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ARTIFICIAL INTELLIGENCE SPECIAL ISSUE: PROSPECTIVES
Symbolic regression in materials science 
Yiqun Wang, Nicholas Wagner, and James Rondinelli, 
Northwestern University, USA

The authors showcase the potential of symbolic regression as an analytic 
method for use in materials research. First, they briefly describe the 
current state-of-the-art method, genetic programming-based symbolic 
regression (GPSR), and recent advances in symbolic regression 
techniques. Next, they discuss industrial applications of symbolic 
regression and its potential applications in materials science. They then 
present two GPSR use-cases: formulating a transformation kinetics law 
and showing the learning scheme discovers the well-known Johnson–
Mehl–Avrami–Kolmogorov (JMAK) form, and learning the Landau free 
energy functional form for the displacive tilt transition in perovskite 
LaNiO3. Finally, they propose that symbolic regression techniques 
should be considered by materials scientists as an alternative to other 
machine-learning-based regression models for learning from data. 
DOI.org/10.1557/mrc.2019.85

Materials science in the AI age: High-throughput library 
generation, machine learning, and a pathway from 
correlations to the underpinning physics 
Rama K. Vasudevan, Oak Ridge National Laboratory, USA; Kamal 
Choudhary, National Institute of Standards and Technology, USA; 
Apurva Mehta, SLAC National Accelerator Laboratory, USA; Ryan 
Smith, Gilad Kusne, and Francesca Tavazza, National Institute of 
Standards and Technology, USA; Lukas Vlcek, Maxim Ziatdinov, 
and Sergei V. Kalinin, Oak Ridge National Laboratory, USA; and 
Jason Hattrick-Simpers, National Institute of Standards and 
Technology, USA

The use of statistical/machine learning approaches to materials science 
is experiencing explosive growth. Here, the authors review recent work 
focusing on generation and application of libraries from both experiment 
and theoretical tools. The library data enables classical correlative 
machine learning, and also opens the pathway for exploration of 
underlying causative physical behaviors. The authors highlight key 
advances facilitated by this approach, and illustrate how modeling, 
macroscopic experiments, and imaging can be combined to accelerate 
understanding and development of new materials systems. These 
developments point toward a data-driven future wherein knowledge 
can be aggregated and synthesized, accelerating the advancement 
of materials science.  DOI.org/10.1557/mrc.2019.95 

Embedding domain knowledge for machine learning of 
complex material systems 
Christopher Childs and Newell Washburn, Carnegie Mellon 
University, USA

Machine learning has revolutionized disciplines within materials science 
that have been able to generate sufficiently large datasets to utilize 
algorithms based on statistical inference, but for many important 
classes of materials the datasets remain small. However, a rapidly 
growing number of approaches to embedding domain knowledge 
of materials systems are reducing data requirements and allowing 
broader applications of machine learning. Furthermore, these hybrid 
approaches improve the interpretability of the predictions, allowing 
for greater physical insight into the factors that determine material 
properties. This review introduces a number of these strategies, 

providing examples of how they were implemented in machine 
learning algorithms and discussing the materials systems to which 
they were applied. DOI.org/10.1557/mrc.2019.90

Deep materials informatics:  
Applications of deep learning in materials science 
Ankit Agrawal and Alok Choudhary, Northwestern University, USA

The growing application of data-driven analytics in materials science 
has led to the rise of materials informatics. Within the arena of data 
analytics, deep learning has emerged as a game-changing technique 
in the last few years, enabling numerous real-world applications, such 
as self-driving cars. In this article, the authors describe an overview 
of deep learning, its advantages, challenges, and recent applications 
on different types of materials data. The increasing availability of 
materials databases and big data in general, along with groundbreaking 
advances in deep learning offers a lot of promise to accelerate the 
discovery, design, and deployment of next-generation materials. 
DOI.org/10.1557/mrc.2019.73

