parameter, the analysis of forward problems parametrised
by several parameters is analogous.

Example 6. (A toy model for tax effects.) Suppose that X is a model for the profits of a firm:
Xt = σBt + x0, where B is a standard Brownian motion and σ > 0. In a tax-free environment
a model for the value V of the firm is

V (ρ, δ, σ ) = sup
τ

EX0

[∫ τ

0
e−ρtXt dt + e−ρτ δ

]
,

where δ is the salvage value of the firm. Here U(x, δ) = δ − x/ρ is decreasing in x and we
look for an optimal stopping threshold belowX0. We have φ(x) = e−√

2ρx/σ andR(x) = x/ρ.
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Let x∗
1 be the optimal threshold (investment decision) in the tax-free environment above. We

calculate x∗
1 = x∗

1 (ρ, δ, σ ) = min{δρ − σ/
√

2ρ,X0}.
Now consider what happens to the value of the firm if profits are taxed. Suppose that profits

are taxed at a rate θ , and that the tax-base at time t isXt−d, where d represents a tax-deductible
depreciation expense (or some other adjustment to the tax base). The post-tax profit of the firm
is Yt = Xt − θ(Xt − d). The decreasing solution to (4) is φY (x) = exp(−x√2ρ/(1 − θ)σ )

while RY (x) = R((1 − θ)x + θd) = ((1 − θ)x + θd)/ρ. The optimal threshold (x∗
2 ), for the

after-tax investment problem, is

x∗
2 (θ, ρ,m, σ, d) = min

{
ρδ − θd

1 − θ
− σ(1 − θ)√

2ρ
,X0

}
.

In taxation theory, a tax rate is neutral if it does not change investment decisions. It is
sometimes considered desirable for taxes to be neutral; see, e.g. [27]. Let θN denote the neutral
tax rate in this problem. To compute θN , we solve x∗

1 (ρ, δ, σ ) = x∗
2 (θN , ρ, δ, σ, d) for θN , and

find that

1 − θN(ρ, δ, σ, d) = √
2ρ
d − δρ

σ
.

Finally, we check that θN ∈ (0, 1) if and only if 0 < d − δρ < σ/
√

2ρ. Similarly, given a
tax rate θ , we could calculate the depreciation adjustment d∗(ρ, δ, σ, θ) so that the investment
decision is unchanged, which is the idea in [27]. See also [20] for an analysis of the relationship
between tax levels, risk preferences, and decisions under uncertainty.

In Example 6, the optimal thresholds are monotone in one or more of the parameters. In the
next section we will derive natural conditions for the monotonicity of threshold strategies X∗.
We will see that if X∗ is monotone then we can relax Assumption 4.

3.2. Monotonicity of the optimal stopping threshold in the parameter value

We will say that X∗ is increasing (decreasing) if x ∈ X∗(θ) and x′ ∈ X∗(θ ′) with θ ≤ θ ′
implies that x ≤ (≥)x′.

Definition 3. (i) A function f : R
2 → R is supermodular in (y, z) if, for all y′ > y, the

difference f (y′, z) − f (y, z) is increasing in z and if, for all z′ > z, f (y, z′) − f (y, z) is
increasing in y. Equivalently, f is supermodular if

f (max{y′, y},max{z′, z})+ f (min{y′, y},min{z′, z}) ≥ f (y, z)+ f (y′, z′)

for all (y, z).

(ii) If the inequalities in (i) are strict then f is called strictly supermodular.

(iii) If −f is (strictly) supermodular, f is called (strictly) submodular.

(iv) If log(f ) is (strictly) supermodular, f is called (strictly) log-supermodular.

Remark 5. Note that if f is twice differentiable then f is supermodular in (y, z) if and only
if fyz(y, z) ≥ 0 for all y and z.

The next lemma follows from a straightforward application of standard techniques in mono-
tone comparative statics to the setting of optimal stopping; see, e.g. [3].

Lemma 3. Suppose that U(x, θ) = G(x, θ) − R(x, θ) > 0 on int(I ) × �. If U is log-
supermodular then X∗ is increasing in θ .

https://doi.org/10.1239/jap/1402578639 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578639


Optimal stopping: parameter dependence, indifference levels, inverse problems 501

Proof. Suppose that θ > θ̂ . By Assumption 4, X∗(θ) and X∗(θ̂) are nonempty. Define a
function f via f (x, θ) = u(x, θ) − ψ(x), where ψ(x) = log(ϕ(x)) (recall the definition of
ϕ, (2)). Then f is also supermodular. Now, for any x(θ) ∈ X∗(θ) and x(θ̂) ∈ X∗(θ̂), we have

0 ≥ f (max{x(θ), x(θ̂)}, θ)− f (x(θ), θ) ≥ f (x(θ̂), θ̂ )− f (min{x(θ), x(θ̂)}, θ̂ ) ≥ 0.

