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We consider Toeplitz determinants whose symbol has: (i) a one-cut regular potential
V , (ii) Fisher–Hartwig singularities and (iii) a smooth function in the background.
The potential V is associated with an equilibrium measure that is assumed to be
supported on the whole unit circle. For constant potentials V , the equilibrium
measure is the uniform measure on the unit circle and our formulas reduce to
well-known results for Toeplitz determinants with Fisher–Hartwig singularities. For
non-constant V , our results appear to be new even in the case of no Fisher–Hartwig
singularities. As applications of our results, we derive various statistical properties of
a determinantal point process which generalizes the circular unitary ensemble.
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1. Introduction

In this work, we obtain large n asymptotics of the Toeplitz determinant

Dn(�α, �β, V,W ) := det(fj−k)j,k=0,...,n−1, fk :=
1
2π

∫ 2π

0

f(eiθ)e−ikθdθ, (1.1)

where f is supported on the unit circle T = {z ∈ C : |z| = 1} and is of the form

f(z) = e−nV (z)eW (z)ω(z), z ∈ T. (1.2)
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We assume that V and W are analytic in a neighbourhood of T and that the
potential V is real-valued on T. The function ω(z) = ω(z; �α, �β) in (1.2) contains
Fisher–Hartwig singularities and is defined in (1.8) below. Since the functions V
and W are analytic on T, there exists an open annulus U containing T on which
they admit Laurent series representations of the form

V (z) = V0 + V+(z) + V−(z), V+(z) =
+∞∑
k=1

Vkz
k, V−(z) =

−1∑
k=−∞

Vkz
k, (1.3)

W (z) = W0 +W+(z) +W−(z), W+(z) =
+∞∑
k=1

Wkz
k, W−(z) =

−1∑
k=−∞

Wkz
k,

(1.4)

where Vk,Wk ∈ C are the Fourier coefficients of V and W , i.e. Vk =
1/2π

∫ 2π

0
V (eiθ)e−ikθdθ and similarly for Wk. Associated to V there is an equi-

librium measure μV , which is the unique minimizer of the functional

μ �→
∫∫

log
1

|z − s|dμ(z)dμ(s) +
∫
V (z)dμ(z) (1.5)

among all Borel probability measures μ on T. In this paper, we make the assumption
that μ is supported on the whole unit circle. We further assume that V is regular,
i.e. that the function ψ given by

ψ(z) =
1
2π

− 1
2π

+∞∑
�=1

	(V�z� + V�z
−�), z ∈ U, (1.6)

is strictly positive on T. Under these assumptions, we show in appendix A that

dμV (eiθ) = ψ(eiθ)dθ, θ ∈ [0, 2π). (1.7)

The function ω appearing in (1.2) is defined by

ω(z) =
m∏
k=0

ωαk(z)ωβk(z), (1.8)

where ωαk(z) and ωβk(z) are defined for z = eiθ by

ωαk(z)= |z − tk|αk , ωβk(z)= ei(θ−θk)βk ×
{
eiπβk , if 0 � θ < θk,
e−iπβk , if θk � θ < 2π, θ ∈ [0, 2π),

(1.9)
and

tk := eiθk , 0 = θ0 < θ1 < · · · < θm < 2π. (1.10)

At tk = eiθk , the functions ωαk and ωβk have root- and jump-type singularities,
respectively. Note that ωβk is continuous at z = 1 if k �= 0. We allow the parame-
ters θ1, . . . , θm to vary with n, but we require them to lie in a compact subset of
(0, 2π)mord := {(θ1, . . . , θm) : 0 < θ1 < · · · < θm < 2π}.
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To summarize, the n× n Toeplitz determinant (1.1) depends on n, m, V , W ,
�t = (t1, . . . , tm), �α = (α1, . . . , αm) and �β = (β1, . . . , βm), but for convenience the
dependence on m and �t is omitted in the notation Dn(�α, �β, V,W ). We now state
our main result.

Theorem 1.1 Large n asymptotics of Dn(�α, �β, V,W ). Let m ∈ N := {0, 1, . . .}, and
let tk = eiθk , αk ∈ C and βk ∈ C be such that

0 = θ0 < θ1 < . . . < θm < 2π, and

Reαk > −1, Reβk ∈ (− 1
2 ,

1
2 ) for k = 0, . . . ,m.

Let V : T → R and W : T → C, and suppose V and W can be extended to analytic
functions in a neighbourhood of T. Suppose that the equilibrium measure dμV (eiθ) =
ψ(eiθ)dθ associated to V is supported on T and that ψ > 0 on T. Then, as n→ ∞,

Dn(�α, �β, V,W ) = exp(C1n
2 + C2n+ C3 log n+ C4 + O(n−1+2βmax)), (1.11)

with βmax = max{|Reβ1|, . . . , |Reβm|} and

C1 = −V0

2
− 1

2

∫ 2π

0

V (eiθ)dμV (eiθ),

C2 =
m∑
k=0

αk
2

(V (tk) − V0) −
m∑
k=0

2iβkIm (V+(tk)) +
∫ 2π

0

W (eiθ)dμV (eiθ),

C3 =
m∑
k=0

(
α2
k

4
− β2

k

)
,

C4 =
+∞∑
�=1

	W�W−� −
m∑
k=0

αk
2

(W (tk) −W0) +
m∑
k=0

βk (W+(tk) −W−(tk))

+
∑

0�j<k�m

{
αjiβk − αkiβj

2
(θk − θj − π) +

(
2βjβk − αjαk

2

)
log |tj − tk|

}

+
m∑
k=0

log
G(1 + αk

2 + βk)G(1 + αk
2 − βk)

G(1 + αk)
+

m∑
k=0

β2
k − α2

k

4

ψ(tk)

(
1
2π

− ψ(tk)
)
,

where G is Barnes’ G-function. Furthermore, the above asymptotics are uni-
form for all αk in compact subsets of {z ∈ C : Re z > −1}, for all βk in compact
subsets of {z ∈ C : Re z ∈ (− 1

2 ,
1
2 )} and for all (θ1, . . . , θm) in compact subsets

of (0, 2π)mord. The above asymptotics can also be differentiated with respect to
α0, . . . , αm, β0, . . . , βm as follows: if k0, . . . , k2m+1 ∈ N, k0 + . . .+ k2m+1 � 1 and
∂
�k := ∂k0α0

. . . ∂kmαm∂
km+1
β0

. . . ∂
k2m+1
βm

, then

∂
�k
(
logDn(�α, �β, V,W ) − log D̂n

)
= O

(
(log n)km+1+...+k2m+1

n1−2βmax

)
, as n→ +∞,

(1.12)

where D̂n denotes the right-hand side of (1.11) without the error term.
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1.1. History and related work

In the case when the potential V (z) in (1.2) vanishes identically, the asymptotic
evaluation of Toeplitz determinants of the form (1.1) has a long and distinguished
history. The first important result was obtained by Szegő in 1915 who determined
the leading behaviour of Dn(�α, �β, V,W ) in the case when �α = �β = �0 and V = 0,
that is, when the symbol f(z) is given by f(z) = eW (z). In our notation, this result,
known as the first Szegő limit theorem [45], can be expressed as

Dn(�0,�0, 0,W ) = exp
(
n

2π

∫ 2π

0

W (eiθ)dθ + o(n)
)

as n→ ∞. (1.13)

Later, in the 1940s, it became clear from the pioneering work of Kaufmann and
Onsager that a more detailed understanding of the error term in (1.13) could be
used to compute two-point correlation functions in the two-dimensional Ising model
in the thermodynamic limit [39]. This inspired Szegő to seek for a stronger version
of (1.13). The outcome was the so-called strong Szegő limit theorem [46], which in
our notation states that

Dn(�0,�0, 0,W ) = exp

(
n

2π

∫ 2π

0

W (eiθ)dθ +
+∞∑
�=1

	W�W−� + o(1)

)
as n→ ∞.

(1.14)

We observe that if V = 0, then dμV (eiθ) = dθ
2π ; thus, Szegő’s theorems are consistent

with our main result, theorem 1.11, in the special case when �α = �β = �0 and V = 0.
(The strong Szegő theorem actually holds under much weaker assumptions on W
than what is assumed in this paper, see e.g. the survey [7].)

In a groundbreaking paper from 1968, Fisher and Hartwig introduced a class of
singular symbols f(z) for which they convincingly conjectured a detailed asymptotic
formula for the associated Toeplitz determinant [32]. The Fisher–Hartwig class con-
sists of symbols f(z) of form (1.2) with V = 0. In our notation, the Fisher–Hartwig
conjecture can be formulated as

Dn(�α, �β, 0,W ) ∼ exp

(
n

2π

∫ 2π

0

W (eiθ)dθ +
m∑
k=0

(
α2
k

4
− β2

k

)
log n+ C4

)
as n→ ∞, (1.15)

where C4 is a constant to be determined, and the Fisher–Hartwig singularities
are encoded in the vectors �α and �β. Symbols with Fisher–Hartwig singularities
arise in many applications. For example, in the 1960s, Lenard proved [41] that no
Bose–Einstein condensation exists in the ground state for a one-dimensional system
of impenetrable bosons by considering Toeplitz determinants with symbols of the
form f(z) = |z − eiθ1 ||z − e−iθ1 | with θ1 ∈ R. Lenard’s proof hinges on an inequality
whose proof was provided by Szegő, see [41, Theorem 2]. We observe that (1.15) is
consistent with theorem 1.11 in the special case when V = 0.

There are too many works devoted to proofs and generalizations of the
Fisher–Hartwig conjecture (1.15) for us to cite them all, but we refer to [4, 11,
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47] for some early works, and to [5, 6, 10, 25] for four reviews. The current state-
of-the-art for non-merging singularities and for �α, �β in compact subsets was set by
Ehrhardt in his 1997 Ph.D. thesis (see [29]) and by Deift, Its and Krasovsky in [24,
26]. Since our proof builds on the results for the case of V = 0, we have included
a version of the asymptotic formulas of [24, 26, 29] in theorem 4.1. We also refer
to [21, 31] for studies of merging Fisher–Hartwig singularities with V = 0, and to
[17] for the case of large discontinuities with V = 0.

Note that if V = V0 is a constant, then Dn(�α, �β, V0,W ) = e−n
2V0Dn(�α, �β, 0,W ).

The novelty of the present work is that we consider symbols that include a non-
constant potential V ; we are not aware of any previous works on the unit circle
including such potentials. Our main result is formulated under the assumption that
Reβk ∈ (− 1

2 ,
1
2 ) for all k. The general case where Reβk ∈ R was treated in the

case of V = 0 in [24]. Asymptotic formulas for Hankel determinants with a one-cut
regular potential V and Fisher–Hartwig singularities were obtained in [8, 14, 19],
and the corresponding multi-cut case was considered in [18]. Our proofs draw on
some of the techniques developed in these papers.

1.2. Application: a determinantal point process on the unit circle

The Toeplitz determinant (1.1) admits the Heine representation

Dn(�α, �β, V,W ) =
1

n!(2π)n

∫
[0,2π]n

∏
1�j<k�n

|eiφk − eiφj |2
n∏
j=1

f(eiφj )dφj . (1.16)

This suggests that the results of theorem 1.11 can be applied to obtain information
about the point process on T defined by the probability measure

1
n!(2π)nZn

∏
1�j<k�n

|eiφk − eiφj |2
n∏
j=1

e−nV (eiφj )dφj , φ1, . . . , φn ∈ [0, 2π),

(1.17)

where Zn = Dn(�0,�0, V, 0) is the normalization constant (also called the partition
function). In what follows, we use theorem 1.11 to obtain smooth statistics, log
statistics, counting statistics and rigidity bounds for the point process (1.17). In the
case of constant V , the point process (1.17) describes the distribution of eigenvalues
of matrices drawn from the circular unitary ensemble and has already been widely
studied. We are not aware of any earlier work where the process (1.17) is considered
explicitly for non-constant V . However, the point process (1.17), but with nV (eiφ)
replaced by the highly oscillatory potential V (einφ), is studied in [2, 34]. We also
refer to [12, 13] for other determinantal generalizations of the circular unitary
ensemble.
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Let pn(z) :=
∏n
j=1(e

iφj − z) be the characteristic polynomial associated to (1.17),
and define log pn(z) for z ∈ T \ {eiφ1 , . . . , eiφn} by

log pn(z) :=
n∑
j=1

log(eiφj − z), Im log(eiφj − z)

:=
φj + arg0 z

2
+

{
3π
2 , if 0 � φj < arg0 z,
π
2 , if arg0 z < φj < 2π,

where arg0 z ∈ [0, 2π). In particular, if θk /∈ {φ1, . . . , φn},

e2iβk(Im log pn(tk)−nθk−nπ) =
n∏
j=1

ωβk(e
iφj ) = e−iβk(π+θk)ne2πiβkNn(θk)

n∏
j=1

eiβkφj ,

(1.18)

where Nn(θ) := #{φj ∈ [0, θ]} ∈ {0, 1, . . . , n}. Using the first identity in (1.18)
and the fact that {θ0, . . . , θm} ∩ {φ1, . . . , φn} = ∅ with probability one, it is
straightforward to see that

E

[
n∏
j=1

eW (eiφj )
m∏
k=0

eαkRe log pn(tk)e2iβk(Im log pn(tk)−nθk−nπ)

]
=
Dn(�α, �β, V,W )
Dn(�0,�0, V, 0)

.