ARTIFICIAL INTELLIGENCE SPECIAL ISSUE: RESEARCH LETTERS
Experiment Specification, Capture and Laboratory 
Automation Technology (ESCALATE): A software pipeline 
for automated chemical experimentation and data 
management 
Ian Pendleton and Gary Cattabriga, Haverford College, USA; 
Zhi Li, Lawrence Berkeley National Laboratory, USA; Mansoor 
Ani Najeeb, Sorelle Friedler, and Alexander Norquist, Haverford 
College, USA; Emory Chan, Lawrence Berkeley National 
Laboratory, USA; and Joshua Schrier, Fordham University, USA

Applying artificial intelligence to materials research requires abundant 
curated experimental data and the ability for algorithms to request 
new experiments. ESCALATE (Experiment Specification, Capture 
and Laboratory Automation Technology)—an ontological framework 
and open-source software package—solves this problem by 
providing an abstraction layer for human- and machine-readable 
experiment specification, comprehensive and extensible (meta-)
data capture, and structured data reporting. ESCALATE simplifies 
the initial data collection process, and its reporting and experiment 
generation mechanisms simplify machine learning integration. 
An initial ESCALATE implementation for metal halide perovskite 
crystallization was used to perform 55 rounds of algorithmically 
controlled experiment plans, capturing 4336 individual experiments. 
DOI.org/10.1557/mrc.2019.72

Active-learning and materials design: The example of high 
glass-transition temperature polymers 
Chiho Kim, Anand Chandrasekaran, Anurag Jha, and Rampi 
Ramprasad, Georgia Institute of Technology, USA

Machine-learning (ML) approaches have proven to be of great utility 
in modern materials innovation pipelines. Generally, ML models are 
trained on predetermined past data and then used to make predictions 
for new test cases. Active-learning, however, is a paradigm in which 
ML models can direct the learning process itself through providing 
dynamic suggestions/queries for the “next-best experiment.” In this 
work, the authors demonstrate how an active-learning framework 
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can aid in the discovery of polymers possessing high glass-transition 
temperatures (Tg). Starting from an initial small dataset of polymer 
Tg measurements, the authors use Gaussian process regression in 
conjunction with an active-learning framework to iteratively add Tg 
measurements of candidate polymers to the training dataset. The active-
learning framework employs one of three decision making strategies 
(exploitation, exploration, or balanced exploitation/exploration) for 
selection of the “next-best experiment.” The active-learning workflow 
terminates once 10 polymers possessing a Tg greater than a certain 
threshold temperature are selected. The authors statistically benchmark 
the performance of the aforementioned three strategies (against a 
random selection approach) with respect to the discovery of high-Tg 
polymers for this particular demonstrative materials design challenge. 
DOI.org/10.1557/mrc.2019.78

Artificial neural network correction for density-functional 
tight-binding molecular dynamics simulations 
Junmian Zhu, Grinnell College, USA; Van Quan Vuong, The 
University of Tennessee, Knoxville, USA; Bobby Sumpter, Oak 
Ridge National Laboratory, USA; and Stephan Irle, The University 
of Tennessee, Knoxville, and Oak Ridge National Laboratory, USA

The authors developed a Behler–Parrinello-type neural network (NN) 
to improve the density-functional tight-binding (DFTB) energy and 
force prediction. The Δ-machine learning approach was adopted and 
the NN was designed to predict the energy differences between the 
density functional theory (DFT) quantum chemical potential and DFTB 
for a given molecular structure. Most notably, the DFTB-NN method is 
capable of improving the energetics of intramolecular hydrogen bonds 
and torsional potentials without modifying the framework of DFTB 
itself. This improvement enables considerably larger simulations of 
complex chemical systems that currently could not easily have been 
accomplished using DFT or higher level ab initio quantum chemistry 
methods alone. DOI.org/10.1557/mrc.2019.80