The first inequality follows by the definition of X∗(θ), the second by supermodularity, and
the last inequality by the definition of X∗(θ̂). Therefore, there is equality throughout and
max{x(θ), x(θ̂)} ∈ X∗(θ) and min{x(θ), x(θ̂)} ∈ X∗(θ̂). It follows that X∗(θ) is increasing
in θ .

Corollary 3. If U is log-submodular then X∗(θ) is decreasing in θ .

Remark 6. It may be the case that U(x, θ) takes both strictly positive and negative values on
int(I ) × �. In this case it is never optimal to stop at x′ if U(x′, θ) ≤ 0 and so we need only
check supermodularity on the set {(x, θ) : U(x, θ) > 0}.

Monotonicity of the optimal stopping threshold will play a crucial role in our analysis of
inverse optimal stopping problems because it leads to the notion of indexability. We will say
that a stopping problem is indexable if X∗ is monotone.

The notion of indexability is vital in dynamic allocation theory, leading to the natural
heuristic of operating the project with the highest allocation index, i.e. ‘playing-the-leader’.
Most recently, Glazebrook et al. [15] generalised the notion of indexability to a large class of
resource allocation problems. We note, however, that the definition of indexability presented
here does not arise out of a Lagrangian relaxation of an original problem involving only a
running reward as is the case in [15]. Instead, in the context of optimal stopping problems,
indexability is a natural feature in the monotone comparative statics of parametrised families
of forward problems.

The following assumption will ensure that X∗ is increasing. There will be a parallel set of
results when X∗ is decreasing.

Assumption 5. We have U(x, θ) > 0 and log(U) is supermodular.

In general, if we remove Assumption 4, a threshold strategy may never be optimal or it may
only be optimal on some subset of parameters in �. In the following we will show that if
U(x, θ) is log-supermodular then a threshold strategy will be optimal for all parameters in a
subinterval of �.

Let θR be the infimum of those values in � for which X∗(θ) = ∅. If X∗(θ) = ∅ for all
θ ∈ � then we set θR = θ−.

Lemma 4. The set of θ ∈ � for whichX∗(θ) is nonempty (threshold stopping is optimal) forms
an interval with endpoints θ− and θR .

Proof. Let � denote the right endpoint of I . Suppose that X∗(θ̂) �= ∅ and θ ∈ (θ−, θ̂ ). We
claim that X∗(θ) �= ∅.

Fix x̂ ∈ X∗(θ̂). Then E(X0, θ̂ ) = u(x̂, θ̂ )− ψ(x̂) and

u(x̂, θ̂ )− ψ(x̂) ≥ u(x, θ̂)− ψ(x) for all x < �, (8)

and for x = � if � ∈ int(I ). We write the remainder of the proof as if we are in the case
� ∈ int(I ); the case when � /∈ int(I ) involves replacing x ≤ � with x < �.

Fix θ < θ̂ . We want to show that

u(x̂, θ)− ψ(x̂) ≥ u(x, θ)− ψ(x) for all x ∈ (x̂, �], (9)
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for then supx≤�{u(x, θ) − ψ(x)} = supx≤x̂{u(x, θ) − ψ(x)}, and since u(x, θ) − ψ(x) is
continuous in x the supremum is attained.

Since u is supermodular by assumption, we have, for x ∈ (x̂, �],
u(x̂, θ̂ )− u(x̂, θ) ≤ u(x, θ̂)− u(x, θ). (10)

Subtracting (10) from (8) gives (9), completing the proof.

In the standard case, determining whetheru(x, θ) = log(G(x, θ)−R(x, θ)) is supermodular
is simplified by the following result.

Lemma 5. Suppose that the boundary points of X are inaccessible.

• If G ≡ 0 then X∗(θ) is increasing in θ if and only if −c(x, θ) is log-supermodular.

• In the standard case G(θ) − R(x) is log-supermodular if and only if Q(x, θ) is log-
supermodular, where Q : I ×� → R, Q(x, θ) = ρG(θ)− c(x).

