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Abstract

In [Kelmer, Scarring on invariant manifolds for perturbed quantized hyperbolic toral
automorphisms, Comm. Math. Phys. 276 (2007), 381–395] we introduced a family of
symplectic maps of the torus whose quantization exhibits scarring on invariant co-
isotropic submanifolds. The purpose of this note is to show that in contrast to other
examples, where failure of quantum unique ergodicity is attributed to high multiplicities
in the spectrum, for these examples the spectrum is (generically) simple.

1. Introduction

A significant problem in quantum chaos is to understand the behavior of eigenstates of classically
chaotic systems in the semiclassical limit. In particular, one would like to classify the possible
measures on phase space obtained as a quantum limit. For surfaces of negative curvature it is
conjectured that the only possible limiting measure is the volume measure [RS94]. This is usually
referred to as quantum unique ergodicity (QUE). The QUE conjecture has been proved for the
case of compact arithmetic surfaces if one takes into account the arithmetic symmetries of
the system [Lin06]. If we assume that the spectral multiplicities are bounded (which is believed
to be true in this case), then this would imply this result for any basis of eigenfunctions on these
arithmetic surfaces.

A similar situation also occurs for the quantized cat map. Here again, the quantized system
exhibits arithmetic symmetries, and after taking these symmetries into account the only possible
limiting measure is shown to be the volume measure [KR00]. However, here the multiplicities in
the spectrum are far from being bounded, so we cannot deduce it for arbitrary eigenfunctions.
Indeed, there is an explicit construction of a thin sequence of eigenstates of the propagator
(without the symmetries) that become partially localized on periodic orbits [FND03]. Another
violation of QUE is demonstrated for the Walsh quantized baker map on T2 [AN07]. Here there
are limiting quantum measures supported on fractal subsets of the torus. In this example, again,
the quantum propagator has very large degeneracies in the spectrum.

In [Kel10] another instance of scarring is presented for the quantization of certain linear
maps of a multidimensional torus. In this construction there are limiting measures that localize
on a co-isotropic invariant manifold (rather then on a periodic orbit). The spectrum of the
propagator in these examples also has large multiplicities, however, in contrast to the cat map
scars in [FND03], this latter type of scarring still occurs when taking the arithmetic symmetries
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Scarring with simple spectrum

into account. This might suggest that the scarring on co-isotropic manifolds is not due to
the spectral degeneracies. Moreover, in [Kel07] it is shown that this phenomenon also occurs
for certain nonlinear perturbations of these linear map. Since the parameter space for the
perturbations is of infinite dimension, it is reasonable to expect that the perturbation would
kill all of the spectral degeneracies.

In order to clarify this point, we will show here (on the simplest example of the construction
in [Kel07]) that this is indeed the case. That is, that there are nonlinear symplectic maps on T4

that exhibit scarring on invariant manifolds and yet have a simple spectrum. We will consider
maps of the form

Φg

((
p
q

))
=
(
Btp+∇g(B−1q)

B−1q

)
,

where B ∈GL(2, Z) is a fixed hyperbolic matrix and g ∈ C∞(T2) a smooth real valued function.
For any choice of g (sufficiently small) this map is a symplectic map of Anosov type and hence
a nice model for chaotic dynamics. Its quantization is a family of unitary operators, for each
N ∈ N an operator UN (Φg) acting on finite dimensional Hilbert space HN of dimension N2.
The manifold X0 =

{(p
0

)}
⊂ T4 is invariant under the map Φg, and Lebesgue’s measure on X0

is obtained as a limiting quantum measure. Nevertheless, we show that the propagator UN (Φg)
(generically) has a simple spectrum.

Theorem 1. There is an open and dense subset C ⊆ C∞(T2) such that for any g ∈ C (and any
N) the operator UN (Φg) has a simple spectrum.

Remark 1.1. We note that the maps Φg with g ∈ C can be considered generic only within the
(small) family of perturbations g ∈ C∞(T2). If we consider the space of perturbation by all
Hamiltonians g ∈ C∞(T4) (not to mention the space of all symplectic maps), then these maps
are in no way generic. (For generic maps, in the latter sense, we would not expect there to be
scarring.) Hence, this result should not be viewed as a claim on generic quantum maps, but
rather as the claim that there exists a quantum map with a simple spectrum that violates QUE.

2. Background

2.1 Classical dynamics

The classical dynamics is given by the iteration of the following symplectic map on T4. Let
B ∈GL(2, Z) be hyperbolic with det(B) =−1 (e.g., take B =

(
1 2
2 3

)
). Let g ∈ C∞(T2) be a

smooth real-valued function on T2. We will use the coordinates
(p
q

)
∈ T4 with p=

(p1
p2

)
∈ T2 and

q =
(q1
q2

)
∈ T2. We then consider the map

Φg

((
p
q

))
=
(
Btp+∇g(B−1q)

B−1q

)
where Bt is the transpose of B and ∇g =

(
∂g/∂q1
∂g/∂q2

)
is the gradient of g.

