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The formula H'c = 1 - CDZ/CMZ is suggested as a better summary of twin concordance 
data than the familiar Holzinger concordance formula, He = (CMZ - CDZ) / (1 — CDZ)-
The new formula better estimates degree of genetic determination, G, as calculated from 
a threshold model, but never exceeds unity, as G sometimes does. For high concordance 
rates, if CMZ + CDZ > 1, He may be more useful than either G or H'c. 
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The following formula for summarizing twin concordance data is attributed, perhaps erro
neously, to K. J. Holzinger: 

c M Z - c D Z (1) 

^ I-CDZ 

Here, C^z a nd CJJZ are the proportions of concordant twins, not precisely defined, in the 
monozygotic (MZ) and dizygotic (DZ) classes, respectively. This is similar in form to Hol
zinger's 1929 index, H, for twin correlations in quantitative traits [1], with direct replace
ment of correlation coefficients by concordance rates. Neither of these formulas has a 
simple genetic meaning, and twin concordance bears no simple mathematical relation to 
correlation. 

The most useful genetic working hypothesis to adopt with quantitative traits of unknown 
causation is one of polygenic control with completely additive effects. Under this model, 
one can meaningfully refer to heritability in the narrow sense and to degree of genetic 
determination. With human data, however, the model must be used with caution, because 
it requires random environmental effects within families, including DZ twin pairs. 

Quantitative traits of unknown genesis can be reduced to the polygenic additive model 
by assuming a threshold phenomenon interacting with a continuum of liability. Smith [2] 
has provided a table which faciUtates the translation of proband concordance rates into an 
index of genetic determination, G. A proband concordance rate is given by the ratio of 
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probands in concordant pairs to probands in concordant and discordant pairs together. 
Smith defines G as 2(rMZ — *DZ)- Applied within this model to concordance rates, rMZ 
and rj)2 a r e t n e correlations implied by observable concordance rates. 

Smith's model is not easily comprehended by nongeneticists, and a table that requires 
interpolation is less likely to be used than a formula. Moreover, the validity of the index 
depends upon so many assumptions that the necessary calculations may not be justified 
if a simpler index can be used as well. The range of values of Smith's G is unreasonable 
for many ordinary combinations of MZ and DZ concordance rates. Given a trait frequency 
of 10% and a DZ concordance rate of 28%, G becomes 1.0 at an MZ concordance rate of 
only 75%. With similar data but a DZ concordance rate of 20%, G has the impossible value, 
1.3. At the other extreme, even at Cj^z = 100%, G falls far short of unity for many mod
erate values of Cj)z- If rrjz is more than half as great as rj^z> Smith's formula will never 
indicate a heritability of unity, and in these cases, if the concordance rates are high, Hol-
zinger's formula may more accurately represent the degree of genetic determination. 

Even in the last-mentioned situation, however, He has no theoretical justification. At 
ratios of rj^z to rpz of 2 or greater, H^ always underestimates G, and for lower ratios it 
usually does so. 

A formula rather similar to Holzinger's original yields a better approximation of G in 
nearly all circumstances: 

„, _ CMZ - CDZ _ . CDZ ,-. 

^ " " c S T " - 1 - ^ (2) 

Unlike G, this is always within the range of 0 to 1. H'c stops short of 1, however, if there 
is any measurable concordance in DZ twins. The range can be extended to 1 by using Hol
zinger's unmodified index, Eq. (1), when the sum of the concordance rates exceeds unity, 
the value for which H c = H'^. 

With the aid of Table 2 in Smith [2], He and H'c can be plotted on the ordinate of a 
graph with corresponding values of G as the abscissa (Figure). A perfect estimator of G 
would occupy the 0 to 1 diagonal, and if rMz/rDZ ^ 2, H'c always intersects the diagonal 
at a low angle. The form of the locus of H'c varies with the frequency of the trait in the 
population as well as the ratio of r j ^z t 0 rDZ- Given rjy[z/rDZ r a t i ° s less t n a n 2, G attains 
a value of 1.0 only for MZ concordance rates greater than 100%, while H'c intersects G 
only for traits of rather high frequency, as detailed below. 

One can also plot a band of values above and below H'c, perhaps most appropriately 
H'c ± Pq (letting p = H'c and q = '1 — p). The intersections of such boundaries with the 
diagonal yield for each set of conditions a range of usefulness for H'c as an estimator of 
G. In an actual case, however, the conditions are not known unless concordance rates are 
converted to correlations by use of Smith's table, so the ranges are only of academic interest. 