Proof. Athey [3] and Jewitt [18] proved that f : R
2 → R

+ and h : R
2 → R

+ are log-
supermodular if and only if

∫
s
f (x, s)h(s, θ) ds is log-supermodular. The first statement now

follows from the fact (e.g. [2] or [23], V.50) that R(x, θ) = ∫
I
r(x, y)c(y, θ)m(dy), where

r(x, y) is a product of two single-variate functions and is therefore log-supermodular.
For the second statement, note that Ex[

∫ ∞
0 e−ρt (ρG(θ) − c(Xt )) dt] = G(θ) − R(x). By

the result of Athey and Jewitt, G(θ) − R(x) is log-supermodular if and only if Q(x, θ) is
log-supermodular.

Example 7. Recall Example 2. Let X be a three-dimensional Bessel process started at 1,
ρ = 1/2, c(x, θ) = θ cos(x), and G ≡ 0. We have ϕ(x) = sinh(x)/ sinh(1)x. Note that
c(x, θ) is both log-supermodular and log-submodular. Suppose that θ > 0. The function
−R(x, θ)/ϕ(x) attains its maximum at x̂, where x̂ ≈ 2 is the smallest solution to the equation

coth(x)(x cos(x)− sin(x))+ x sin(x) = 0.

For θ < 0, the maximum is attained at the second smallest root of the same equation and
x̂ ≈ 5.4. Hence, we find that X∗(θ) is decreasing. This does not contradict Lemma 5 because
Assumption 5 is violated: The set of points where −R(x, θ) is positive when θ > 0 and
stopping is feasible coincides with the set of points where −R(x, θ) is negative (and stopping
is therefore not feasible) when θ < 0 (cf. Remark 6, and see Figure 2).

0.0

0.5

1.0

−0.5

−1.0

2 6 8 10

Figure 2: The function −R(x, θ)/φ(x) for θ = 1 (solid line) and θ = −1 (dashed line).
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4. Inverse optimal stopping problems

In this section our aim is to recover diffusions consistent with a given value function for
a stopping problem. We recall that when c ≡ 0 and G(x, θ) = (θ − x)+, the problem has
the interpretation of recovering price processes consistent with perpetual American put option
prices. Consider instead a situation in which an investor is considering whether to invest in a
dividend-bearing stock that can be liquidated at any time for capital gains. The capital gains
depend on a parameter, e.g. a tax or subsidy rate. In this context, the indifference index has
the natural interpretation of the parameter level(s) at which the investor is indifferent about
the stock: at the critical level, the optimal policy would be to sell the stock immediately and,
hence, there is no expected gain from investment. The question that we ask in this section is
whether we can recover an investor’s model for the asset price process given his valuation and
investment indifference levels for the parameter.

The problem of recovering investor preferences from given information is a natural problem
in economics and finance. In economics, the question of recovering information about an agent’s
preferences given their behaviour dates back to Samuelson’s work [26] on revealed preferences.
Work on inverse investment problems includes [6], [10], [16], and most recently [9]. Rather
than calculating an optimal consumption/portfolio policy for a given agent (with a given utility
function), the literature in this area aims at recovering utility functions consistent with given
consumption and portfolio choices. These ‘inverse Merton problems’ have three fundamental
aspects. The first is the specification of a model for an agents’ wealth process. The dynamics
of the model are given by a dynamic budget constraint and are fully determined given an
agent’s consumption and investment policy. The second fundamental aspect is an assumption
on how the agent values the wealth developing out of his investment and consumption activity.
It is assumed that he maximises utility. The third aspect, which is the crux of inverse Merton
problems, is to determine the agents’ utility, or gain functions given the wealth dynamics and
assuming the agent is utility maximising.

As in the inverse Merton problem, three fundamental quantities emerge in the study of the
inverse perpetual optimal stopping problems considered here. (1) A model for the underlying
random process, (2) valuation of the investment and (3) investor preferences (indifference
levels). As we will see below, if we are given only an agent’s valuation then the inverse problem
is ill-posed. There will then in general be infinitely many models solving the inverse problem,
each corresponding to a choice of indifference index. As in the inverse Merton problems, where
both a model for the wealth process and the assumption of valuation via utility maximisation
are given, we require two of the three pieces of information inherent to the perpetual-horizon
investment problem if we are to construct a solution: given a value function and (admissible)
investor indifference levels, a consistent model is uniquely specified on the domain of the
indifference index.