(1.19)

Furthermore, if β0 = −β1 − . . .− βm, then the second identity in (1.18) together
with (1.19) implies

Dn(�α, �β, V,W )
Dn(�0,�0, V, 0)

=
m∏
k=1

e−iβkθkn × E

[
n∏
j=1

eW (eiφj )
m∏
k=0

|pn(tk)|αke2πiβkNn(θk)

]
.

(1.20)

Lemma 1.2. For any z ∈ T, we have

V (z) − V0

2
=

∫ 2π

0

log |eiθ − z|dμV (eiθ), (1.21)

arg0 z

2π
− ImV+(z) − ImV+(1)

π
=

∫ arg0 z

0

dμV (eiθ). (1.22)

Proof. The equilibrium measure μV is uniquely characterized by the Euler–Lagrange
variational equality

2
∫ 2π

0

log |z − eiθ|dμV (eiθ) = V (z) − 	, for z ∈ T, (1.23)

where 	 ∈ R is a constant, see e.g. [42]. In particular, the identity (1.21) is equivalent
to the statement that 	 = V0. The equality 	 = V0 can be established by integrating
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(1.23) over z = eiφ ∈ T and dividing by 2π:

	 =
∫ 2π

0

	
dφ
2π

=
∫ 2π

0

(
V (z) − 2

∫ 2π

0

log |eiφ − eiθ|dμV (eiθ)
)

dφ
2π

= V0,

where we have used the well-known (see e.g. [42, Example 0.5.7]) identity∫ 2π

0
log |eiφ − eiθ|dφ2π = 0 for θ ∈ [0, 2π). This proves (1.21). Identity (1.22) follows

from (1.6) and (1.3). �

Combining (1.20), theorem 1.1 and lemma 1.2, we get the following.

Theorem 1.3. Let m ∈ N, and let tk = eiθk , α0, . . . , αm ∈ C and u1, . . . , um ∈ C

be such that

0 = θ0 < θ1 < . . . < θm < 2π, and Reαk > −1, Imuk ∈ (−π, π) for all k.

Let V : T → R, W : T → C and suppose V, W can be extended to analytic functions
in a neighbourhood of T. Suppose that the equilibrium measure dμV (eiθ) = ψ(eiθ)dθ
associated to V is supported on T and that ψ > 0 on T. Then, as n→ ∞, we have

E

[
n∏
j=1

eW (eiφj )
m∏
k=0

|pn(tk)|αk
m∏
k=1

eukNn(θk)

]

= exp
(
C̃1n+ C̃2 log n+ C̃3 + O

(
n−1+umax

π

))
, (1.24)

with umax = max{|Imu1|, . . . , |Imum|} and

C̃1 =
m∑
k=0

αk

∫ 2π

0

log |eiφ − tk|dμV (eiφ) +
m∑
k=1

uk

∫ θk

0

dμV (eiφ)

+
∫ 2π

0

W (eiφ)dμV (eiφ), (1.25)

C̃2 =
m∑
k=0

(
α2
k

4
+

u2
k

4π2

)
, (1.26)

C̃3 =
+∞∑
�=1

	W�W−� −
m∑
k=0

αk
W+(tk) +W−(tk)

2
+

m∑
k=0

uk
π

W+(tk) −W−(tk)
2i

(1.27)

+
∑

0�j<k�m

{
αjuk − αkuj

4π
(θk − θj − π) −

(ujuk
2π2

+
αjαk

2

)
log |tj − tk|

}
(1.28)

+
m∑
k=0

log
G(1 + αk

2 + uk
2πi )G(1 + αk

2 − uk
2πi )

G(1 + αk)
−

m∑
k=0

u2
k

π2 + α2
k

4ψ(tk)

(
1
2π

− ψ(tk)
)
,

(1.29)

where G is Barnes’ G-function and u0 := −u1 − . . .− um. Furthermore, the above
asymptotics are uniform for all αk in compact subsets of {z ∈ C : Re z > −1}, for
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all uk in compact subsets of {z ∈ C : Im z ∈ (−π, π)} and for all (θ1, . . . , θm) in
compact subsets of (0, 2π)mord. The above asymptotics can also be differentiated with
respect to α0, . . . , αm, u1, . . . , um as follows: if k0, . . . , k2m ∈ N, k0 + . . .+ k2m � 1
and ∂�k := ∂k0α0

. . . ∂kmαm∂
km+1
u1 . . . ∂k2mum , then as n→ +∞

∂
�k

⎛⎝log E

[
n∏
j=1

eW (eiφj )
m∏
k=0

|pn(tk)|αk
m∏
k=1

eukNn(θk)

]
− log Ên

⎞⎠
= O

(
(log n)km+1+...+k2m

n1−umax
π

)
,

where Ên denotes the right-hand side of (1.24) without the error term.

Our first corollary is concerned with the smooth linear statistics of (1.17). For
V = 0, the central limit theorem stated in corollary 1.4 was already obtained in
[38].

Corollary 1.4 Smooth statistics. Let V and W be as in theorem 1.3, and assume
furthermore that W : T → R. Let {κj}+∞

j=1 be the cumulants of
∑n
j=1W (eiφj ), i.e.

κj := ∂jt log E[et
∑n
j=1W (eiφj )]

∣∣
t=0

. (1.30)

As n→ +∞, we have

E

[
n∑
j=1

W (eiφj )

]
= n

∫ 2π

0

W (eiφ)dμV (eiφ) + O
(

1
n

)
,

Var

[
n∑
j=1

W (eiφj )

]
= 2

+∞∑
�=1

	W�W−� + O
(

1
n

)
,

κj = O
(

1
n

)
, j � 3.

Moreover, if W is non-constant, then

∑n
j=1W (eiφj ) − n

∫ 2π

0
W (eiφ)dμV (eiφ)

(2
∑+∞

k=1 kWkW−k)1/2

converges in distribution to a standard normal random variable.

Our second corollary considers linear statistics for a test function with a log-
singularity at t. We let γE ≈ 0.5772 denote Euler’s constant.
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Corollary 1.5 log | · |-statistics. Let t = eiθ ∈ T with θ ∈ [0, 2π), and let {κj}+∞
j=1

be the cumulants of log |pn(t)|, i.e.

κj := ∂jα log E[eα log |pn(t)|]
∣∣
α=0

. (1.31)

As n→ +∞, we have

E[log |pn(t)|] = n

∫ 2π

0

log |eiφ − t|dμV (eiφ) + O
(

1
n

)
,

Var[log |pn(t)|] =
log n

2
+

1 + γE

2
−

1
2π − ψ(t)

2ψ(t)
+ O

(
1
n

)
,

κj = (−1 + 21−j) (logG)(j)(1) + O
(

1
n

)
, j � 3,

and

log |pn(t)| − n
∫ 2π

0
log |eiφ − t|dμV (eiφ)√

log n/
√

2

converges in distribution to a standard normal random variable.

Counting statistics of determinantal point processes have been widely studied
over the years [22, 44] and is still a subject of active research, see e.g. the recent
works [16, 23, 43]. Our third corollary established various results on the counting
statistics of (1.17).

Corollary 1.6 Counting statistics. Let t = eiθ ∈ T be bounded away from t0 := 1,
with θ ∈ (0, 2π), and let {κj}+∞

j=1 be the cumulants of Nn(θ), i.e.

κj := ∂ju log E[euNn(θ)]
∣∣
u=0

. (1.32)

As n→ +∞, we have

E[Nn(θ)] = n

∫ θ

0

dμV (eiφ) + O
(

log n
n

)
,

Var[Nn(θ)] =
log n
π2

+
1 + γE + log |t− 1|

π2
−

1
2π − ψ(1)
2π2ψ(1)

−
1
2π − ψ(t)
2π2ψ(t)

+ O
(

(log n)2

n

)
,

κ2j+1 = O
(

(log n)2j+1

n

)
, j � 1,

κ2j+2 =
(−1)j+1

22jπ2j+2
(logG)(2j+2)(1) + O

(
(log n)2j+2

n

)
, j � 1,

and Nn(θ)−n ∫ θ
0 dμV (eiφ)√

logn/π
converges in distribution to a standard normal random

variable.
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Remark 1.7. There are several differences between smooth, log- and counting
statistics that are worth pointing out:

• The variance of the smooth statistics is of order 1, while the variances of the log-
and counting statistics are of order logn.

• The third and higher order cumulants of the smooth statistics are all O(n−1),
while for the log-statistics the corresponding cumulants are all of order 1. On the
other hand, the third and higher order cumulants of the counting statistics are
as follows: the odd cumulants are o(1), while the even cumulants are of order 1.
This phenomenon for the counting statistics was already noticed in [43, eq (29)]
for a class of determinantal point processes.

Another consequence of theorem 1.3 is the following result about the individ-
ual fluctuations of the ordered angles. Corollary 1.8 is an analogue for (1.17)
of Gustavsson’s well-known result [36, Theorem 1.2] for the Gaussian unitary
ensemble.

Corollary 1.8 Ordered statistics. Let ξ1 � ξ2 � . . . � ξn denote the ordered
angles,

ξ1 = min{φ1, . . . , φn}, ξj = inf
θ∈[0,2π)

{θ : Nn(θ) = j}, j = 1, . . . , n, (1.33)

and let ηk be the classical location of the k-th smallest angle ξk,∫ ηk

0

dμV (eiφ) =
k

n
, k = 1, . . . , n. (1.34)

Let t = eiθ ∈ T with θ ∈ (0, 2π). Let kθ = [n
∫ θ
0

dμV (eiφ)], where [x] := �x+ 1
2 is

the closest integer to x. As n→ +∞, nψ(e
iηkθ )√

logn/π
(ξkθ − ηkθ ) converges in distribution

to a standard normal random variable.

There has been a lot of progress in recent years towards understanding the global
rigidity of various point processes, see e.g. [1, 20, 30]. Our next corollary is a
contribution in this direction: it establishes global rigidity upper bounds for (i) the
counting statistics of (1.17) and (ii) the ordered statistics of (1.17).

Corollary 1.9 Rigidity. For each ε > 0 sufficiently small, there exist c > 0 and
n0 > 0 such that

P

(
sup

0�θ<2π

∣∣∣∣∣Nn(θ) − n

∫ θ

0

dμV (eiφ)

∣∣∣∣∣ � (1 + ε)
1
π

log n

)
� 1 − c

log n
, (1.35)

P

(
max

1�k�n
ψ(eiηk)|ξk − ηk| � (1 + ε)

1
π

log n
n

)
� 1 − c

log n
, (1.36)

for all n � n0.
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Remark 1.10. It follows from (1.36) that limn→∞ P(max1�k�n ψ(eiηk)|ξk − ηk| �
(1 + ε) 1

π
logn
n ) = 1. We believe that the upper bound (1 + ε) 1

π is sharp, in the sense
that we expect the following to hold true:

lim
n→+∞ P

(
(1 − ε)

1
π

log n
n

� max
1�k�n

ψ(eiηk)|ξk − ηk| � (1 + ε)
1
π

log n
n

)
= 1. (1.37)

Our belief is supported by the fact that (1.37) was proved in [1, Theorem 1.5] for
V = 0, ψ(eiθ) = 1

2π .

2. Differential identity for Dn

Our general strategy to prove theorem 1.1 is inspired by the earlier works [8, 14,
24, 40]. The first step consists of establishing a differential identity which expresses
derivatives of logDn(�α, �β, V,W ) in terms of the solution Y to a Riemann–Hilbert
(RH) problem (see proposition 2.2). Throughout the paper, T is oriented in the
counterclockwise direction. We first state the RH problem for Y .

RH problem for Y (·) = Yn(·; �α, �β, V,W )

(a) Y : C \ T → C
2×2 is analytic.