Machine learning prediction of accurate atomization 
energies of organic molecules from low-fidelity quantum 
chemical calculations 
Logan Ward, Argonne National Laboratory, and The University 
of Chicago, USA; Ben Blaiszik, Argonne National Laboratory, 
and Globus, USA; Ian Foster, Argonne National Laboratory, 
The University of Chicago, and Globus, USA; Rajeev S. Assary, 
Argonne National Laboratory, USA; Badri Narayanan, Argonne 
National Laboratory, and University of Louisville, USA; and Larry 
Curtiss, Argonne National Laboratory, USA

Recent studies illustrate how machine learning (ML) can be used to 
bypass a core challenge of molecular modeling: the tradeoff between 
accuracy and computational cost. The authors assess multiple ML 
approaches for predicting the atomization energy of organic molecules. 
Their resulting models learn the difference between low-fidelity, B3LYP, 
and high-accuracy, G4MP2, atomization energies, and predict the 
G4MP2 atomization energy to 0.005 eV (mean absolute error) for 
molecules with less than 9 heavy atoms (training set 117232, test set 
13026) and 0.012 eV for a small set of 66 molecules with between 
10 and 14 heavy atoms. Their best models, which have accuracy/
speed tradeoffs, enable the efficient prediction of G4MP2-level 
energies for large molecules and are available through a web interface. 
DOI.org/10.1557/mrc.2019.107

Robocrystallographer: Automated crystal structure text 
descriptions and analysis 
Alex Ganose and Anubhav Jain, Lawrence Berkeley National 
Laboratory, USA

Our ability to describe crystal structure features is of crucial importance 
when attempting to understand structure–property relationships in the 
solid state. In this paper, the authors introduce robocrystallographer, 
an open-source toolkit for analyzing crystal structures. This package 
combines new and existing open-source analysis tools to provide 
structural information, including the local coordination and polyhedral 
type, polyhedral connectivity, octahedral tilt angles, component-
dimensionality, and molecule-within-crystal and fuzzy prototype 
identification. Using this information, robocrystallographer can generate 
text-based descriptions of crystal structures that resemble descriptions 
written by human crystallographers. The authors use robocrystallographer 
to investigate the dimensionalities of all compounds in the Materials 
Project database and highlight its potential in machine learning studies. 
DOI.org/10.1557/mrc.2019.94

Prediction of new iodine-containing apatites using 
machine learning and density functional theory 
Timothy Hartnett, Mukil Ayyasamy, and Prasanna V. Balachandran, 
University of Virginia, USA 

The authors develop a computational approach that integrates 
machine learning (ML) and density functional theory (DFT) with ex-
perimental data to predict formable and thermodynamically stable 
iodine-containing apatites. This is an important problem because 
radioactive iodine is toxic and capturing it in solid waste forms has 
implications in remediation treatments. They train ML models using 
336 compositions and screen 54 iodine-containing compounds in 
apatite stoichiometry. ML models predict 18 as formable and 24 as 
non-formable in the apatite structure; 12 compounds were iden-
tified to be uncertain. DFT convex hull predicted two to be ther-
modynamically stable, one as metastable, and nine as unstable. 
DOI.org/10.1557/mrc.2019.103

PROSPECTIVE
A perspective on triplet fusion upconversion: Triplet 
sensitizers beyond quantum dots
Zachary A. VanOrman, Alexander S. Bieber, Sarah Wieghold, and 
Lea Nienhaus, Florida State University, USA

The processes of singlet fission and triplet fusion could allow state-of-
the-art photovoltaic devices to surpass the Shockley–Queisser limit by 
optimizing the utilized solar spectrum by reducing thermal relaxation 
and inaccessible sub-bandgap photons, respectively. Both demand 
precise control of the spin-triplet state population, which, requires a 
sensitizer to populate the triplet state of an acceptor molecule. In this 
perspective, the authors highlight the established field of sensitized 
upconversion and further examine alternative triplet sensitization 
routes, including the possibility of bulk solid-state semiconductors 
as triplet sensitizers, which provide a new avenue for charge transfer 
based triplet sensitization rather than excitonic triplet energy transfer. 
DOI.org/10.1557/mrc.2019.115

Visit mrs.org/mrc to view additional Prospectives Articles,  
Commentaries, and Research Letters.
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