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Abstract

This paper deals with the study of a general class of nonlinear variational inequalities. An
existence result is given, and a perturbed iterative scheme is analyzed for solving such
problems.

1. Introduction and preliminaries

This paper deals with the solvability of a class of generalized equations of the form

(5), h(u» g M. (GE)

Here M is a maximal monotone subset of H x H, H a real Hilbert space, and
g, h: H —y H are given nonlinear mappings. This problem contains as special cases
various forms of variational and quasi-variational inequalities. The study of variational
inequalities started in the sixties with the pioneering works of G. Fichera [6], J. L. Lions
and G. Stampacchia [8] and J. J. Moreau [9]. If M is the graph of a sub-differential
mapping dip: H z$ H, where tp is a proper, convex, lower semi-continuous function
on H, then problem (GE) assumes the variational form

h(JT) g 3<p(g(u)).

In fact, it is the latter problem we shall be mainly concerned with. The extension of
our results to the general problem (GE) is not difficult, and will only be discussed in
the last paragraph. We now make the data of our problem more precise.

Let H be a real Hilbert space, whose inner product and norm are denoted by
{•, •) and || • || respectively. Let g, h: H —>• H be given nonlinear mappings and let
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<p: H —> OS U {+00} be a proper, convex and lower semi-continuous function such
that (range g) D (dom<p) ^ 0. We consider the following generalized variational
inequality. Find 77 e H such that

{h(u), v - g(77)> < <p(v) - <p(g(u)) V v e t f . (1.1)

We can write this equivalently as

h{u) € dcp(g(lD), (l.la)

where dcp is the convex sub-differential of <p, that is,

dcp(x) := {£ € H I <£,;y - x) < ^>(y) - «»(JC) Vy € / / } .

We list a few examples of Problem (1.1).
Let m(u) := u — g(u). Then it is easily verified that 77 is a solution of (1.1) if and

only if

(h(u),y -77) < (p(y - m(u)) - <p(u - m(u)) Vy e H. (1.2)

Indeed, this rewriting corresponds to a change of variables y = v + m(77). Problem
(1.2) has the form of a quasi-equilibrium problem [12].

If K is a non-empty, closed and convex subset of H and <p := <$* is the indicator
function of AT, then (1.1) takes the form

g(u)eK, ( h ( u ) , v - g ( T 0 ) < 0 V v e K (1.3)

and the equivalent problem (1.2) takes the form

77 6 K(77), (h(u),y-u)<0 WyeK(u), d-4)

where AT(M) := K + m(«). Problem (1.4) is a quasi-variational inequality. If h is a
potential operator, that is, there exists a convex and Gateaux differentiable function
F: H -> K such that

A(«) = -VF(n),

then (1.4) is equivalent to

77 e K(77), F(y) - F(u) > 0 Vy e AT(77).

If g = I (the identity mapping in H) and thereby m(u) = 0, then (1.1) and (1.2)
coincide and become the problem

{h(u),y-u) <(p{y)-(p{H) Vy € H. (1.5)
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Furthermore, if g = I, problem (1.4) becomes the variational inequality

u&K, (h(u), y - u) < 0 VyeK. (1.6)

If K is a closed, convex cone and K* := {£ € H | (£, x) > 0 VJC € AT} is its polar
cone, then (1.3) becomes the quasi-complementarity problem

g(u)eK, h(u) €-K* and (h(u), g(u))=0. (1.7)

If g = I, then (1.7) is called a complementarity problem.
Let cp*: H —> R U {+00} denote the conjugate function of <p, that is,

?*(§):= sup ((£,*>-<*>(*)).
xeH

The function #>* is again proper, convex and lower semi-continuous. Since

I e 3^(x) <=^ ^ ^ ) + ^(x) = (?,x> ^=> ̂  e 3^*(^),

we see via (1.1a) that M solves (1.1) if and only if

(l;-h(M),g(Z))<<p*tt)-<P*(h(lD) V^€H. (1.8)

We can write this equivalently as

g(u) € d(p*(h(JD). (1.8a)

Since the dual problem (1.8) has the same structure as the primal problem (1.1), we
call (1.1) a symmetric quasi-variational inequality. This added symmetry is the main
reason for introducing a general mapping g, which may be different from I. If K is a
closed, convex cone and <p = SK, then q>* = 5_*.. Therefore and from K** — K, the
quasi-complementarity problem (1.7) is identical with its dual (see for example [12]).