(b) For each z ∈ T \ {t0, . . . , tm}, the boundary values limz′→z Y (z′) from the inte-
rior and exterior of T exist, and are denoted by Y+(z) and Y−(z) respectively.
Furthermore, Y+ and Y− are continuous on T \ {t0, . . . , tm}, and are related by
the jump condition

Y+(z) = Y−(z)
(

1 z−nf(z)
0 1

)
, z ∈ T \ {t0, . . . , tm}, (2.1)

where f is given by (1.2).

(c) Y has the following asymptotic behaviour at infinity:

Y (z) = (1 + O(z−1))znσ3 , as z → ∞,

where σ3 =
(

1 0
0 −1

)
.

(d) As z → tk, k = 0, . . . ,m, z ∈ C \ T,

Y (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
O(1) O(1) + O(|z − tk|αk)
O(1) O(1) + O(|z − tk|αk)

)
, if Reαk �= 0,(

O(1) O(log |z − tk|)
O(1) O(log |z − tk|)

)
, if Reαk = 0.
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Suppose {pk(z) = κkz
k + . . .}k�0 and {p̂k(z) = κkz

k + . . .}k�0 are two families of
polynomials satisfying the orthogonality conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2π

∫ 2π

0

pk(z)z−jf(z)dθ = κ−1
k δjk,

1
2π

∫ 2π

0

p̂k(z−1)zjf(z)dθ = κ−1
k δjk,

z = eiθ, j = 0, . . . , k. (2.2)

Then the function Y (z) defined by

Y (z) =
(
κ−1
n pn(z) κ−1

n

∫
T

pn(s)f(s)
2πisn(s− z)

ds− κn−1z
n−1p̂n−1(z−1)

− κn−1

∫
T

p̂n−1(s−1)f(s)
2πis(s− z)

ds
)

(2.3)

solves the RH problem for Y . It was first noticed by Fokas, Its and Kitaev [33] that
orthogonal polynomials can be characterized by RH problems (for a contour on the
real line). The above RH problem for Y , whose jumps lie on the unit circle, was
already considered in e.g. [3, eq. (1.26)] and [24, eq. (3.1)] for more specific f .

The monic orthogonal polynomials κ−1
n pn, κ

−1
n p̂n, and also Y , are unique (if they

exist). The orthogonal polynomials exist if f is strictly positive almost every-
where on T (this is the case if W is real-valued, αk > −1 and iβk ∈ (− 1

2 ,
1
2 )).

More generally, a sufficient condition to ensure existence of pn, p̂n (and therefore of
Y ) is that D(n)

n �= 0 �= D
(n)
n+1, where D(n)

l =: det(fj−k)j,k=0,...,l−1, l � 1 (note that
D

(n)
n = Dn(�α, �β, V,W )), see e.g. [21, Section 2.1]. In fact,

pk(z) =

∣∣∣∣∣∣∣∣∣
f0 f−1 . . . f−k
...

...
. . .

...
fk−1 fk−2 . . . f−1

1 z . . . zk

∣∣∣∣∣∣∣∣∣√
D

(n)
k

√
D

(n)
k+1

, p̂k(z) =

∣∣∣∣∣∣∣∣∣
f0 f−1 . . . f−k+1 1
f1 f0 . . . f−k+2 z
...

...
...

...
fk fk−1 . . . f1 zk

∣∣∣∣∣∣∣∣∣√
D

(n)
k

√
D

(n)
k+1

, (2.4)

and κk = (D(n)
k )1/2/(D(n)

k+1)
1/2. (Note that pk, p̂k and κk are unique only up to

multiplicative factors of −1. This can be fixed with a choice of the branch for the
above roots. However, since Y only involves κ−1

n pn and κn−1p̂n−1, which are unique,
this choice for the branch is unimportant for us.) If D(n)

k �= 0 for k = 0, 1, . . . , n+ 1,
it follows that

Dn(�α, �β, V,W ) =
n−1∏
j=0

κ−2
j . (2.5)
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Lemma 2.1. Let n ∈ N be fixed, and assume that D(n)
k (f) �= 0, k = 0, 1, . . . , n+ 1.

For any z �= 0, we have

[Y −1(z)Y ′(z)]21z−n+1 =
n−1∑
k=0

p̂k(z−1)pk(z), (2.6)

where Y (·) = Yn(·; �α, �β, V,W ).

Proof. The assumptions imply that κk = (D(n)
k )1/2/(D(n)

k+1)
1/2 is finite and nonzero

and that pk, p̂k exist for all k ∈ {0, . . . , n}. Note that (a) detY : C \ T → C is
analytic, (b) (detY )+(z) = (detY )−(z) for z ∈ T \ {t0, . . . , tm}, (c) detY (z) =
o(|z − tk|−1) as z → tk and (d) detY (z) = 1 + o(1) as z → ∞. Hence, using succes-
sively Morera’s theorem, Riemann’s removable singularities theorem and Liouville’s
theorem, we conclude that detY ≡ 1. Using (2.3) and the fact that detY ≡ 1, we
obtain [

Y −1(z)Y ′(z)
]
21

=
zn

κn
· κn−1

z
p̂n−1(z−1)

d

dz
pn(z)

− κ−1
n pn(z)

d

dz

[
zn · κn−1

z
p̂n−1(z−1)

]
.

Using the recurrence relation (see [24, Lemma 2.2])

κn−1

z
p̂n−1(z−1) = κnp̂n(z−1) − p̂n(0)z−npn(z),

we then find[
Y −1(z)Y ′(z)

]
21

= zn−1

(
−npn(z)p̂n(z−1) + z

(
p̂n(z−1)

d

dz
pn(z) − pn(z)

d

dz
p̂n(z−1)

))
.

The claim now directly follows from the Christoffel–Darboux formula [24, Lemma
2.3]. �

Proposition 2.2. Let n ∈ N�1 := {1, 2, . . .} be fixed and suppose that f depends
smoothly on a parameter γ. If D(n)

k (f) �= 0 for k = n− 1, n, n+ 1, then the following
differential identity holds

∂γ logDn(�α, �β, V,W ) =
1
2π

∫ 2π

0

[Y −1(z)Y ′(z)]21z−n+1∂γf(z)dθ, z = eiθ.

(2.7)

Remark 2.3. Identity (2.7) will be used (with a particular choice of γ) in the proof
of proposition 4.4 to deform the potential, see (4.8).

Proof. We first prove the claim under the stronger assumption that D(n)
k (f) �= 0

for k = 0, 1, . . . , n+ 1. In this case, κk = (D(n)
k )1/2/(D(n)

k+1)
1/2 is finite and nonzero

https://doi.org/10.1017/prm.2023.73 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.73


1444 E. Blackstone, C. Charlier and J. Lenells

and pk, p̂k exist for all k = 0, 1, . . . , n. Replacing z−j with p̂j(z−1)κ−1
j in the first

orthogonality condition in (2.2) (with k = j), and differentiating with respect to γ,
we obtain, for j = 0, . . . , n− 1,

−∂γ [κj ]
κj

=
κj
2π
∂γ

[∫ 2π

0

pj(z)p̂j(z−1)κ−1
j f(z)dθ

]
=

1
2π

∫ 2π

0

pj(z)p̂j(z−1)∂γ [f(z)]dθ +
κj
2π

∫ 2π

0

∂γ
[
pj(z)p̂j(z−1)κ−1

j

]
f(z)dθ.

(2.8)

The second term on the right-hand side can be simplified as follows:

κj
2π

∫ 2π

0

∂γ
[
pj(z)p̂j(z−1)κ−1

j

]
f(z)dθ

=
κj
2π

∫ 2π

0

∂γ [pj(z)]p̂j(z−1)κ−1
j f(z)dθ =

∂γ [κj ]
κj

, (2.9)

where the first and second equalities use the first and second relations in (2.2),
respectively. Combining (2.8) and (2.9), we find

− 2
∂γ [κj ]
κj

=
1
2π

∫ 2π

0

pj(z)p̂j(z−1)∂γ [f(z)]dθ. (2.10)

Taking the log of both sides of (2.5) and differentiating with respect to γ, we get

∂γ logDn(�α, �β, V,W ) = −2
n−1∑
j=0

∂γ [κj ]
κj

=
1
2π

∫ 2π

0

⎛⎝n−1∑
j=0

pj(z)p̂j(z−1)

⎞⎠ ∂γ [f(z)]dθ.

(2.11)

An application of lemma 2.1 completes the proof under the assumption that
D

(n)
k (f) �= 0, k = 0, 1, . . . , n+ 1. Since the existence of Y only relies on the weaker

assumption D
(n)
k (f) �= 0, k = n− 1, n, n+ 1, the claim follows from a simple

continuity argument. �

3. Steepest descent analysis

In this section, we use the Deift-Zhou [28] steepest descent method to obtain large
n asymptotics for Y .

3.1. Equilibrium measure and g-function

The first step of the method is to normalize the RH problem at ∞ by means of
a so-called g-function built in terms of the equilibrium measure (1.7). Recall from
(1.3), (1.4) and (1.6) that U is an open annulus containing T in which V , W and
ψ are analytic.
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Define the function g : C \ ((−∞,−1] ∪ T) → C by

g(z) =
∫

T

logs(z − s)ψ(s)
ds
is
, (3.1)

where for s = eiθ ∈ T and θ ∈ [−π, π), the function z �→ logs(z − s) is analytic in
C \ ((−∞,−1] ∪ {eiθ′ : −π � θ′ � θ}) and such that logs(2) = log |2|.

Lemma 3.1. The function g defined in (3.1) is analytic in C \ ((−∞,−1] ∪ T),
satisfies g(z) = log z + O(z−1) as z → ∞ and possesses the following properties:

g+(z) + g−(z) = 2
∫

T

log |z − s|ψ(s)
ds
is

+ i(π + ĉ+ arg z), z ∈ T, (3.2)

g+(z) − g−(z) = 2πi
∫ π

arg z

ψ(eiθ)dθ, z ∈ T, (3.3)

g+(z) − g−(z) = 2πi, z ∈ (−∞,−1), (3.4)

where ĉ =
∫ π
−π θψ(eiθ)dθ and arg z ∈ (−π, π).

Proof. In the case where the equilibrium measure satisfies the symmetry ψ(eiθ) =
ψ(e−iθ), we have ĉ = 0 and in this case (3.2)–(3.4) follow from [3, Lemma 4.2]. In
the more general setting of a non-symmetric equilibrium measure, (3.2)–(3.4) can be
proved along the same lines as [3, proof of Lemma 4.2] (the main difference is that
F (π) = π in [3, proof of Lemma 4.2] should here be replaced by F (π) = π + ĉ). �

It follows from (3.3) that

g′+(z) − g′−(z) = −2π
z
ψ(z), z ∈ T. (3.5)

Substituting (3.2) into the Euler–Lagrange equality (1.23) and recalling that
dμV (s) = ψ(s)ds

is , we get

V (z) = g+(z) + g−(z) + 	− log z − i(π + ĉ), z ∈ T, (3.6)

where the principal branch is taken for the logarithm. Consider the function

ξ(z) =

⎧⎪⎪⎨⎪⎪⎩
−iπ

∫ z

−1

ψ(s)
ds
is
, if |z| < 1, z ∈ U,

iπ

∫ z

−1

ψ(s)
ds
is
, if |z| > 1, z ∈ U,

(3.7)

where the contour of integration (except for the starting point −1) lies in U \
((−∞, 0] ∪ T) and the first part of the contour lies in {z : Im z � 0}. Since ψ is real-
valued on T, we have Re ξ(z) = 0 for z ∈ T. Using the Cauchy–Riemann equations
in polar coordinates and the compactness of the unit circle, we verify that there
exists an open annulus U ′ ⊆ U containing T such that Re ξ(z) > 0 for z ∈ U ′ \ T.
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Redefining U if necessary, we can (and do) assume that U ′ = U . Furthermore, for
z = eiθ ∈ T, θ ∈ (−π, π), we have

ξ+(z) − ξ−(z) = 2ξ+(z) = −2πi
∫ z

−1

ψ(s)
ds
is

= 2πi
∫ π

θ

ψ(eiθ
′
)dθ′ = g+(z) − g−(z),

(3.8)

2ξ±(z) − 2g±(z) = 	− V (z) − log z − iπ − iĉ. (3.9)

Analytically continuing ξ(z) − g(z) in (3.9), we obtain

ξ(z) = g(z) +
1
2

(	− V (z) − log z − iπ − iĉ) , for all z ∈ U \ ((−∞, 0] ∪ T) .