4.1. Setup

As before, let � be an interval with endpoints θ− and θ+. Let us assume that we are given
V = {V (θ); θ ∈ �}, G = {G(x, θ); x ∈ R, θ ∈ �}, c = {c(x); x ∈ R}, and X0.

Inverse problem. Find a generalised diffusion X such that VX = V is consistent with
one-sided stopping above X0.

Remark 7. In developing the theory we focus on threshold strategies above X0. There is, as
ever, an analogous inverse problem for threshold strategies below X0; see, e.g. Example 8.

We will make the following regularity assumption.
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Assumption 6. We assume that V : � → R is differentiable and (x, θ) → G(x, θ) is twice
continuously differentiable.

As in [17], we will use generalized convex analysis of the log-transformed stopping problem
to solve the inverse problem.

4.2. u-convex analysis

Definition 4. Let A and B be subsets of R, and let u : A × B → R be a bivariate function.
The u-convex dual of a function f : A → B is denoted f u and defined to be f u(z) =
supy∈A[u(y, z)− f (y)].
Definition 5. A function f is u-convex if f uu = (f u)u = f .

Definition 6. The u-subdifferential of f at y is defined by

∂uf (y) = {z ∈ B : f (y)+ f u(z) = u(y, z)},
or, equivalently,

∂uf (y) = {z ∈ B : u(y, z)− f (y) ≥ u(ŷ, z)− f (ŷ) for all ŷ ∈ A}.
If S is a subset of A then we define ∂uf (S) to be the union of u-subdifferentials of f over

all points in S.

Definition 7. A function f is u-subdifferentiable at y if ∂uf (y) �= ∅. Furthermore, f is
u-subdifferentiable on S if it is u-subdifferentiable for all y ∈ S, and f is u-subdifferentiable
if it is u-subdifferentiable on A.

The following envelope theorem from u-convex analysis is fundamental to establishing
a duality between the value function and the log-transformed eigenfunctions of consistent
diffusions. The idea, which goes back to [24, Equation 73], is to match the gradients of u(y, z)
and u-convex functions f (y), whenever z ∈ ∂uf (y). The approach was also developed in [13]
and, for applications in economics, by Carlier [8]. We refer the reader to [8] for a proof of the
following result.

Proposition 2. Suppose that u is strictly supermodular and twice continuously differentiable.
If f is almost everywhere (a.e.) differentiable and u-subdifferentiable then there exists a map
z∗ : Dy → Dz such that if f is differentiable at y then f (y) = u(y, z∗(y))− f u(z∗(y)) and

f ′(y) = uy(y, z
∗(y)). (11)

Moreover, z∗ is such that z∗(y) is nondecreasing.
Conversely, suppose that f is a.e. differentiable and equal to the integral of its derivative.

If (11) holds for a nondecreasing function z∗(y), then f is u-convex and u-subdifferentiable
with f (y) = u(y, z∗(y))− f u(z∗(y)).

Remark 8. If u is strictly log-submodular then the conclusion of Proposition 2 remains true,
except that z∗(y) and y∗(z) are nonincreasing.

Note that the subdifferential ∂uf may be an interval in which case z∗(y) may be taken to
be any element in that interval. By Lemma 3, z∗(y) is nondecreasing. We observe that since
u(y, z∗(y)) = f (y)+f u(z∗(y))we have u(y∗(z), z) = f (y∗(z))+f (z) and y∗(z) ∈ ∂uf u(z)
so that y∗ may be defined directly as an element of ∂uf u. If z∗ is strictly increasing then y∗ is
just the inverse of z∗.

https://doi.org/10.1239/jap/1402578639 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578639


Optimal stopping: parameter dependence, indifference levels, inverse problems 505

4.3. Application of u-convex analysis to the inverse problem

We introduce the notation that we will use for our inverse stopping problem framework. The
main change over the previous section is that we will highlight dependence on the (unknown)
speed measure m and scale function s.