REMARK 1. We observe that the solution set of (1.1) remains unchanged if, for
arbitrary a > 0 and r > 0, we replace simultaneously

*(•) by £(•):= rAO,
g(-) by g() :=

and q>*(-) by (#>)*(•) — ax<p*{^) in (1.8). This scaling procedure will be employed
later on.
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2. Auxiliary tools

With (p as before, let •/**(•): H —* H denote the proximity mapping which assigns
to each x e H the unique minimizer of the strictly convex function cp(-) + \ || • — x ||2

over H (see [5, p. 39]). The following characterization is well known (see for example
[5, p. 39] or [4, p. 25]):

z = J%x) <!=> ( 0 < {z-x,v-z) + <p(v)-(p(z) V v e f f ) . (2.1)

We can write equivalently

z = Jv(x) <;=> x - z € d<p{z). (2.1a)

In other words, Jv = (I + d<p)~l. From (2.1a) it follows in particular that

x = Jv(x+i;) <=• § e d<p(x) <=^ x e 3«p*($) ^ ^ § = y**(§ +x) (2.2)

for arbitrary x, § e H. From (2.2) we can read off that

y = J%y) + Jv\y) VyeH. (2.3)

We recall that d(p is monotone, that is,

( | — r), x — y) > 0 whenever £ e 3^(x), 77 e 3<p(;y).

We collect some simple properties of Jv, which will be used later.

LEMMA 1. (a) The proximity mapping J9 is non-expansive, that is,

\\J<p(x)-r(y)\\<\\x-y\\ Vx,yeH.

(b) For all x, a, b in H,

\\r<-°\x)-J«~b)(x)\\<\\a-b\\.

(c) For all x and a in H,

a

PROOF, (a) Let f := Jv(x) and /? := J^iy). Then from (2.1a) we have

x - $ e 3<p(£) and y - rj e d<p(r)),

and from the monotonicity of d<p follows

0 < {(x - £) - (y - 1,), f - 1,) < - ||? - r?||2 + ||* - y|| • ||£ - >
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Division by ||£ — »jll gives ||£ — rj\\ < \\x — y\\, as required.
(b) Let f := /*<—>(*) and J? := J«~b>(x). Then from (2.1a) we obtain

x — £ € 3<p(£ — a) and x — rj € 9<p(»j — b)

and from the monotonicity of d<p follows

0 < <(* - i?) - Gc - £), (i? - * ) - ( £ - a)) < - II? - r?H2 + 115 - v\\ • Ik - b\\.

Division by ||£ — r]\\ gives ||$ — i?|| < ||a — fc||, as required,
(c) This statement follows readily from (2.1a).

3. Results

We shall mainly employ the following characterization.

LEMMA 2. 17 € H is a solution of (1.1) if and only if

g(u) = r(g(u) + hQD). (3-D

PROOF. From (2.2) we derive that

f ed<p(x) ^> x = 7*(x + f).

Hence (1.1a) is equivalent to (3.1).

Dually, 77 € H is a solution of (1.8) and therefore also a solution of (1.1), if and
only if

(3.2)

To problem (1.1) we can associate the following Wiener-Hopf condition

(3.3)

LEMMA 3. 77 e H is a solution of (3.1) if and only if together with some v e H it
is a solution of (3.3).

PROOF. From (3.3) it follows, by adding both equations, that g(u) + h(u) = v. On
substituting for v in the first equation of (3.3), we obtain (3.1).

Now let (3.1) hold. SetU := g(77) + fc(77). Then from (3.1) we obtain g(77) =
and therefore v = y ( u ) + h(u). So both equations in (3.3) are satisfied.
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Thus the Wiener-Hopf condition (3.3) is also necessary and sufficient for 77 € H
being a solution of (1.1). From (2.3) we see that condition (3.3) can be expressed in
more symmetric form as

g(u) = J*(v), h(u) = J»\v). (3.4)

If g is invertible, then we can solve condition (3.3) for 77 and write it as

77 = g-l(Jv(v)), v = h(g-l(J'p(v))) + r(v). (3.5)

If g = I and <p = 8K, then (3.5) becomes

u = PK(v), v =

where PK is the metric projection onto K. This is the original form of the Wiener-Hopf
condition, as introduced by [16] in connection with the variational inequality (1.6).
See also [1,11, 13].