(3.10)
Note also that

ξ+(x) − ξ−(x) = πi, x ∈ U ∩ (−∞,−1), (3.11)

ξ+(x) − ξ−(x) = −πi, x ∈ U ∩ (−1, 0), (3.12)

where ξ±(x) := limε→0+ ξ(z ± iε) for x ∈ U ∩ ((−∞,−1) ∪ (−1, 0)).

3.2. Transformations Y → T → S

The first transformation Y → T is defined by

T (z) = e−
n(π+ĉ)i

2 σ3e
n�
2 σ3Y (z)e−ng(z)σ3e−

n�
2 σ3e

n(π+ĉ)i
2 σ3 . (3.13)

For z ∈ T \ {t0, . . . , tm}, the function T satisfies the jump relation T+ = T JT where
the jump matrix JT is given by

JT (z) =
(
e−n(g+(z)−g−(z)) z−ne−n[V (z)−g+(z)−g−(z)−�+iπ+iĉ]eW (z)ω(z)

0 en(g+(z)−g−(z))

)
.

Combining the above with (3.4), (3.6) and (3.8), we conclude that T satisfies the
following RH problem.

RH problem for T

(a) T : C \ T → C
2×2 is analytic.

(b) The boundary values T+ and T− are continuous on T \ {t0, . . . , tm} and are
related by

T+(z) = T−(z)
(
e−2nξ+(z) eW (z)ω(z)

0 e−2nξ−(z)

)
, z ∈ T \ {t0, . . . , tm}.

(c) As z → ∞, T (z) = I + O(z−1).
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(d) As z → tk, k = 0, . . . ,m, z ∈ C \ T,

T (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
O(1) O(1) + O(|z − tk|αk)
O(1) O(1) + O(|z − tk|αk)

)
, if Reαk �= 0,(

O(1) O(log |z − tk|)
O(1) O(log |z − tk|)

)
, if Reαk = 0.

The jumps of T for z ∈ T \ {t0, . . . , tm} can be factorized as

(
e−2nξ+(z) eW (z)ω(z)

0 e−2nξ−(z)

)
=

(
1 0

e−W (z)ω(z)−1e−2nξ−(z) 1

)
× (

0 eW (z)ω(z) − e−W (z)ω(z)−1 0
)( 1 0

e−W (z)ω(z)−1e−2nξ+(z) 1

)
.

Before proceeding to the second transformation, we first describe the analytic con-
tinuations of the functions appearing in the above factorization. The functions
ωβk , k = 0, . . . ,m, have a straightforward analytic continuation from T \ {tk} to
C \ {λtk : λ � 0}, which is given by

ωβk(z) = zβkt−βkk

×
{
eiπβk , 0 � arg0 z < θk,

e−iπβk , θk � arg0 z < 2π,
z ∈ C \ {λtk : λ � 0}, k = 0, . . . ,m,

(3.14)

where arg0 z ∈ [0, 2π), t−βkk := e−iβkθk and zβk := |z|βkeiβk arg0 z. For the root-type
singularities, we follow [24] and analytically continue ωαk from T \ {tk} to C \ {λtk :
λ � 0} as follows

ωαk(z) =
(z − tk)αk

(ztkei�k(z))αk/2
:=

eαk(log |z−tk|+i ˆargk(z−tk))

e
αk
2 (log |z|+i arg0(z)+iθk+i�k(z))

, z ∈ C \ {λtk : λ � 0},

k = 0, . . . ,m,

where ˆargkz ∈ (θk, θk + 2π), and

	k(z) =

{
3π, 0 � arg0 z < θk,

π, θk � arg0 z < 2π.

Now, we open lenses around T \ {t0, . . . , tm} as shown in figure 1. The part of the
lens-shaped contour lying in {|z| < 1} is denoted γ+, and the part lying in {|z| > 1}
is denoted γ−. We require that γ+, γ− ⊂ U . The transformation T �→ S is defined
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Figure 1. The jump contour for S with m = 2.

by

S(z) = T (z)

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

I, if z is outside the lenses,(
1 0

e−W (z)ω(z)−1e−2nξ(z) 1

)
, if |z| > 1 and inside the lenses,(

1 0 − e−W (z)ω(z)−1e−2nξ(z) 1
)
, if |z| < 1 and inside the lenses.

(3.15)

Note from (3.11)–(3.12) that e−2nξ(z) is analytic in U ∩ ((−∞,−1) ∪ (−1, 0)). It
can be verified using the RH problem for T and (3.15) that S satisfies the following
RH problem.

RH problem for S

(a) S : C \ (γ+ ∪ γ− ∪ T) → C
2×2 is analytic, where γ+, γ− are the contours in

figure 1 lying inside and outside T, respectively.

(b) The jumps for S are as follows.

S+(z) = S−(z)
(
0 eW (z)ω(z) − e−W (z)ω(z)−1 0

)
, z ∈ T \ {t0, . . . , tm},

S+(z) = S−(z)
(

1 0
e−W (z)ω(z)−1e−2nξ(z) 1

)
, z ∈ γ+∪γ−.

(c) As z → ∞, S(z) = I + O(z−1).
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(d) As z → tk, k = 0, . . . ,m, we have

S(z) =

⎧⎪⎪⎨⎪⎪⎩
(O(1) O(log(z − tk))
O(1) O(log(z − tk))

)
, if z is outside the lenses,(O(log(z − tk)) O(log(z − tk))

O(log(z − tk)) O(log(z − tk))

)
, if z is inside the lenses,

if Reαk = 0,

S(z) =

⎧⎪⎪⎨⎪⎪⎩
(O(1) O(1)
O(1) O(1)

)
, if z is outside the lenses,(O((z − tk)−αk) O(1)

O((z − tk)−αk) O(1)

)
, if z is inside the lenses,

if Reαk > 0,

S(z) =
(O(1) O((z − tk)αk)
O(1) O((z − tk)αk)

)
,

if Reαk < 0.

Since γ+, γ− ⊂ U and Re ξ(z) > 0 for z ∈ U \ T (recall the discussion below
(3.7)), the jump matrices S−(z)−1S+(z) on γ+ ∪ γ− are exponentially close to
I as n→ +∞, and this convergence is uniform outside fixed neighbourhoods of
t0, . . . , tm.

Our next task is to find suitable approximations (called ‘parametrices’) for S in
different regions of the complex plane.

3.3. Global parametrix P (∞)

In this subsection, we will construct a global parametrix P (∞) that is defined as
the solution to the following RH problem. We will show in subsection 3.5 below
that P (∞) is a good approximation of S outside fixed neighbourhoods of t0, . . . , tm.

RH problem for P (∞)

(a) P (∞) : C \ T → C
2×2 is analytic.

(b) The jumps are given by

P
(∞)
+ (z) = P

(∞)
− (z)

(
0 eW (z)ω(z) − e−W (z)ω(z)−1 0

)
,

z ∈ T \ {t0, . . . , tm}. (3.16)

(c) As z → ∞, we have P (∞)(z) = I + O(z−1).

(d) As z → tk from |z| ≶ 1, k ∈ {0, . . . ,m}, we have P (∞)(z) = O(1)(z −
tk)−(

αk
2 ±βk)σ3 .

The unique solution to the above RH problem is given by

P (∞)(z) =

{
D(z)σ3

(
0 1 − 1 0

)
, if |z| < 1,

D(z)σ3 , if |z| > 1,
(3.17)

https://doi.org/10.1017/prm.2023.73 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.73


1450 E. Blackstone, C. Charlier and J. Lenells

where D(z) is the Szegő function defined by

D(z) = DW (z)
m∏
k=0

Dαk(z)Dβk(z), DW (z) = exp
(

1
2πi

∫
T

W (s)
s− z

ds
)
, (3.18)

Dαk(z) = exp
(

1
2πi

∫
T

logωαk(s)
s− z

ds
)
, Dβk(z) = exp

(
1

2πi

∫
T

logωβk(s)
s− z

ds
)
.

(3.19)

The branches of the logarithms in (3.19) can be arbitrarily chosen as long as
logωαk(s) and logωβk(s) are continuous on T \ tk. The functionD is analytic on C \
T and satisfies the jump condition D+(z) = D−(z)eW (z)ω(z) on T \ {t0, . . . , tm}.
The expressions for Dαk and Dβk can be simplified as in [24, eqs. (4.9)–(4.10)]; we
have

Dαk(z)Dβk(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
z − tk
tkeiπ

)αk
2 +βk

=
e(
αk
2 +βk)(log |z−tk|+i ˆargk(z−tk))

e(
αk
2 +βk)(iθk+iπ)

, if |z| < 1,

(
z − tk
z

)−αk
2 +βk

=
e(βk−

αk
2 )(log |z−tk|+i ˆargk(z−tk))

e(βk−
αk
2 )(log |z|+i ˆargkz)

, if |z| > 1,

(3.20)
where ˆargk was defined below (3.14). Using (1.4), we can also simplify DW as

DW (z) =

{
eW0+W+(z), |z| < 1,
e−W−(z), |z| > 1.

(3.21)

3.4. Local parametrices P (tk)

In this subsection, we build parametrices P (tk)(z) in small open disks Dtk of tk,
k = 0, . . . ,m. The disks Dtk are taken sufficiently small such that Dtk ⊂ U and
Dtk ∩ Dtj = ∅ for j �= k. Since we assume that the tk’s remain bounded away from
each other, we can (and do) choose the radii of the disks to be fixed. The para-
metrices P (tk)(z) are defined as the solution to the following RH problem. We will
show in subsection 3.5 below that P (tk) is a good approximation for S in Dtk .

RH problem for P (tk)

(a) P (tk) : Dtk \ (T ∪ γ+ ∪ γ−) → C
2×2 is analytic.

(b) For z ∈ (T ∪ γ+ ∪ γ−) ∩ Dtk , P (tk)
− (z)−1P

(tk)
+ (z) = S−(z)−1S+(z).

(c) As n→ +∞, P (tk)(z) = (I + O(n−1+2|Re βk|))P (∞)(z) uniformly for z ∈ ∂Dtk .
(d) As z → tk, S(z)P (tk)(z)−1 = O(1).
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A solution to the above RH problem can be constructed using hypergeometric
functions as in [24, 35]. Consider the function

ftk(z) := 2πi
∫ z

tk

ψ(s)
ds
is
, z ∈ Dtk ,

where the path is a straight line segment from tk to z. This is a conformal map
from Dtk to a neighbourhood of 0, which satisfies

ftk(z) = 2πt−1
k ψ(tk)(z − tk) (1 + O(z − tk)) , as z → tk. (3.22)

If Dtk ∩ (−∞, 0] = ∅, ftk can also be expressed as

ftk(z) = −2 ×
{
ξ(z) − ξ+(tk), |z| < 1,
−(ξ(z) − ξ−(tk)), |z| > 1.

If Dtk ∩ (−∞, 0] �= ∅, then instead we have

ftk(z) = −2 ×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ(z) − ξ+(tk), |z| < 1, Im z > 0,
ξ(z) − ξ+(tk) − πi, |z| < 1, Im z < 0,
−(ξ(z) − ξ−(tk)), |z| > 1, Im z > 0,
−(ξ(z) − ξ−(tk) + πi), |z| > 1, Im z < 0,

if Im tk > 0, (3.23)

ftk(z) = −2 ×

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ(z) − ξ+(tk) + πi, |z| < 1, Im z > 0,
ξ(z) − ξ+(tk), |z| < 1, Im z < 0,
−(ξ(z) − ξ−(tk) − πi), |z| > 1, Im z > 0,
−(ξ(z) − ξ−(tk)), |z| > 1, Im z < 0,

if Im tk < 0.

If tk = −1, (3.23) also holds with ξ±(tk) := limε→0+ ξ±(e(π−ε)i) = 0. We define ωk
and W̃k by

ωk(z) = e−2πiβk θ̂(z;k)zβkt−βkk

∏
j �=k

ωαj (z)ωβj (z),

W̃k(z) = ω̌αk(z)
1
2 ×

{
e−

iπαk
2 , z ∈ QR+,k ∪QL−,k,

e
iπαk

2 , z ∈ QR−,k ∪QL+,k,

where θ̂(z; k) = 1 if Im z < 0 and k = 0 and θ̂(z; k) = 0 otherwise, zβk :=
|z|βkeiβk arg0 z,

ω̌αk(z)
1/2 :=

(z − tk)
αk
2

(ztkei�k(z))αk/4
:=

e
αk
2 (log |z−tk|+i ˇargk(z−tk))

e
αk
4 (log |z|+i arg0(z)+iθk+i�k(z))

, (3.24)

and (see figure 2)

QR±,k = {z ∈ Dtk : ∓Re ftk(z) > 0, Im ftk(z) > 0},
QL±,k = {z ∈ Dtk : ∓Re ftk(z) > 0, Im ftk(z) < 0}.
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Figure 2. The four quadrants QR±,k, QL±,k near tk and their images under the map ftk .