The following Table shows seven points within the usual range of concordance data where 
H'c intersects G, together with the range, in each case, of values of H'c as close to G as 
H'c ± pq. The left value in each range, if not zero, is an overestimate of G; the right value, 
if not unity, is an underestimate. When the right-hand limit is given as unity, the maximum 
value of H'c is less than G, but not by more than pq. 

Also shown for the points of coincidence are the corresponding ratios, Cj^z/^DZ'as a 

warning that this ratio is quite unlike the ratio of the correlations given in the left margin 
of the table. As an illustration of the actual concordance rates at coincidence of H'c and G, 

https://doi.org/10.1017/S000156600000920X Published online by Cambridge University Press

https://doi.org/10.1017/S000156600000920X


Holzinger's H^ Revised 163 

0.6 

0.4 

0.2 

• ' H'c 

• / / 
/ • 

/ / / / 
/ / 

/ 
» 

i y 

i /x 
* / / 

y^ 

/ 
s ^^^^ 

^ / > ^ H c 

y^ 
/ 

^^ ^ r 

s ^ 

y 

/ " c 

* * * * * 

/ / 
/ / / / / ' / / 
/ / / / 

He 

1 

0.2 0.4 0.6 0.8 1.0 

Figure. H(jand H1£ plotted against corresponding values of Smith's G. Calculations 
assume G = rjtfZ ~ 2rDZ- Population frequency of the trait is 1.0% for the broken 
curves, 10% for the solid curves. The diagonal represents a perfect estimator of G. 

TABLE. Some Points of Coincidence (underlined) Between Smith's G and H'Q; the Corresponding 
Rangein Which\G-H'c\ls Less ThanH'cfl - If"c): and (below) the Ratio of CMz/cDZ"t the 
Coincidence Point 

rMz/rDZ 

Frequency of the trait in the population 

0.1% 1.0% 10% 

3.0 

2.0 

1.5 

0.93-0.94-1.00 

17 

0.88-0.92-1.00 
12 

( ) - ( ) 

0.73-0.82-0.86 

5.6 

0.46-0.75-0.84 

4.0 

0.00-( )-1.00 

0.00-0.35-0.56 

1.5 

0.00-0.30-0.52 

1.4 

0.00-0.20-1.00 
1.2 

C-MZ = 32% and CJJZ = 8% when the ratio of correlations is 2 and the trait frequency is 1%. 
On the bottom row of the Table only one coincidence point is shown. At values of 

rMZ/rDZ a s s m a ^ a s 1 • - > > t n e diagonal is cut off at G = 0.667, concordance then being maxi
mal, Cj^z = 100%- The intersection of H'Q with G is also cut off when it lies beyond, this 
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point. At this ratio and a trait frequency of 0.1%, H'c exceeds G by a quantity > pq, 
throughout the possible range; consequently, no usefulness range is shown in the Table. At 
a trait frequency of 1.0%, H'c exceeds G throughout the possible range by Vi pq. At a 
trait frequency of about 4.0%, H'c intersects G just at the upper limit, 0.667, and at a trait 
frequency of 10% the intersection is already as low as G = 0.2. H'c then has a maximum of 
0.55, below that of G, but HQ surpasses H'c at a value of 0.42 and surpasses G at a value of 
0.625. Under these conditions, at the lower right corner of the Table, H'c is always a good 
estimator of G, and where those indices both give implausibly low estimates of genetic de
termination, He becomes useful. 

At all trait frequencies much less than 1.0%, the Holzinger coefficients have limited use
fulness as estimators of G. However, rare traits are less likely to be polygenic than are com
mon traits, so that for these traits G may be a poor reference, and no good genetic model 
for concordance is available. H'c is not in fact proposed as an estimator of G; when a test 
of the polygenic model is desired, Smith's table or equivalent calculations should be used. 
Rather, He and H'c provide a convenient index in their own right, being less arbitrary than 
He alone, being defined in terms of G by Smith and by the present data, and having a 
more useful range than G. 

In summary, He and H'c, when used appropriately, afford great simplicity of calcula
tion, a range between 0 and 1 for all twin data in which C^z exceeds Cpjz, and a fairly 
consistent relation to the index G, in those circumstances where a polygenic mechanism 
is to be expected. It should be emphasized, however, that with twin data we are usually 
not estimating heritability, or even the degree of genetic determination. These indexes, 
He and H'c, and even G, when applied to twin data, should be regarded as crude state
ments of the relative degree of familial determination. 
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