Since we do not feel that condition (3.3) has definite computational advantages
over condition (3.1), let us return to the latter. Introducing the mapping <t>: H -> H
as

<&(«) := u - g(u) + J«(g(u) + h(u)), (3.6)

we can write condition (3.1) in fixed-point form as

77 =<*>(")• (3.7)

Note that, for a given u e H, v = <t>(u) is equivalent to

v) + hu(v)),

where gu(v) := g(u) — u + v and hu{v) := h(u) + u — v.
Because of the possibility of scaling we do not have to distinguish between Picard

iterates M"+1 := <t>(u") and Mann-Toeplitz iterates w"+1 := A.<t>(u") + (1 - k)un with
X. > 0; the latter are simply Picard iterates of the operator <t>x(), which is obtained
from O by replacing in (3.6)

«(•) by **(•),

H-) by kh(-),

Compare with Remark 1 and note that kJv(x) = Jv\kx).
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Defining

*(M) := u + h(u) - Jv'(g(u) +

we see from (3.2) that 77 solves (1.1) if and only if

This, however, is the same as (3.7), since from (2.3) it follows that

THEOREM 1. Assume that there exist real numbers a > 0, r > Oandki >0,k2>0
with ki + k2 < 1 such that the mappings G(u) := u — og(u) and H(u) := u + rh(u)
are Lipschitz continuous with Lipschitz constants k\ and k2 respectively. Then problem
(1.1) has a unique solution 77 € H.

PROOF. Let g(u) := crg(u), h(u) := r/i(«), ^ (M) := To<p(±) and set

$(u) := u - g(u) + J*(g(u) + h(u)) = G(u) + J^

Using Remark 1, we have

<J>(77) = 77 «=> 4>(77) = 77.

Under the stated assumptions, <l> is a contraction. Indeed, by Lemma l(c) we have

$(«) = G(«) + J*(H(u) - G(u)) = r(-Gi)\

and from Lemma l(a), (b) we obtain

Hence

<\\G(u)-G(v)\\ + \\H(u)-H(v)\\

Thus 4> is a contraction and has a unique fixed point 77 = 4>(77), which is at the same

time the unique fixed point of <t> and therefore, by Lemma 2, the unique solution of

(1.1).
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REMARK 2. Assume there exists a > 0 such that, for all u, v e H,

(h(u) - h(v), u-v)<-a \\h(u) - h(v)\\2.

Then, for all x with 0 < r < 2a, H := 1 + xh is non-expansive, since

\\H(u) - tf(v)||2 < ||u - u||2 - r(2a - r) ?

If, in addition, there exists /S > 0 such that, for all «, v e H,

P \\u - v\\ < \\h(u) - h(v)\\,

then afi < 1 and for all x with 0 < r < 2a, H :— I + xh is a contraction, since

with it := -y/l — T(2O: — T)/32 < 1. A similar remark applies to I — ag.

REMARK 3. Assume that g is invertible on H and set f{u) := h(g~](u)). With
P := {\jf + I) o Jv, it follows from (3.5) that we have to find a fixed point v = P(v)
and then ~u := ^"'(/' '(iJ)) solves (1.1). If P is a contraction, then the Picard iterates
yn+\ ._ p(v i ) converge to i; and the problem is solved. Now assume that — ij/ is
co-coercive in the sense that, for all u,v e H,

") - 1r(v), u-v)<-a U(u) - f(v)\\2,

with a > ^. Then P is non-expansive - see Remark 2. Hence, if P has fixed points,
then the Mann-Toeplitz iterates

vn+1 := XP(vn) + (1 - X)w" with 0 < k < 1 (3.8)

converge weakly to a fixed point v of P and |u"+1 — u"| -*• 0[15]. As an example for
this approach we consider the finite-dimensional Linear Complementarity Problem
(LCP): To find u e RN such that

u > 0, A u + b > 0, (17, Ail + 6) = 0,

where A is an N x N matrix and b e R*. We assume that {u, Au) > 0 for all u > 0
and that

(M > 0, Au > 0, (M, AM) = 0, (u, b) < 0) =>• u = 0.

Then (LCP) is solvable (see [7]). In this case, P(v) = (I - A ) u + - 6 , where v+ denotes
the positive part of v. If (u, Au) > | ||AM||2 for all u e RN, then P is non-expansive,
hence the iterates u" given by (3.8) converge to a fixed point of P and the iterates
M" := (u")+ converge to a solution of (LCP).
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4. Perturbations

We assume now that we are given a sequence {(p"}nes of convex, proper, lower
semi-continuous functions <p": H -> RU {+00} which converge to <p in the sense of
Mosco, that is, for every u e H

<p(u) < liminf <p"(un)
n—*oo

holds for every sequence (Mn}nGN in H which converges weakly to u and there exists
a sequence [un}neN in H which converges strongly to u and satisfies

<p(u) >lim sup <p"(un).
n-»oo

We know from [2, Theorem 3.26] that if <p" converges to <p in the sense of Mosco, then

r\u) -* /"(w) WueH. (4.1)

We illustrate the perturbation scheme by the following examples.

EXAMPLE 1. Penalty Schemes. Let K C H be nonempty, closed, convex and let
p : H -*• R be a penalty function for K, that is, p is a lower semi-continuous and
convex function satisfying

p(u) > 0 V« € H, andp(u) = 0 < = • « € AT.