The argument ˇargk(z − tk) in (3.24) is defined to have a discontinuity for z ∈
(QL−,k ∩QR−,k) ∪ [z�,k, tk∞), z�,k := QL−,k ∩QR−,k ∩ ∂Dtk , and such that ˇargk((1 −
0+)tk − tk) = θk + π. Note that ˇargk(z − tk) is merely a small deformation of the
argument ˆargk(z − tk) defined below (3.14). This small deformation is needed to
ensure that Etk in (3.26) below is analytic in Dtk .

Note that ωk is analytic in Dtk . We now use the confluent hypergeometric model
RH problem, whose solution is denoted ΦHG(z;αk, βk) (see appendix B for the
definition and properties of ΦHG). If k �= 0 and Dtk ∩ (−∞, 0] = ∅, we define

P (tk)(z) = Etk(z)ΦHG(nftk(z);αk, βk)W̃k(z)−σ3e−nξ(z)σ3e−
W (z)

2 σ3ωk(z)−
σ3
2 ,
(3.25)

where Etk is given by

Etk(z) = P (∞)(z)ωk(z)
σ3
2 e

W (z)
2 σ3W̃k(z)σ3

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e

iπαk
4

σ3
e−iπβkσ3 , z ∈ QR+,k

e
−
iπαk

4
σ3
e−iπβkσ3 , z ∈ QL+,k

e

iπαk
4

σ3 (
0 1 − 1 0

)
, z ∈ QL−,k

e
−
iπαk

4
σ3 (

0 1 − 1 0
)
, z ∈ QR−,k

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
enξ+(tk)σ3(nftk(z))

βkσ3 .

(3.26)

Here the branch of ftk(z)
βk is such that ftk(z)

βk = |ftk(z)|βkeβki arg ftk (z) with
arg ftk(z) ∈ (−π

2 ,
3π
2 ), and the branch for the square root of ωk(z) can be chosen

arbitrarily as long as ωk(z)1/2 is analytic in Dtk (note that P (tk)(z) is invari-
ant under a sign change of ωk(z)1/2). If k �= 0, Dtk ∩ (−∞, 0] �= ∅ and Im tk � 0
(resp. Im tk < 0), then we define P (tk)(z) as in (3.25) but with ξ(z) replaced by
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ξ(z) + πiθ−(z) (resp. ξ(z) + πiθ+(z)), where

θ−(z) :=

⎧⎪⎨⎪⎩
1, if Im z < 0, |z| > 1,
−1, if Im z < 0, |z| < 1,
0, otherwise,

θ+(z) :=

⎧⎪⎨⎪⎩
−1, if Im z > 0, |z| > 1,
1, if Im z > 0, |z| < 1,
0, otherwise.

Using the definition of W̃k and the jumps (3.16) of P (∞), we verify that Etk has
no jumps in Dtk . Moreover, since P (∞)(z) = O(1)(z − tk)−(

αk
2 ±βk)σ3 as z → tk,

±(1 − |z|) > 0, we infer from (3.26) that Etk(z) = O(1) as z → tk, and there-
fore Etk is analytic in Dtk . Using (3.26), we see that Etk(z) = O(1)nβkσ3 as
n→ ∞, uniformly for z ∈ Dtk . Since P (tk) and S have the same jumps on
(T ∪ γ+ ∪ γ−) ∩ Dtk , S(z)P (tk)(z)−1 is analytic in Dtk \ {tk}. Furthermore, by (B.5)
and condition (d) in the RH problem for S, as z → tk from outside the lenses we
have that S(z)P (tk)(z)−1 is O(log(z − tk)) if Reαk = 0, is O(1) if Reαk > 0, and is
O((z − tk)αk) if Reαk < 0. In all cases, the singularity of S(z)P (tk)(z)−1 at z = tk
is removable and therefore P (tk) in (3.25) satisfies condition (d) of the RH problem
for P (tk).

The value of Etk(tk) can be obtained by taking the limit z → tk in (3.26) (e.g.
from the quadrant QR+,k). Using (3.17), (3.18), (3.20), (3.22) and (3.26), we obtain

Etk(tk) =
(
0 1 − 1 0

)
Λσ3
k , (3.27)

where

Λk = e
W (tk)

2 DW,+(tk)−1

×
[ ∏
j �=k

Dαj ,+(tk)−1Dβj ,+(tk)−1ω
1
2
αj (tk)ω

1
2
βj

(tk)

]
(2πψ(tk)n)βkenξ+(tk).

(3.28)

In (3.28), the branch of ω
1
2
αj (tk) is as in (3.24) and ω

1
2
βj

(tk) is defined by

ω
1
2
βj

(tk) := ei
βj
2 (θk−θj) ×

{
e
iπ
2 βj , if 0 � θk < θj ,

e−
iπ
2 βj , if θj � θk < 2π.

The expression for Λk can be further simplified as follows. A simple computation
shows that

Dαj ,+(z) = |z − tj |
αj
2 exp

(
iαj
2

[
ˆargj(z − tj) − θj − π

])
= |z − tj |

αj
2 exp

(
iαj
2

[
	j(z)

2
+

arg0 z − θj
2

− π

])
,

Dβj ,+(z) = |z − tj |βj exp
(
iβj

[
ˆargj(z − tj) − θj − π

])
= |z − tj |βj exp

(
iβj

[
	j(z)

2
+

arg0 z − θj
2

− π

])
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for z ∈ T. Therefore, the product in brackets in (3.28) can be rewritten as

∏
j �=k

|tk − tj |−βj exp
(
− iαj

2
θk − θj

2

) k−1∏
j=0

exp
(
πiαj

4

) m∏
j=k+1

exp
(
−πiαj

4

)
,

and thus

Λk = e
W (tk)

2 DW,+(tk)−1e
iλk
2 (2πψ(tk)n)βk

∏
j �=k

|tk − tj |−βj ,

where

λk =
k−1∑
j=0

παj
2

−
m∑

j=k+1

παj
2

−
∑
j �=k

αj(θk − θj)
2

+ 2πn
∫ −1

tk

ψ(s)
ds
is
. (3.29)

Using (3.25) and (B.2), we obtain

P (tk)(z)P (∞)(z)−1

= I +
β2
k − α2

k

4

nftk(z)
Etk(z)

(−1 τ(αk, βk) − τ(αk,−βk) 1
)
Etk(z)

−1

+ O(n−2+2|Re βk|), (3.30)

as n→ ∞ uniformly for z ∈ ∂Dtk , where τ(αk, βk) is defined in (B.3).

3.5. Small norm RH problem

We consider the function R defined by

R(z) =

{
S(z)P (∞)(z)−1, z ∈ C \ (∪mk=0Dtk ∪ T ∪ γ+∪γ−),
S(z)P (tk)(z)−1, z ∈ Dtk \ (T ∪ γ+∪γ−), k = 0, . . . ,m.

(3.31)

We have shown in the previous section that P (tk) and S have the same jumps on
T ∪ γ+ ∪ γ− and that S(z)P (tk)(z)−1 = O(1) as z → tk. Hence, R is analytic in
∪mk=0Dtk . Using also the RH problems for S, P (∞) and P (tk), we conclude that R
satisfies the following RH problem.

RH problem for R

(a) R : C \ ΓR → C
2×2 is analytic, where ΓR = ∪mk=0∂Dtk ∪ ((γ+ ∪ γ−) \ ∪mk=0Dtk)

and the circles ∂Dtk are oriented in the clockwise direction.

(b) The jumps are given by

R+(z) = R−(z)P (∞)(z)

×
(

1 0
e−W (z)ω(z)−1e−2nξ(z) 1

)
P (∞)(z)−1, z ∈ (γ+∪γ−)\ ∪mk=0 Dtk ,

R+(z) = R−(z)P (tk)(z)P (∞)(z)−1, z ∈ ∂Dtk , k = 0, . . . ,m.
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(c) As z → ∞, R(z) = I + O(z−1).

(d) As z → z∗ ∈ Γ∗
R, where Γ∗

R is the set of self-intersecting points of ΓR, we have
R(z) = O(1).

Recall that Re ξ(z) � c > 0 for z ∈ (γ+ ∪ γ−) \ ∪mk=0Dtk . Moreover, we see from
(3.17) that P (∞)(z) is bounded for z away from the points t0, . . . , tm. Using also
(3.30), we conclude that as n→ +∞
JR(z) = I + O(e−cn), uniformly for z ∈ (γ+∪γ−) \ ∪mk=0Dtk , (3.32)

JR(z) = I + J
(1)
R (z)n−1 + O(n−2+2βmax), uniformly for z ∈ ∪mk=0∂Dtk , (3.33)

where JR(z) := R−1
− (z)R+(z) and

J
(1)
R (z) =

β2
k − α2

k

4

ftk(z)
Etk(z)

(−1 τ(αk, βk) − τ(αk,−βk) 1
)
Etk(z)

−1, z ∈ ∂Dtk .

Furthermore, it is easy to see that the O-terms in (3.32)–(3.33) are uniform for
(θ1, . . . , θm) in any given compact subset Θ ⊂ (0, 2π)mord, for α0, . . . , αm in any
given compact subset A ⊂ {z ∈ C : Re z > −1}, and for β0, . . . , βm in any given
compact subset B ⊂ {z ∈ C : Re z ∈ (− 1

2 ,
1
2 )}. Therefore, R satisfies a small norm

RH problem, and the existence of R for all sufficiently large n can be proved
using standard theory [27, 28] as follows. Define the operator C : L2(ΓR) → L2(ΓR)
by Cf(z) = 1

2πi

∫
ΓR

f(s)
s−z dz, and denote C+f and C−f for the left and right non-

tangential limits of Cf . Since ΓR is a compact set, by (3.32)–(3.33) we have
JR − I ∈ L2(ΓR) ∩ L∞(ΓR), and we can define

CJR : L2(ΓR) + L∞(ΓR) → L2(ΓR),

CJRf = C−(f(JR − I)),

f ∈ L2(ΓR) + L∞(ΓR).

Using ‖CJR‖L2(ΓR)→L2(ΓR) � C‖JR − I‖L∞(ΓR) and (3.32)–(3.33), we infer that
there exists n0 = n0(Θ,A,B) such that ‖CJR‖L2(ΓR)→L2(ΓR) < 1 for all n � n0, all
(θ1, . . . , θm) ∈ Θ, all α0, . . . , αm ∈ A and all β0, . . . , βm ∈ B. Hence, for n � n0,
I − CJR : L2(ΓR) → L2(ΓR) can be inverted as a Neumann series and thus R exists
and is given by

R = I + C(μR(JR − I)), where μR := I + (I − CJR)−1CJR(I). (3.34)

Using (3.34), (3.32) and (3.33), we obtain

R(z) = I +R(1)(z)n−1 + O(n−2+2βmax), as n→ +∞, (3.35)

uniformly for (θ1, . . . , θm) ∈ Θ, α0, . . . , αm ∈ A and β0, . . . , βm ∈ B, where R(1) is
given by

R(1)(z) =
m∑
k=0

1
2πi

∫
∂Dtk

J
(1)
R (s)
s− z

ds.
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Since the jumps JR are analytic in a neighbourhood of ΓR, expansion (3.35) holds
uniformly for z ∈ C \ ΓR. It also follows from (3.34) that (3.35) can be differentiated
with respect to z without increasing the error term. For z ∈ C \ ∪mk=0Dtk , a residue
calculation using (3.22), (3.27) and (3.30) shows that (recall that ∂Dtk is oriented
in the clockwise direction)

R(1)(z) =
m∑
k=0

1
z − tk

(β2
k − α2

k

4 )tk
2πψ(tk)

(
1 Λ−2

k τ(αk,−βk) − Λ2
kτ(αk, βk) −1

)
.

(3.36)

Remark 3.2. Above, we have discussed the uniformity of (3.32)–(3.33) and (3.35)
in the parameters θk, αk, βk. In § 4, we will also need the following fact, which can
be proved via a direct analysis (we omit the details here, see e.g. [8, Lemma 4.35]
for a similar situation): If V is replaced by sV , then (3.32)–(3.33) and (3.35) also
hold uniformly for s ∈ [0, 1].