We wish to recover a speed measure m and scale function s to construct a diffusion Xm,s =
(X

m,s
t )t≥0, supported on a domain Im ⊆ R such that VXm,s = V . Our approach to solving this

problem is to recover solutions ϕm,s and Rm,s to the differential equations (3) and (5) from V

and to solve the two equations ‘in reverse’ to recover the speed measure and the scale function.
Let ψm,s = log(ϕm,s), where ϕm,s is the increasing solution to (3) with ϕm,s(X0) = 1, and
let Rm,s(x) = Ex[

∫ ∞
0 e−ρt c(Xm,st ) dt]. We will say that the functions Rm,s , ϕm,s , X∗, etc. are

consistent with the inverse problem if there exists a diffusion Xm,s such that VXm,s = V . Our
approach involves establishingψm,s and ηm,s(θ) = log(V (θ)−Rm,s(X0)) as um,s-convex dual
functions, where um,s(x, θ) = log(G(x, θ)−Rm,s(x)). Denote the um,s-convex duals of ϕm,s
and ηm,s by ϕum,s and ηum,s respectively.

The solution to the inverse problem hinges on Proposition 2. Let us briefly highlight the
connection between Proposition 2 and Proposition 1. Suppose that V = VXm,s and that
um,s(x, θ) is strictly log-supermodular and twice continuously differentiable. Then ηm,s(θ)
is um,s-convex with um,s-subdifferential X∗, i.e.

ηm,s(θ) = sup
x∈int(Im)

[um,s(x, θ)− ψm,s(x)] = um,s(x
∗(θ), θ)− ψm,s(x

∗(θ))

for some optimal stopping threshold x∗(θ) ∈ X∗(θ). Hence, by Proposition 2, we have

V ′(θ)
V (θ)− Rm,s(X0)

= Gθ(x
∗(θ))

G(x∗(θ), θ)− Rm,s(x∗(θ))
.

Substituting for ϕm,s(x∗(θ)) we find that

V ′(θ) = Gθ(x
∗(θ), θ)

ϕm,s(x∗(θ))
,

which is the expression in Proposition 1 when V is differentiable.
In the following, whenever um,s is strictly supermodular and VXm,s = V , we will let x∗

denote the nondecreasing function satisfying

η′
m,s(θ) = ∂

∂θ
um,s(x

∗(θ), θ).

Then X∗ is the set of points on the graph of x∗. We will call θ∗ = x∗−1 the indifference index.

Corollary 4. Suppose that um,s is strictly supermodular and twice continuously differentiable.
If ψm,s is um,s-subdifferentiable then the indifference index at x ∈ int(Im) satisfies

ψ ′
m,s(x) = ∂

∂x
um,s(x, θ

∗(x)).

Moreover, θ∗ is nondecreasing.

4.4. Recovering consistent diffusions

The following theorem provides necessary and sufficient conditions for a diffusion Xm,s to
be the solution to the inverse stopping problem.
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Proposition 3. A diffusionXm,s solves the inverse problem if and only if ϕm,s and Rm,s satisfy
the following two conditions:

(i) for all θ ∈ �, ψum,s(θ) = supx∈int(Im), x≥X0
[um,s(x, θ)− ψm,s(x)];

(ii) ψum,s(θ) = log(V (θ)− Rm,s(X0)).

Proof. If Xm,s is consistent with V , G, X0, and one-sided stopping above X0, then

log(V (θ)− Rm,s(X0)) = log(VXm,s (θ)− R(X
m,s
0 ))

= sup
x∈int(Im), x≥X0

[um,s(x, θ)− ψm,s(x)]

= sup
x∈int(Im)

[um,s(x, θ)− ψm,s(x)]

= ψum,s(θ).

On the other hand, if the two conditions are satisfied then we can construct a diffusion Xm,s

with starting pointX0. The first condition implies that one-sided stopping aboveX0 is optimal
while the second condition ensures that VXm,s = V , completing the proof.

It is intuitively clear that a value function contains information about the dynamics of a
consistent diffusion above the starting point. If x ≥ X0, and the indifference index θ∗ is
known, then the solution to (3) must satisfy

ϕ(x) = U(x, θ∗(x))
V (θ∗(x))− R(X0)

.

Thus, if we can calculateR(X0) and the indifference index for all x ≥ X0 then we can calculate
ϕ above the starting point. We can then recover pairs of scale functions and speed measures
consistent with the solution above X0 through (3).

On the other hand, for x < X0, the only information we have is that U(x, θ∗(x))/ϕ(x) does
not attain a maximum below the starting point, otherwise V would not be consistent with one-
sided stopping above X0. Thus, while we may attempt to specify (unique) diffusion dynamics
aboveX0, we expect there to be a variety of consistent specifications of the diffusion dynamics
below the starting point. This is analogous to the situation in [12], where a unique consistent
volatility coefficient is derived below the starting point but there is freedom of choice above the
starting point. The situation is similar in [1], where information about the underlying diffusion
coefficient can only be recovered either above or below the starting point, depending on whether
perpetual American call or put option prices are given.