Consider the sequence of functions {<p"}neN defined by (p"(u) := rnp (u) for all u € H.
If 0 < rn < rn+i and rn -»• +oo, then ^" converges to (̂  := 5^ in the sense of Mosco.

EXAMPLE 2. Galerkin Schemes. Let A" C # be nonempty, closed, convex and let
{Kn}neN be a sequence of closed, convex subsets of K such that X"n c Km whenever
n < m, and # = cl LJneN ^n- Then <p" :— SKII converges to (p := SK in the sense
of Mosco. We recall that, quite generally, the Mosco convergence of SKn to 8K is
synonymous with the Mosco convergence of Kn to K; see [2, Propositions 3.21 and
3.22].

THEOREM 2. Let the assumption of Theorem 1 hold. Assume, for simplicity, that
a = r = 1. Let H denote the unique solution of

(4.2)

and for all n € N let

un+i := M" - g(un) + J^igiu") + h(un)), ul eH arbitrary. (4.3)

Then the sequence {«"} converges to 77.
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PROOF. Let<t>"(u) := u-g(u) + J<p\g(u) + h(u)) and let 4>(«) be given by (3.6).
Then from (4.2) and (4.3) follows (cf. the proof of Theorem 1):

-u\\ = \\<t>n(un)-<i>(ll)\\ < ||<D'I(M")-4

< ||<D"(M") - <b"(u)\\ + IV" - J')(g(u) + h(u))\\

where k\ + k2 < 1 and en := || (Jv" - Jv)(g(u) + h(u)) \\ -> 0 from (4.1). The result
follows then from [14, p. 394].

REMARK 4. No algorithm is known for computing the proximity mapping J9 for
arbitrary convex functions <p. However, if cp is a convex function from RN to R
finite everywhere, we can use Auslender's algorithm [3] to compute Jv. If we take a
problem of the form (1.3), then the proximity mapping coincides with the orthogonal
projection onto the convex subset K. In many cases explicit expressions for such
projections can be given, for instance if AT is a polyhedral set.

5. Extension

Let M be a maximal monotone subset of H x H. This means that for every
(y, i?) € H x H

Then we can generalize our approach by replacing the conditions £ € d<p(x) and/or
x e dcp*(%) by (x, £) € M. So we consider the problem of finding u € H such that

0. AGO) € M. (5.1)

This extends problem (1.1) - or rather the equivalent (1.1a) - since the graph of dcp is
maximal monotone in H x H.

M defines two maximal monotone multi-valued mappings 8,8*: H =4 H such that

f € 8(x) <!=> (x, £) € M

If we define ./* := (I + 5)"1 and Js' := (I + 8*)~l, then 7* and ./** are single-valued
on all of H and non-expansive [4]. The mappings Js and Js' replace /*" and J9'. By
analogy with (3.6) we now define <J>: H —> // by

<J>(M) := M - g(«) + Js(g(u) + h(u)).

https://doi.org/10.1017/S0334270000010912 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010912


[11] Generalized nonlinear symmetric variational inequalities 299

Then it is obvious that

v = 4>(M) «=*• (g(u) - u + v, h(u) + u-v) e M

and in particular

77=<I>(77) <=>• 77 solves (5.1).

The solution set of (5.1) remains unchanged if we replace ft(-) by rh(-), g(-) by crg(-),
<?(•) by rS(^), 5*() by <x <$*(;), for a > 0, r > 0. This is the same scaling procedure
as described before in Remark 1. Furthermore Lemma 1 carries over to Js. Therefore
Theorem 1 remains valid for problem (5.1).

With M and 8 as before, let {M"}neN be a sequence of maximal monotone subsets
of H x H. For each n let 8" be the maximal monotone mapping associated with
M". We assume that the sequence {£"} graph-converges to 8. This means that for
every (x, £) € M there exists a sequence {(xn, £n)}neN converging to (x, £) such that
(xn, £n) € M" for all n. Then we know from [2, Proposition 3.60], that

Js\u)-+Js(u) WueH.

With this the proof of Theorem 2 carries over to the present setting and we obtain the
following result.

THEOREM 3. Let g, h satisfy the hypothesis of Theorem 1 with a = r = 1. Then
the iterates

un+i := u" - g(un) + J6"(g(u")

converge to 77, the unique solution of (5.1).

Just as an example we mention that the Yosida approximants

graph-converge to 8 for A.n J, 0 ([2, Proposition 3.56]).
We did not consider here the possibility that —h is also maximal monotone. This

case, with g = I, has been studied in [10] or [17].
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