Remark 3.3. If k0, . . . , k2m+1 ∈ N, k0 + . . .+ k2m+1 � 1 and ∂
�k := ∂k0α0

. . .

∂kmαm∂
km+1
β0

. . . ∂
k2m+1
βm

, then by (3.17) we have

∂
�kJR(z) = O(e−cn), uniformly for z ∈ (γ+∪γ−) \ ∪mk=0Dtk ,

and by the same type of arguments that led to (3.30) we have

∂
�kJR(z) = ∂

�k(J (1)
R (z))n−1 + O

(
(log n)km+1+...+k2m+1

n2−2βmax

)
,

uniformly for z ∈ ∪mk=0∂Dtk .

It follows that

∂
�kR(z) = ∂

�k(R(1)(z))n−1 + O
(

(log n)km+1+...+k2m+1

n2−2βmax

)
, as n→ +∞.

If W is replaced by tW , t ∈ [0, 1], then the asymptotics (3.32), (3.33) and (3.35)
are uniform with respect to t and can also be differentiated any number of times
with respect to t without worsening the error term.

4. Integration in V

Our strategy is inspired by [8] and considers a linear deformation in the potential (in
[8] the authors study Hankel determinants related to point processes on the real line,
see also [14, 18, 19] for subsequent works using similar deformation techniques).
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Consider the potential V̂s := sV , where s ∈ [0, 1]. It is immediate to verify that

2
∫ 2π

0

log |z − eiθ|dμV̂0
(eiθ) = V̂0(z) − 	0, for z ∈ T, (4.1)

with dμV̂0
(eiθ) := 1

2πdθ and 	0 = 0. Using a linear combination of (4.1) and (1.23)
(writing V̂s = (1 − s)V̂0 + sV ), we infer that

2
∫ 2π

0

log |z − eiθ|dμV̂s(eiθ) = V̂s(z) − 	s, for z ∈ T, (4.2)

holds for each s ∈ [0, 1] with 	s := s	 and dμV̂s(e
iθ) = ψs(eiθ)dθ, ψs(eiθ) := 1−s

2π +
sψ(eiθ). In particular, this shows that ψs(eiθ) > 0 for all s ∈ [0, 1] and all θ ∈ [0, 2π).
Hence, we can (and will) use the analysis of § 3 with V replaced by V̂s.

We first recall the following result, which will be used for our proof.

Theorem 4.1 Taken from [24, 29]. Let m ∈ N, and let tk = eiθk , αk and βk be
such that

0 = θ0 < θ1 < . . . < θm < 2π, and Reαk > −1, Reβk ∈ (− 1
2 ,

1
2 )

for k = 0, . . . ,m.

Let W : T → R be analytic, and define W+ and W− as in (1.4). As n→ +∞, we
have

Dn(�α, �β, 0,W ) = exp
(
D2n+D3 log n+D4 + O

(
1

n1−2βmax

))
, (4.3)

where

D2 = W0,

D3 =
m∑
k=0

(
α2
k

4
− β2

k

)
,

D4 =
+∞∑
�=1

	W�W−� +
m∑
k=0

(
βk − αk

2

)
W+(tk) −

m∑
k=0

(
βk +

αk
2

)
W−(tk)

+
∑

0�j<k�m

{
αjiβk − αkiβj

2
(θk − θj − π) +

(
2βjβk − αjαk

2

)
log |tj − tk|

}

+
m∑
k=0

log
G(1 + αk

2 + βk)G(1 + αk
2 − βk)

G(1 + αk)
,

where G is Barnes’ G-function. Furthermore, the above asymptotics are uniform
for all αk in compact subsets of {z ∈ C : Re z > −1}, for all βk in compact subsets
of {z ∈ C : Re z ∈ (− 1

2 ,
1
2 )} and for all (θ1, . . . , θm) in compact subsets of (0, 2π)mord.
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Remark 4.2. The above theorem, but with the O-term replaced by o(1), was
proved by Ehrhardt in [29]. The stronger estimate O(n−1+2βmax) was obtained
in [26, Remark 1.4]. (In fact the results [26, 29] are valid for more general values
of the βk’s, but this will not be needed for us.)

Lemma 4.3. For z ∈ T, we have

1
iπ

−
∫

T

V ′(w)
w − z

dw =
1
z

(1 − 2πψ(z)) , (4.4)

1
iπ

−
∫

T

V (w)
w − z

dw = V0 + V+(z) − V−(z) = V0 + 2i Im (V+(z)), (4.5)

where −
∫

stands for principal value integral.

Proof. The first identity (4.4) can be proved by a direct residue calculation using
(1.3) and (1.6). We give here another proof, more in the spirit of [8, Lemma 5.8]
and [19, Lemma 8.1]. Let H,ϕ : C \ T → C be functions given by

H(z) = ϕ(z)
(
g′(z) − 1

2z

)
− 1

2z
+

1
2πi

∫
T

V ′(w)
w − z

dw, ϕ(z) =

{
−1, |z| < 1,
1, |z| > 1.

(4.6)
Clearly, H(∞) = 0, and for z ∈ T we have

H+(z) −H−(z) = −
(
g′+(z) + g′−(z) − 1

z

)
+ V ′(z) = 0,

where for the last equality we have used (3.6). So H(z) ≡ 0 by Liouville’s theorem.
Identity (4.4) now follows from relations (3.5) and

0 = H+(z) +H−(z) = −(g′+(z) − g′−(z)) − 1
z

+
1
iπ

−
∫

T

V ′(w)
w − z

dz, z ∈ T.

The second identity (4.5) follows from a direct residue computation, using (1.3). �

Proposition 4.4. As n→ +∞,

log
Dn(�α, �β, V,W )

Dn(�α, �β, 0,W )
= c1n

2 + c2n+ c3 + O(n−1+2βmax), (4.7)

where

c1 = −V0

2
− 1

2

∫ 2π

0

V (eiθ)dμV (eiθ),

c2 =
m∑
k=0

αk
2

(V (tk) − V0) −
m∑
k=0

2iβkIm (V+(tk)) +
∫ 2π

0

W (eiθ)dμV (eiθ) −W0,

c3 =
m∑
k=0

β2
k − α2

k

4

ψ(tk)

(
1
2π

− ψ(tk)
)
.
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Proof. We will use (2.7) with V = V̂s and γ = s, i.e.

∂s logDn(�α, �β, V̂s,W ) =
1
2π

∫ 2π

0

[Y −1(z)Y ′(z)]21z−n+1∂sf(z)dθ, (4.8)

where f(z) = e−nV̂s(z)ω(z) and Y (·) = Yn(·; �α, �β, V̂s,W ). Recall from proposition
2.2 that (4.8) is valid only whenD(n)

k (f) �= 0, k = n− 1, n, n+ 1. However, it follows
from the analysis of subsection 3.5 (see also remark 3.2) that the right-hand side of
(4.8) exists for all n sufficiently large, for all (θ1, . . . , θm) ∈ Θ, all α0, . . . , αm ∈ A,
all β0, . . . , βm ∈ B and all s ∈ [0, 1]. Hence, we can extend (4.8) by continuity (see
also [14, 19, 26, 37, 40] for similar situations with more details provided). By
(2.1), for z ∈ T \ {t0, . . . , tm} we have

[Y (z)−1Y ′(z)]21,+ = [Y (z)−1Y ′(z)]21,−, (4.9)

[Y (z)−1Y ′(z)]21 = − zn

f(z)
(
[Y (z)−1Y ′(z)]11,+ − [Y (z)−1Y ′(z)]11,−

)
, (4.10)

and thus, using that ∂s log f(z) = −nV (z) is analytic in a neighbourhood of T,

∂s logDn(�α, �β, V̂s,W ) =
−1
2πi

∫
Ce∪Ci

[
Y −1(z)Y ′(z)

]
11
∂s log f(z)dz, (4.11)

where Ci ⊂ {z : |z| < 1} ∩ U is a closed curve oriented counterclockwise and sur-
rounding 0, and Ce ⊂ {z : |z| > 1} ∩ U is a closed curve oriented clockwise and
surrounding 0. We choose Ci and Ce such that they do not intersect T ∪ γ+ ∪ γ− ∪
Dt0 ∪ · · · ∪ Dtm .

Inverting the transformations Y �→ T �→ S �→ R of § 3 using (3.13), (3.15) and
(3.31), for z ∈ Ce ∪ Ci we find[

Y −1(z)Y ′(z)
]
11

= ng′(z) +
[
P (∞)(z)−1P (∞)′(z)

]
11

+
[
P (∞)(z)−1R(z)−1R′(z)P (∞)(z)

]
11
.

Substituting the above in (4.11), we find the following exact identity:

∂s logDn(�α, �β, V̂s,W ) = I1,s + I2,s + I3,s,

where

I1,s =
−n
2πi

∫
Ce∪Ci

g′(z)∂s log f(z)dz, (4.12)

I2,s =
−1
2πi

∫
Ce∪Ci

[
P (∞)(z)−1P (∞)′(z)

]
11
∂s log f(z)dz, (4.13)

I3,s =
−1
2πi

∫
Ce∪Ci

[
P (∞)(z)−1R(z)−1R′(z)P (∞)(z)

]
11
∂s log f(z)dz. (4.14)

Using ∂s log f(z) = −nV (z) and (3.5) (with ψ replaced by ψs), we find

I1,s =
n2

2πi

∫
T

(g′+(z) − g′−(z))V (z)dz = −n2

∫
T

V (z)ψs(z)
dz

iz
,

https://doi.org/10.1017/prm.2023.73 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.73


1460 E. Blackstone, C. Charlier and J. Lenells

and since ψs = 1−s
2π + sψ,∫ 1

0

I1,sds = −n
2

2

∫ 2π

0

V (eiθ)
(

1
2π

+ ψ(eiθ)
)

dθ

= −n
2

2

(
V0 +

∫ 2π

0

V (eiθ)dμV (eiθ)
)

= c1n
2. (4.15)

Now we turn to the analysis of I2,s. Using (3.17), we obtain[
P (∞)(z)−1P (∞)′(z)

]
11

= ϕ(z)∂z[logD(z)] (4.16)

where ϕ is defined in (4.6). Also, by (3.18), (3.20) and (3.21), we have

∂z logD(z) =

⎧⎨⎩W
′
+(z) +

∑m
k=0

(
βk + αk

2

)
1

z−tk , |z| < 1,

−W ′
−(z) +

∑m
k=0

(
βk − αk

2

) (
1

z−tk − 1
z

)
, |z| > 1,

(4.17)

where W± are defined in (1.4), and by (1.6), we have

−
+∞∑

k=−∞
|k|WkV−k =

∫ 2π

0

W (eiθ)dμV (eiθ) −W0. (4.18)

Substituting (4.16) and (4.17) in (4.13), and doing a residue computation, we obtain

I2,s = −n
+∞∑

k=−∞
|k|WkV−k + n

m∑
k=0

αk
2

(V (tk) − V0)

− n

m∑
k=0

βk

(
1
πi

−
∫

T

V (z)
z − tk

dz − V0

)
= c2n,

where for the last equality we have used (4.5) and (4.18). Clearly, I2,s is independent
of s, and therefore

∫ 1

0
I2,sds = c2n. We now analyse I3,s as n→ +∞. From (3.35),

we have

R−1(z)R′(z) = n−1R(1)′(z) + O(n−2+2βmax),

and, using first (3.17) and then (3.36),[
P (∞)(z)−1n−1R(1)′(z)P (∞)(z)

]
11

=
1
n
×

{[
R(1)′(z)

]
22
, |z| < 1[

R(1)′(z)
]
11
, |z| > 1

=
−ϕ(z)
2πn

m∑
k=0

(β2
k − α2

k

4 )tk
ψ(tk)(z − tk)2

.

Therefore, as n→ +∞

I3,s =
1
2π

m∑
k=0

(β2
k − α2

k

4 )tk
ψ(tk)

1
2πi

(∫
Ci

−
∫
Ce

)
V (z)

(z − tk)2
dz + O(n−1+2βmax).
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Partial integration yields

1
2πi

(∫
Ci

−
∫
Ce

)
V (z)

(z − tk)2
dz =

1
2πi

(∫
Ci

−
∫
Ce

)
V ′(z)
z − tk

dz =
1
πi

−
∫

T

V ′(z)
z − tk

dz,

and thus, by (4.4), we have

I3,s =
1
2π

m∑
k=0

(β2
k − α2

k

4 )tk
ψ(tk)

1
tk

(1 − 2πψ(tk)) + O(n−1+2βmax), as n→ +∞.