The following two examples illustrate the ideas involved in recovering a consistent diffusion
in the simplified setting when consistent diffusions are assumed to be either martingales
(Example 8) or in natural scale and with additional information about the early stopping reward
(Example 9).

Example 8. Let � = (0, (k + 1)/k] for some positive constant k. Suppose that

V (θ) =
(
kθ

k + 1

)k
θ

k + 1
+ 1, G(x, θ) = θ, c(x) = ρx, X0 = 1.

Suppose that the inverse problem is restricted to the class of diffusions that are also martingales.
Then s(x) = x and Rm,s(x) = x. We have um,s(x, θ) = log(θ − x) and calculate

ηum,s(x) = sup
θ

[log(θ − x)− log(V (θ)− 1)] = log(x−k),

https://doi.org/10.1239/jap/1402578639 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578639


Optimal stopping: parameter dependence, indifference levels, inverse problems 507

where the maximum is attained at θ∗(x) = x(k + 1)/k. To recover a consistent martingale
diffusion on R

+, let us extend the parameter space to �̄ = (0,∞) and set θ∗(x) = x(k+ 1)/k
on (0,∞). Then we find that φm,s(x) = x−k on (0,∞) is a consistent eigenfunction. It follows
that

dXt = σXt dBt , X0 = 1,

is consistent with V , where σ satisfies σ 2 = 2ρ/((k + 1
2 )

2 − 1
4 ).

Example 9. Let � = [1,∞). Recall the decomposition of the forward problem by the strong
Markov property (6). Suppose that we are given the optimal early stopping rewardE(θ) = eθ

2/2

and the early stopping reward functionU(x, θ) = eθx and thatX0 = 0. In this example, η(θ) =
log(E(θ)) is known, so we suppress the subscriptsm and s. We calculate supθ [u(x, θ)−η(θ)] =
x2/2, where the maximum is attained at θ∗(x) = x. Let us suppose that s(x) = x and aim at
recovering a (local)-martingale diffusion. OnX∗(�) = [1,∞), the candidate eigenfunction for
the diffusion is ϕm,s(x) = eη

u(x) = ex
2/2. Solving for σ in (4), we obtain σ(x) = 2ρ/(1 + x2)

for x ∈ [1,∞). We can now specify a consistent diffusion by extrapolating the indifference
index. Let �̄ = (0,∞) and set θ∗(x) = x for 0 ≤ x ≤ 1. By Proposition 2, ψm,s is u-convex
on X∗(�̄) if ϕ′

m,s(x)/ϕm,s(x) = θ∗(x) = x. Thus, by setting ϕm,s(x) = ex
2/2 for x ∈ R

+, we
find that the diffusion with dynamics

dXt = σ(x) dBt + dLt , X0 = 0, σ 2(x) = 2ρ

1 + x2 ,

where L is the local time at 0, is consistent with V .
In general we can choose any increasing function θ∗ on [0, 1) with θ∗(1−) = 1 as long as

the recovered function ϕm,s is an eigenfunction for a consistent diffusion. For instance, the
choice θ∗(x) = 3

4x
1/2 for 0 ≤ x < 1 leads to ϕm,s(x) = exp(x3/2/2) for 0 ≤ x < 1. For this

choice of extension and again setting s(x) = x, the consistent diffusion coefficient is

σ 2(x) =

⎧⎪⎪⎨
⎪⎪⎩

32ρx1/2

6 + 9x3/2 , 0 ≤ x < 1,

2ρ

1 + x2 , x ≥ 1.

Note that, for this extension, ϕ′
m,s jumps at 1, and, since

ϕ′
m,s(1+)− ϕ′

m,s(1−) = 2ρϕm,s(1)m({1}),
we have m({1}) = 1/8ρ. Hence, the increasing additive functional �u includes a multiple of
the local time at 1 and the diffusion Xm is ‘sticky’ at 1.

For the general case, the main difficulty over the previous simplified examples of inverse
problems is having to recover both a speed measure and a nontrivial scale function. This means
that we must recover Rm,s as well as ϕm,s to obtain (3) and (5) for the two unknown quantities.