This map is the composition of the linear map A=
(
Bt 0
0 B−1

)
and the Hamiltonian flow((p

q

))
7→
(
p+T∇g(q)

q

)
evaluated at time T = 1, (we think of g as a Hamiltonian function on T4

that depends only the q coordinates). Since we assume B is hyperbolic then so is A, hence, by
structural stability (assuming the Hamiltonian g is sufficiently small) the map Φg is Anosov.
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2.2 Quantum dynamics
The procedure for quantizing linear maps and Hamiltonian flows (or maps) on the torus is
described in [Kel07]. We briefly review this procedure specifically for the maps Φg defined above.
The Hilbert space of quantum states isHN = L2[(Z/NZ)2], and the semiclassical limit is achieved
by taking N →∞. The quantization of the map Φg is a unitary operator UN (Φg) acting on
HN . For a general symplectic linear map, A ∈ Sp(4, Z), and a Hamiltonian, g ∈ C∞(T4), the
definition of this operator is complicated. However, for our specific choice of matrix of the form
A=

(
Bt 0
0 B−1

)
and a Hamiltonian that depends only on the position coordinates the propagator

is given by the following (simple) formula:

UN (Φg)ψ(Q) = e

(
Ng

(
Q

N

))
ψ(BQ).

The map Φg is a special case of the maps considered in [Kel07] and in particular it exhibits
scarring on an invariant manifold. In fact, for this map it is easy to see that the function
ψ0 =Nδ0 ∈HN is an eigenfunction of UN (Φg) with corresponding Wigner distribution being
Lebesgue’s measure on X0.

3. Proof of Theorem 1

3.1 Spectrum
We can use the simple formula for the quantum propagator UN (Φg) in order to explicitly compute
the spectrum.

Proposition 3.1. The eigenvalues of UN (Φg) are given by the flowing formula:

λξ,j = e

(
N

Tξ

Tξ∑
k=1

g

(
Bkξ

N

)
+

j

Tξ

)
,

where ξ ∈ (Z/NZ)2 runs through representatives of B-orbits, Tξ is the size of the corresponding
orbit and for each ξ we take 1 6 j 6 Tξ.

Proof. Let ψ be an eigenfunction with eigenvalue λ, then we have for all Q ∈ (Z/NZ)2

UN (Φg)ψ(Q) = e

(
Ng

(
Q

N

))
ψ(BQ) = λψ(Q)

or equivalently

ψ(BQ) = λe

(
−Ng

(
Q

N

))
ψ(Q).

Iterating this k times we get

ψ(BkQ) = λke

(
−N

k−1∑
j=0

g

(
BjQ

N

))
ψ(Q).

For any ξ ∈ (Z/NZ)2 let [ξ]⊂ (Z/NZ)2 denote its orbit under B and let Tξ = ][ξ] be its order.
Then for any orbit [ξ] either ψ(Q) = 0 for all Q ∈ [ξ] or λTξ = e(N

∑
Q∈[ξ] g(Q/N)). We thus see

that the only possible eigenvalues are of the form λξ,j as above.
It now remains to show that for any orbit [ξ] and 1 6 j 6 Tξ there is a corresponding

eigenfunction with eigenvalue λξ,j (since there are N2 such pairs this would imply that these
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are all the eigenvalues). For any pair ([ξ], j) define a function ψξ,j supported on [ξ] and defined
there by

ψξ,j(Bkξ) = λkξ,je

(
−N

k−1∑
j=0

g

(
Bjξ

N

))
.

Then for any Q=Bkξ ∈ [ξ] we have

ψξ,j(BQ) = ψξ,j(Bk+1ξ) = λξ,je

(
−Ng

(
Q

N

))
ψξ,j(Q),

so that indeed ψξ,j is an eigenfunction of UN (Φg) with eigenvalue λξ,j . 2

3.2 Multiplicities
In order to show that there are no multiplicities we need to show that (for any value of N) the
N2 eigenvalues λξ,j are all different. In order to insure this we will take the function g from
the following (dense) subset of functions.

For any y ∈ Cn, any n-tuple x= (x1, . . . , xn) of distinct points in T2 and any z ∈ C let

C(n, y, x, z) =
{
g ∈ C∞(T2)

∣∣∣∣ n∑
j=1

yjg(xj) 6= z

}
.

For any given (n, y, x, z), the set C(n, y, x, z) is open and dense in C∞(T2). Consequently (by
Baire’s category theorem) so is the countable intersection

C =
∞⋂
n=1

⋂
y∈Zn

⋂
z∈Q

⋂
x∈(Q2/Z2)n

C(n, y, x, z),

(where the last intersection is over tuples of n distinct points in Q2/Z2). The proof of Theorem 1
is now concluded with the following lemma.

Lemma 3.2. For any g ∈ C we have that λξ,j = λη,k if and only if [ξ] = [η] and j = k.

Proof. Assume λξ,j = λη,k then

e

(
N

Tξ

Tξ∑
n=1

g

(
Bnξ

N

)
+

j

Tξ
− N

Tη

Tη∑
m=1

g

(
Bmη

N

)
− k

Tη

)
= 1.

If [ξ] = [η] then e((j − k)/Tξ) = 1 implying that j = k as well. Otherwise, the points{
Bnξ

N
,
Bmη

N

∣∣∣∣ 1 6 n6 Tξ, 1 6m6 Tη

}
are distinct rational points satisfying

Tξ∑
n=1

Tηg

(
Bnξ

N

)
−

Tη∑
m=1

Tξg

(
Bmη

N

)
∈Q,

in contradiction to the assumption that g ∈ C. 2
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