Since the above asymptotics are uniform for s ∈ [0, 1] (see remark 3.2), the claim
follows. �

Theorem 1.1 now directly follows by combining proposition 4.4 with theorem 4.1.
(The estimate (1.12) follows from remark 3.3.)

5. Proofs of corollaries 1.4, 1.5, 1.6, 1.8, 1.9

Let eφ1 , . . . , eiφn be distributed according to (1.17) with φ1, . . . , φn ∈ [0, 2π). Recall
that Nn(θ) = #{φj ∈ [0, θ)} and that the angles φ1, . . . , φn arranged in increasing
order are denoted by 0 � ξ1 � ξ2 � . . . � ξn < 2π.

Proof of corollary 1.4. The asymptotics for the cumulants {κj}+∞
j=1 follow directly

from (1.30), theorem 1.3 (with m = 0, α0 = 0 and with W replaced by tW ) and the
fact that (1.24) can be differentiated any number of time with respect to t without
worsening the error term (see remark 3.3). Furthermore, if W is non-constant, then∑+∞
k=1 kWkW−k =

∑+∞
k=1 k|Wk|2 > 0 (because W is assumed to be real-valued) and

from theorem 1.3 (with m = 0, α0 = 0 and with W replaced by tW
(2

∑+∞
k=1 kWkW−k)1/2

,

t ∈ R) we also have

E

[
exp

(
t

∑n
j=1W (eiφj ) − n

∫ 2π

0
W (eiφ)dμV (eiφ)

(2
∑+∞

k=1 kWkW−k)1/2

)]
= e

t2
2 +O(n−1),

as n→ +∞ with t ∈ R arbitrary but fixed. The convergence in distribution stated
in corollary 1.4 now follows from standard theorems (see e.g. [9, top of page 415]).

Proof of corollary 1.5. The proof is similar to the proof of corollary 1.4. The
main difference is that (i) for the asymptotics of the cumulants, one needs to use
theorem 1.3 with W = 0, m = 0 if t = 1, and with W = 0, m = 1, α0 = 0, u1 = 0 if
t ∈ T \ {1}, and (ii) for the convergence in distribution, one needs to use theorem
1.3 with W = 0, m = 0 and α0 replaced by α

√
2/
√

log n, α ∈ R fixed, if t = 1, and
with W = 0, m = 1, α0 = 0, u1 = 0 and α1 replaced by α

√
2/
√

log n, α ∈ R fixed,
if t ∈ T \ {1}.

Proof of corollary 1.6. This proof is also similar to the proof of corollary 1.4. For
the asymptotics of the cumulants, one needs to use theorem 1.3 with W = 0, m = 1,
α0 = α1 = 0 and for the convergence in distribution, one needs to use theorem 1.3
with W = 0, m = 1, α0 = α1 = 0, and with u1 replaced by πu/

√
log n, u ∈ R fixed.
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Proof of corollary 1.8. The proof is inspired by Gustavsson [36, Theorem 1.2]. Let
θ ∈ (0, 2π) and kθ = [n

∫ θ
0

dμV (eiφ)], where [x] := �x+ 1
2, and consider the random

variable

Yn :=
n
∫ ξkθ
0

dμV (eiφ) − kθ√
log n/π

=
μn(ξkθ ) − kθ

σn
, (5.1)

where μn(ξ) := n
∫ ξ
0

dμV (eiφ) and σn := 1
π

√
log n. For y ∈ R, we have

P
[
Yn � y

]
= P

[
ξkθ � μ−1

n (kθ + yσn)
]

= P

[
Nn

(
μ−1
n (kθ + yσn)

)
� kθ

]
. (5.2)

Letting θ̃ := μ−1
n (kθ + yσn), we can rewrite (5.2) as

P
[
Yn � y

]
= P

[
Nn(θ̃) − μn(θ̃)√

σ2
n

� kθ − μn(θ̃)
σn

]
= P

[
μn(θ̃) −Nn(θ̃)

σn
� y

]
. (5.3)

As n→ +∞, we have

kθ = [μn(θ)] = O(n), θ̃ = θ
(
1 + O

(√
logn
n

))
. (5.4)

Since theorem 1.3 also holds in the case where θ depends on n but remains bounded
away from 0, the same is true for the convergence in distribution in corollary 1.6.
By (5.4), θ̃ remains bounded away from 0, and therefore corollary 1.6 together
with (5.3) implies that Yn converges in distribution to a standard normal random
variable. Since

P

[
nψ(eiηkθ )√

log n/π
(ξkθ − ηkθ ) � y

]

= P

[
Yn �

μn(ηkθ + y σn

nψ(e
iηkθ )

) − μn(ηkθ )

σn

]

= P

[
Yn �

∫ ηkθ+ yσn

nψ(e
iηkθ )

ηkθ

nψ(eiφ)
σn

dφ

]
= P

[
Yn � y + o(1)

]
as n→ +∞, this implies the convergence in distribution in the statement of
corollary 1.8.

Proof of corollary 1.9. Let μn(ξ) := n
∫ ξ
0

dμV (eiφ), σn := 1
π

√
log n, and for θ ∈

[0, 2π), let Nn(θ) := Nn(θ) − μn(θ). Using theorem 1.3 with W = 0, m ∈ N>0, α0 =
. . . = αm = 0 and u1, . . . , um ∈ R, we infer that for any δ ∈ (0, π) and M > 0, there
exists n′0 = n′0(δ,M) ∈ N and C = C(δ,M) > 0 such that

E

(
e
∑m
k=1 ukNn(θk)

)
� Cexp

(∑m
k=0 u

2
k

2
σ2
n

2

)
, (5.5)

for all n � n′0, (θ1, . . . , θm) in compact subsets of (0, 2π)mord ∩ (δ, 2π − δ)m and
u1, . . . , um ∈ [−M,M ], and where u0 = −u1 − . . .− um.
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Lemma 5.1. For any δ ∈ (0, π), there exists c > 0 such that for all large enough n
and small enough ε > 0,

P

(
sup

δ�θ�2π−δ

∣∣∣∣∣Nn(θ) − μn(θ)
σ2
n

∣∣∣∣∣ � π(1 + ε)

)
� 1 − c

log n
. (5.6)

Proof. A naive adaptation of [15, Lemma 8.1] (an important difference between
[15] and our situation is that σn =

√
logn√
2π

in [15] while here we have σn =
√

logn
π )

yields

P

(
sup

δ�θ�2π−δ

∣∣∣∣∣Nn(θ) − μn(θ)
σ2
n

∣∣∣∣∣ �
√

2π(1 + ε)

)
� 1 − o(1).

Inequality (5.5) can in fact be used to obtain the stronger statement (5.6).1 Recall
that ηk = μ−1

n (k) is the classical location of the k-th smallest point ξk and is defined
in (1.34). Since μn and Nn are increasing functions, for x ∈ [ηk−1, ηk] with k ∈
{1, . . . , n}, we have

Nn(x) − μn(x) � Nn(ηk) − μn(ηk−1) = Nn(ηk) − μn(ηk) + 1, (5.7)

which implies

sup
δ�x�2π−δ

Nn(x) − μn(x)
σ2
n

� sup
k∈Kn

Nn(ηk) − μn(ηk) + 1
σ2
n

,

where Kn = {k : ηk > δ and ηk−1 < 2π − δ}. Hence, for any v > 0,

P

(
sup

δ�x�2π−δ

Nn(x) − μn(x)
σ2
n

> v

)
� P

(
sup
k∈Kn

Nn(κk) − μn(κk)
σ2
n

> v − 1
σ2
n

)
.

Let ε0 > 0 be small and fixed, and let I be an arbitrary but fixed subset of (0, ε0].
Claim (5.6) will follow if we can prove for any ε ∈ I that

P

(
sup
k∈Kn

Nn(ηk) − μn(ηk)
σ2
n

> π(1 + ε)
)

� c1
log n

, (5.8)

for some c1 = c1(I) > 0. Let m ∈ N be fixed and Sm and S′
m be the following two

collections of points of size m

Sm =

{
δ + (2π − 2δ)

4j + 1
4m

: j = 0, . . . ,m− 1

}
,

S′
m =

{
δ + (2π − 2δ)

4j + 2
4m

: j = 0, . . . ,m− 1

}
.

Let Xn(θ) := (Nn(θ) − μn(θ))/σn. For any θ ∈ [δ, 2π − δ], we have by corollary 1.6
that E[Xn(θ)] = O(

√
log n
n ) and Var[Xn(θ)] � 2 for all large enough n. Hence, by

1We are very grateful to a referee for pointing this out.
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Chebyshev’s inequality, for any fixed 	 > 0, P( |Xn|σn
� 	) � 3

�2σ2
n

for all large enough
n. Using this inequality with 	 = πε

2 together with a union bound, we get

P

(
sup

θ̂∈Sm∪S′
m

∣∣∣∣∣Nn(θ̂) − μn(θ̂)
σ2
n

∣∣∣∣∣ > πε

2

)
= P

(
sup

θ̂∈Sm∪S′
m

∣∣∣∣∣Xn(θ̂)
σn

∣∣∣∣∣ > πε

2

)

� 3 × 2m
(πε2 )2 logn

π2

=
24m
ε2 log n

,

and then

P

(
sup
k∈Kn

∣∣∣∣∣Nn(ηk) − μn(ηk)
σ2
n

∣∣∣∣∣ > π(1 + ε)

)
� 24m
ε2 log n

+
∑
k∈Kn

P

(∣∣∣∣∣Nn(ηk) − μn(ηk)
σ2
n

∣∣∣∣∣ > π(1 + ε) and sup
θ̂∈Sm∪S′

m

∣∣∣∣∣Xn(θ̂)
σn

∣∣∣∣∣ � πε

2

)
.

(5.9)

The reason for introducing two subsets Sm, S′
m is the following: for any k ∈ Kn, one

must have that ηk remains bounded away from at least one of Sm, S′
m (so that (5.5)

can be applied). Indeed, suppose for example that θ is bounded away from Sm, then
by (5.5) (with m replaced by m+ 1 and with u1 = u and u2 = . . . = um+1 = − u

m )
we have

E

[
exp

⎛⎝uNn(ηk) − u

m

∑
θ̂∈Sm

Nn(θ̂)

⎞⎠]
� Cexp

{
u2σ2

n

4

(
1 +

1
m

)}

and similarly,

E

[
exp

⎛⎝ u

m

∑
θ̂∈Sm

Nn(θ̂) − uNn(ηk)

⎞⎠]
� Cexp

{
u2σ2

n

4

(
1 +

1
m

)}
.

Hence, if ηk remains bounded away from Sm, we have (with γ := π(1 + ε/2) and
α := 1

2 (1 + 1
m ))

P

(∣∣∣∣∣Nn(ηk)
σ2
n

∣∣∣∣∣ > π(1 + ε) and sup
θ̂∈Sm∪S′

m

∣∣∣∣∣Nn(θ̂)
σ2
n

∣∣∣∣∣ � πε

2

)
(5.10)

� P

(
Nn(ηk) − 1

m

∑
θ̂∈Sm Nn(θ̂)

σ2
n

> γ

)
+ P

(
1
m

∑
θ̂∈Sm Nn(θ̂) −Nn(ηk)

σ2
n

> γ

)

= P

(
e
γ
α (Nn(ηk)− 1

m

∑
θ̂∈Sm Nn(θ̂)) > e

γ2

α σ
2
n

)
+ P

(
e
γ
α ( 1

m

∑
θ̂∈Sm Nn(θ̂)−Nn(ηk)) > e

γ2

α σ
2
n

)
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� E

(
e
γ
α (Nn(ηk)− 1

m

∑
θ̂∈Sm Nn(θ̂))

)
e−

γ2

α σ
2
n

+ E

(
e
γ
α ( 1

m

∑
θ̂∈Sm Nn(θ̂)−Nn(ηk))

)
e−

γ2

α σ
2
n

� 2C exp
(
γ2σ2

n

4α2

(
1 +

1
m

)
− γ2

α
σ2
n

)
= 2Cexp

(
−π

2(1 + ε
2 )2σ2

n

1 + 1
m

)

= 2Cn
− (1+ ε

2 )2

1+ 1
m . (5.11)

We obtain the same bound (5.11) if ηk in (5.10) is instead bounded away from S′
m.