4.5. Recovering diffusions through a consistent indifference index

Suppose that we are given V as well as the indifference index θ∗ : Im → �. We now
derive the relationships which hold between θ∗, the value function, and the gain functions
when the given information V and θ∗ is consistent with a solution to the inverse problem. By
Proposition 1,

V ′(θ∗(x)) = Gθ(x, θ
∗(x))

ϕm,s(x)
. (12)
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Lemma 6. If θ∗ is consistent with the inverse problem then all consistent diffusionsXm,s satisfy

Ex

[∫ ∞

0
e−ρt c(Xm,st ) dt

]
= G(x, θ∗(x))+ ϕm,s(x)(Rm,s(X0)− V (θ∗(x)))

for all x ∈ int(Im).

Proof. By the definition of θ∗, x ∈ X∗(θ∗(x)). It follows by (7) that

V ′(θ∗(x))
V (θ∗(x))− Rm,s(X0)

= Gθ(x, θ
∗(x))

G(x, θ∗(x))− Rm,s(X0)

for all x ∈ X∗(�). Combining this equation with (12) we have

Rm,s(x) = G(x, θ∗(x))+ ϕm,s(x)(Rm,s(X0)− V (θ∗(x))), (13)

completing the proof.

Let R̂m,s(x)be the function onX∗(�)defined by R̂m,s(x)=G(x, θ∗(x))−ϕm,s(x)V (θ∗(x)).

Lemma 7. If Rm,s(x), given by equation (13), solves (5) then so does R̂m,s .

Proof. The proof follows from the fact that ϕm,s is a solution to the homogeneous equa-
tion (3).

Given an inverse problem there will in general be many speed measures and scale functions
satisfying the conditions in Proposition 3. Each solution corresponds to an optimal threshold
strategy X∗. By definition, choosing a consistent indifference index is equivalent to choosing
a consistent threshold strategy. Thus, rather than searching over all solutions Xm,s satisfying
the conditions in Proposition 3, we can solve inverse problems by specifying a candidate
indifference index. The following verification result provides a set of easily verifiable conditions
for Xm,s to solve the inverse problem.

Proposition 4. A diffusionXm,s is a solution to an inverse problem if the following conditions
are satisfied:

(i) um,s is strictly supermodular and twice continuously differentiable and ϕm,s is, a.e.,
differentiable;

(ii) there exists a monotone function x∗ : �̄ → Im with inverse θ∗ such that � ⊆ �̄,
x∗(θ) ≥ X0, and such that, whenever ψm,s is differentiable,

ψ ′
m,s(x) = ∂

∂x
um,s(x, θ

∗(x));
(iii) ηm,s = ψum,s .

Proof. By Proposition 2 and conditions (i) and (ii), ψm,s is um,s-convex. It follows from
(iii) and Proposition 3 that VXm,s = V .

Theorem 1. A consistent indifference index determines a unique solution to the inverse problem
on X∗(�).

Proof. Suppose that θ∗ is a consistent indifference index. Define f : X∗(�) → R,

f (x) = Gθ(x, θ
∗(x))

V ′(θ∗(x))
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and g : X∗(�) → R, g(x) = G(x, θ∗(x))− f (x)V (θ∗(x)). By (12), f = ϕm,s on X∗(�) for
a consistent diffusionXm,s and, hence, f is a solution to (3) onX∗(θ). Similarly, by Lemma 7,
g is a solution to (5) onX∗(�). Solving the two equations form and s we recover the (unique)
dynamics of a consistent diffusion on X∗(�).

Example 10. Suppose that � = (0, (k + 1)/k] and, for a positive constant k,

V (θ) =
(
kθ

k + 1

)k
θ

k + 1
+ 1, X0 = 1, G(x, θ) = θ, c(x) = γ x,

where γ is another positive constant. We define a family of indifference indices on (0, 1]
parametrised by α > 0 via θ∗

α(x) = xα(k + 1)/k.
We will calculate candidate diffusions using Proposition 4. By (12), for x ∈ X∗

α(�) = (0, 1],
φα(x) = x−αk is a candidate solution to (4) corresponding to the indifference index θ∗

α .
Similarly, by (13), we have Rα(x) = xα + φα(x)(Rαm,s(1) − 1) and so R̂αm,s(x) = xα is
a candidate solution to (5). Then, by (4) and (5), the corresponding consistent diffusion
coefficients on X∗

α(�) = (0, 1] are

σ 2
α (x) = 2(ρ(1 + k)x2 − kγ x3−α)

k(1 + k)α2 ,

μα(x) = (1 + αk)
ρx(1 + k)− kγ x2−α

k(1 + k)α2 − ρx

αk
.