The above exponent is less than −1 provided that m is sufficiently large relative to
ε. Since the number of points in Kn is proportional to n, claim (5.6) now directly
follows from (5.9) (recall also (5.8)). �

Lemma 5.2. Let δ ∈ (0, π2 ) and ε > 0. For all sufficiently large n, if the event

sup
δ�θ�2π−δ

∣∣∣∣Nn(θ) − μn(θ)
σ2
n

∣∣∣∣ � π(1 + ε) (5.12)

holds true, then we have

sup
k∈(μn(2δ),μn(2π−2δ))

∣∣∣∣∣μn(ξk) − k

σ2
n

∣∣∣∣∣ � π(1 + ε) +
1
σ2
n

, (5.13)

Proof. The proof is almost identical to the proof of [15, Lemma 8.2] so we omit
it. �

By combining lemmas 5.1 and 5.2, we arrive at the following result (the proof is
very similar to [15, Proof of (1.38)], so we omit it).

Lemma 5.3. For any δ ∈ (0, π), there exists c > 0 such that for all large enough n
and small enough ε > 0,

P

(
max

δn�k�(1−δ)n
ψ(eiηk)|ξk − ηk| � 1 + ε

π

log n
n

)
� 1 − c

log n
. (5.14)

Extending lemmas 5.1 and 5.3 to δ = 0. In this paper, the support of μV is T.
Therefore, the point 1 ∈ T should play no special role in the study of the global
rigidity of the points, which suggests that (5.6) and (5.14) should still hold with
δ = 0. The next lemma shows that this is indeed the case.

Lemma 5.4 Proof of (1.35). For each small enough ε > 0, there exists c > 0 such
that

P

(
sup

0�θ<2π

∣∣∣∣∣Nn(θ) − μn(θ)
σ2
n

∣∣∣∣∣ � π(1 + ε)

)
� 1 − c

log n

for all large enough n.
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Proof. For −π � θ < 0, let Ñn(θ) := #{φj − 2π ∈ (−π, θ]}, and for 0 � θ < π,
let Ñn(θ) := #({φj − 2π ∈ (−π, 0]} ∪ {φj ∈ [0, θ]}). For −π � θ < π, define also
μ̃n(θ) := n

∫ θ
−π dμV (eiφ). In the same way as for lemma 5.1, the following holds:

for any δ ∈ (0, π), there exists c1 > 0 such that for all large enough n and small
enough ε > 0,

P

(
sup

−π+δ�θ�π−δ

∣∣∣∣∣ Ñn(θ) − μ̃n(θ)
σ2
n

∣∣∣∣∣ � π(1 + ε)

)
� 1 − c1

log n
.

Clearly,

Ñn(θ) =

{
Nn(θ + 2π) −Nn(π), if θ ∈ (−π, 0),
Nn(θ) + n−Nn(π), if θ ∈ (0, π),

μ̃n(θ) =

{
μn(θ + 2π) − μn(π), if θ ∈ (−π, 0),
μn(θ) + n− μn(π), if θ ∈ (0, π),

and therefore

Ñn(θ) − μ̃n(θ)
σ2
n

= −Nn(π) − μn(π)
σ2
n

+

{
Nn(θ+2π)−μn(θ+2π)

σ2
n

, if θ ∈ (−π, 0),

[0.1 cm]Nn(θ)−μn(θ)
σ2
n

, if θ ∈ (0, π).

Thus, for all large enough n,

P

(
sup

θ∈[0,2π)\(π−δ,π+δ)

∣∣∣∣∣Nn(θ) − μn(θ)
σ2
n

∣∣∣∣∣ � π(1 + ε) +

∣∣∣∣∣Nn(π) − μn(π)
σ2
n

∣∣∣∣∣
)

� 1 − c1
log n

.

Combining the above with (5.6) (with c replaced by c2), we obtain

P

(
sup

θ∈[0,2π)

∣∣∣∣∣Nn(θ) − μn(θ)
σ2
n

∣∣∣∣∣ � π(1 + ε) +

∣∣∣∣∣Nn(π) − μn(π)
σ2
n

∣∣∣∣∣
)

� 1 − c1 + c2
log n

.

(5.15)

Let Xn := (Nn(π) − μn(π))/σn. By corollary 1.6, E[Xn] = O(
√

logn
n ) and

Var[Xn] � 2 for all large enough n. Hence, by Chebyshev’s inequality, for any fixed
	 > 0, P( |Xn|σn

� 	) � 3
�2σ2

n
for all large enough n. Applying this inequality with

	 = π(1 + (1 + ε)ε) − π(1 + ε) = πε2 we see that if P(A) denotes the left-hand side
of (5.15), then

P(A) � P

(
A ∩

{
|Xn|
σn

< 	

})
+ P

(
|Xn|
σn

� 	
)

� P

(
A ∩

{
|Xn|
σn

< 	

})
+

3
	2σ2

n

.
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Together with (5.15), this gives

P

(
sup

θ∈[0,2π)

∣∣∣∣∣Nn(θ) − μn(θ)
σ2
n

∣∣∣∣∣ � π (1 + (1 + ε)ε)

)

� P

(
A ∩

{
|Xn|
σn

< 	

})
� P(A) − 3

	2σ2
n

� 1 − c1 + c2
log n

− 3
	2σ2

n

� 1 − c3
log n

,

for some c3 = c3(ε) > 0, which proves the claim. �

The upper bound (1.36) can be proved using the same idea as in the proof of
lemma 5.4.
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30 L. Erdős, H.-T. Yau and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices.
Adv. Math. 229 (2012), 1435–1515.

31 B. Fahs. Uniform asymptotics of Toeplitz determinants with Fisher–Hartwig singularities.
Comm. Math. Phys. 383 (2021), 685–730.

32 M. E. Fisher and R. E. Hartwig. Toeplitz determinants: some applications, theorems, and
conjectures. Advan. Chem. Phys. 15 (1968), 333–353.

33 A. S. Fokas, A. R. Its and A. V. Kitaev. The isomonodromy approach to matrix models in
2D quantum gravity. Comm. Math. Phys. 147 (1992), 395–430.

34 P. J. Forrester. Charged rods in a periodic background: a solvable model. J. Statist. Phys.
42 (1986), 871–894.
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Appendix A. Equilibrium measure

Assume that μV is supported on T. We make the ansatz that μV is of form (1.7)
for some ψ. Let g be as in (3.1). Substituting (3.2) in (1.23) and differentiating, we
obtain

g′+(z) + g′−(z) = V ′(z) +
1
z
, z ∈ T.

Since g′(z) = 1
z + O(z−2) as z → ∞, we deduce that

g′(z) = −ϕ(z)
2πi

∫
T

1
s + V ′(s)
s− z

ds, z ∈ C \ T, (A.1)

where ϕ(z) := +1 if |z| > 1 and ϕ(z) := −1 if |z| < 1. Using (A.1) in (3.5), it follows
that

− 2π
z
ψ(z) =

1
πi

−
∫

T

1
s + V ′(s)
s− z

ds, z ∈ T. (A.2)

Recall from (1.3) that V is analytic in the open annulus U and real-valued on T,
and therefore

V (z) = V0 +
∑
k�1

(Vkzk + Vkz
−k), V ′(z) =

∑
k�1

(kVkzk−1 − kVkz
−k−1), z ∈ U.

(It is straightforward to check that the series
∑
k�1 kVkz

k−1 and
∑
k�1 kVkz

−k−1

are convergent in U .) Direct computation gives

−
∫

T

1
s + V ′(s)
s− z

ds = −πi
z

+ πi
∑
k�1

(kVkzk−1 + kVkz
−k−1), z ∈ T,

which, by (A.2), proves that ψ is given by (1.6). Since the right-hand side of (1.6)
is positive on T (by our assumption that V is regular), we conclude that ψ(eiθ)dθ
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is a probability measure satisfying the Euler–Lagrange condition (1.23). Therefore,
ψ(eiθ)dθ minimizes (1.5), i.e. ψ(eiθ)dθ is the equilibrium measure associated to V .
Since the equilibrium measure is unique [42], this proves (1.7).

Appendix B. Confluent hypergeometric model RH problem

(a) ΦHG : C \ ΣHG → C
2×2 is analytic, where ΣHG is shown in figure 3.

(b) For z ∈ Γk (see figure 3), k = 1, . . . , 8, ΦHG obeys the jump relations

ΦHG,+(z) = ΦHG,−(z)Jk, (B.1)

where

J1 =
(
0 e−iπβ − eiπβ 0

)
, J5 =

(
0 eiπβ − e−iπβ 0

)
,

J3 = J7 =
(
e
iπα
2 0
0 e−

iπα
2

)
,

J2 =
(

1 0
e−iπαeiπβ 1

)
, J4 =

(
1 0

eiπαe−iπβ 1

)
, J6 =

(
1 0

e−iπαe−iπβ 1

)
,

J8 =
(

1 0
eiπαeiπβ 1

)
.

(c) As z → ∞, z /∈ ΣHG, we have

ΦHG(z) =

(
I +

∞∑
k=1

ΦHG,k

zk

)
z−βσ3e−

z
2σ3M−1(z), (B.2)

where

ΦHG,1 =
(
β2 − α2

4

)(−1 τ(α, β) − τ(α,−β) 1
)
,

τ(α, β) = − Γ
(
α
2 − β

)
Γ
(
α
2 + β + 1

) , (B.3)

and

M(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e

iπα

4
σ3
e−iπβσ3 ,

π

2
< arg z < π,

e
−
iπα

4
σ3
e−iπβσ3 , π < arg z <

3π
2
,

e

iπα

4
σ3 (

0 1 − 1 0
)
, −π

2
< arg z < 0,

e
−
iπα

4
σ3 (

0 1 − 1 0
)
, 0 < arg z <

π

2
.

(B.4)
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Figure B3. The jump contour ΣHG for ΦHG(z). The ray Γk is oriented from 0 to ∞, and
forms an angle with R

+ which is a multiple of π4 .

In (B.2), z−β has a cut along iR− so that z−β = |z|−βe−βi arg(z) with −π
2 <

arg z < 3π
2 . As z → 0, we have

ΦHG(z) =

⎧⎪⎪⎨⎪⎪⎩
(O(1) O(log z)
O(1) O(log z)

)
, if z ∈ II ∪ III ∪ V I ∪ V II,(O(log z) O(log z)

O(log z) O(log z)

)
, if z ∈ I ∪ IV ∪ V ∪ V III,

,

if Reα = 0,

ΦHG(z) =

⎧⎪⎪⎨⎪⎪⎩
(O(z

α
2 ) O(z−

α
2 )

O(z
α
2 ) O(z−

α
2 )

)
, if z ∈ II ∪ III ∪ V I ∪ V II,(O(z−

α
2 ) O(z−

α
2 )

O(z−
α
2 ) O(z−

α
2 )

)
, if z ∈ I ∪ IV ∪ V ∪ V III,

,

if Reα > 0,

ΦHG(z) =

(
O(z

α
2 ) O(z

α
2 )

O(z
α
2 ) O(z

α
2 )

)
, if Reα < 0.

(B.5)

This model RH problem was first introduced and solved explicitly in [37] for the
case α = 0, and then in [24, 35] for the general case. The constant matrices ΦHG,k

depend analytically on α and β (they can be found explicitly, see e.g. [35, eq. (56)]).
Consider the matrix

Φ̂HG(z) =

⎛⎝ Γ(1+α
2 −β)

Γ(1+α) G(
α

2
+ β, α; z)e−

iπα
2

Γ(1+α
2 +β)

Γ(1+α) G(1 +
α

2
+ β, α; z)e−

iπα
2

−Γ(1+α
2 −β)

Γ(α2 +β) H(1 +
α

2
− β, α; ze−iπ)

H(α2 − β, α; ze−iπ)

)
e−

iπα
4 σ3 , (B.6)
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where G and H are related to the Whittaker functions:

G(a, α; z) =
Mκ,μ(z)√

z
, H(a, α; z) =

Wκ,μ(z)√
z

, μ =
α

2
, κ =

1
2

+
α

2
− a. (B.7)

The solution ΦHG is given by

ΦHG(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ̂HG(z)J−1
2 , for z ∈ I,

Φ̂HG(z), for z ∈ II,

Φ̂HG(z)J3, for z ∈ III,

Φ̂HG(z)J3J
−1
4 , for z ∈ IV,

Φ̂HG(z)J−1
2 J−1

1 J−1
8 J−1

7 J6, for z ∈ V,

Φ̂HG(z)J−1
2 J−1

1 J−1
8 J−1

7 , for z ∈ V I,

Φ̂HG(z)J−1
2 J−1

1 J−1
8 , for z ∈ V II,

Φ̂HG(z)J−1
2 J−1

1 , for z ∈ V III.

(B.8)
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