Note that σ 2
α (x) ≥ 0 on (0, 1] if and only if x1−α ≤ ρ(1 + k)/kγ and, hence, for a consistent

diffusion to exist on (0, 1], the problem parameters must satisfy α ≤ 1 and ρ + k(ρ − γ ) ≥ 0.
To specify a diffusion on (0,∞) consistent with a given α ≤ 1 on (0, 1], we let

θ∗(x) =
{
θ∗
α(x), x ∈ X∗(�) = (0, 1],
θ∗

3 (x), x > 1.

The corresponding diffusion Xα is given by

dXαt = σα(Xt ) dBt + μα(Xt ) dt, X0 = 1,

where

σ 2
α (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(ρ(1 + k)x2 − kγ x3−α)
k(1 + k)α2 , 0 < x ≤ 1,

2(ρ(1 + k)x2 − kγ )

9k(1 + k)
, x > 1,

and

μα(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(1 + αk)

ρx(1 + k)− kγ x2−α

k(1 + k)α2 − ρx

αk
, 0 < x ≤ 1,

(1 + 3k)
ρx(1 + k)− kγ x−1

9k(1 + k)
− ρx

3k
, x > 1.

The particular choice of θ∗ on (1,∞) is convenient because it ensures that the trivial condition
σ 2
α (x) ≥ 0 is satisfied for any choice of ρ, k, and γ satisfying ρ + k(ρ − γ ) ≥ 0.

Since both boundary points are inaccessible, we haveRα = R̂α or, equivalently,Rα(1) = 1.
Note that if we set γ = ρ and α = 1 then we recover Example 8.
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Example 11. Suppose that � = (1, 3), and

V (θ) = 1 + θ

3

(√
3θ −

√
θ

3

)
, G(x, θ) = θx, c(x) = 1

x
, X0 = 1.

Furthermore, suppose that we are given θ∗(x) = 3/x2 for x ∈ (0,∞). Then x∗(θ) = √
3/θ

and X∗(�) = (1,
√

3). By (12) we have ϕm,s(x) = x2 and Rm,s(x) = 1/x + x2(Rm,s(1)− 1)
so that R̂m,s(x) = 1/x is a candidate solution to (13). The differential equations (3) and (5)
lead to the following simultaneous equations:

σ 2(x)+ 2μ(x)x = ρx2, σ 2(x)− xμ(x) = ρx2 − x2.

We calculate σ 2(x) = xμ(x) + ρx2 − x2 = ρx2 − 2μ(x)x so that μ(x) = x/3 and
σ 2(x) = x2(ρ − 2/3). It follows that we must have ρ > 2

3 for a solution to the inverse problem
to exist. Provided this condition is satisfied, a solution to the inverse problem is

dXt =
√
ρ − 2

3
Xt dBt + Xt

3
dt, X0 = 1.

Note that the solution to the inverse problem is uniquely specified on (1,
√

3).

5. Concluding remarks

The main contribution of this article has been to provide a natural extension of the allocation
(Gittins) index based on its role in solving forward and inverse stopping problems. In the
context of the forward problem we showed that the idea of an allocation index can be extended
naturally from the ‘standard case’ to a general class of optimal stopping problems and that there
are natural conditions under which the index is monotone. Indeed, we found that this extension,
which we have called the indifference index, is a natural feature of the monotone comparative
statics of a family of forward problems.

We showed that the indifference index parametrises solutions to inverse stopping problems.
When an investment can be modelled as a perpetual horizon stopping problem, inverse stopping
problems can be interpreted as inverse investment problems. In contrast to inverse Merton
problems, where we are given 1) a wealth process and 2) assume that the problem value arises
from utility maximization in order to 3) compute consistent utility (gain) functions, in perpetual
horizon inverse investment problems we are given information about the problem value but
are interested in recovering an investor’s model for the underlying risky asset rather than the
gain functions which are now given. In this context, the index has two natural economic
interpretations. For the owner of an investment, the indifference index represents investor
preferences with respect to liquidating for a terminal reward or remaining invested for a running
reward and the option to liquidate later. For the potential investor, the index represents the
parameter levels at which he is indifferent to the investment opportunity.
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