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A NOTE ON COHN'S UNIVERSAL
LOCALISATION AT A SEMIPRIME IDEAL

JOHN A. BEACHY

The universal localisation -Rr(S) a t a semiprime ideal S of a left Noetherian ring R
was defined and studied by P. M. Conn. In this note we investigate the interaction
between the universal localisation i?r(S)i the Ore localisation at S, and the torsion-
theoretic localisation at the injective envelope E(R/S) of the module R(R/S).

Throughout this note, R will denote a left Noetherian ring (with identity), and S will
denote a semiprime ideal of R. The study of the universal localisation /?r(s) was initiated
by P.M. Cohn, and continued by the present author (in [3, 4, 5, 6]) and others. It was
shown in [5] that Goldie's localisation, defined in [11], is also related to the universal
localisation (it is a homomorphic image of the latter).

Recently there has been renewed interest in the construction of the universal locali-
sation because of its connection with some questions in topology (see [10, 12]). One of
the questions of interest has been to find conditions under which Rr(s) is flat as a left R-
module. [4, Theorem 3.1] shows that this is equivalent to the statement that C(S) is left
localisable, in which case i?r(S) is naturally isomorphic to the Ore localisation Rs- In this
note we give two localisability conditions phrased in terms of the connection between the
universal localisation at S and the torsion theoretic localisation at the injective envelope
E(R/S). We provide a counterexample to the statement of [8, Theorem 4.2], in which
it is asserted that there always exists a ring homomorphism from the torsion theoretic
localisation into the universal localisation, and investigate conditions under which such
a homomorphism does exist.

For any ideal / of R, the set of elements c € R that are regular modulo / will be
denoted by C(I). We need to extend this definition relative to 5, as follows. For any
positive integer n, let Fn(S) denote the set of all matrices C such that C belongs to the
n x n matrix ring Mn(R) and the image of C in Mn(R/S) is a regular element. This
will be abbreviated by saying that C is regular modulo S. Note that C 6 Fn(5) if and
only if the image of C is invertible under the canonical mapping from Mn{R) into the
left classical quotient ring Q<a(Mn(R/S)) = Mn(Qd{R/S)). The union over all n > 0 of
Fn(5) will be denoted by F(S).
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362 J.A. Beachy [2]

The universal localisation i?r(S) of R at T(S) is defined as the universal T(S)-
inverting ring. It can be constructed as follows (see [8, 9] for details). For each n
and each n x n matrix [c^] in F(S), take a set of n2 symbols [dy], and take a ring pre-
sentation of i?r(S) consisting of all of the elements of R, as well as all of the elements
dij as generators; as defining relations take all of the relations holding in R, together
with all of the relations [cy][dy] = I and [dy][cy] = / which define all of the inverses of
the matrices in T(S). Any left i?r(S)-module is a left .R-module, using the canonical ring
homomorphism A : R -> i?r(S)i and as such it has no torsion relative to C(S).

The torsion-theoretic localisation of R at 5 is defined as follows. The torsion radical
7 = iadE(R/s) is defined for any module RM by letting IBAE(R/S) {M) be the intersection
of all kernels of .R-homomorphisms from M into B(R/S). A module RM is called 7-
torsion if j(M) = M and 7-torsionfree if 7(M) = 0; a submodule M' is 7-dense if M/M'
is 7-torsion and 7-closed if M/M' is 7-torsionfree. The 7-closure of M' in M is defined
as the intersection of all 7-closed submodules of M which contain M'. For the torsion
radical 7, a left ideal A C R is 7-closed if and only if A is the left annihilator of a
subset of E(R/S). In particular, the ideal y(R) is the left annihilator of W. A module
RM is called 7-injective if each homomorphism / : N' —» M such that N' is a 7-dense
submodule of RN can be extended to N.

The set T(S) defines an idempotent radical as follows. For each module RM, let
radr(5)(M) be the set of elements m £ M such that m is a component of a vector u such
that Cu = 0 for some matrix C € T(S) of the appropriate size. [4, Lemma 2.1] shows
that 7 is the largest torsion radical for which 7 ^ radr(S) •

For the torsion radical 7, the full subcategory determined by all modules RM such
that E(M) and E(M)/M are 7-torsionfree is called the quotient category determined
by 7, and will be denoted by .R-Mod 7. Note that .R-Mod 7 can also be described as
the full subcategory of all 7-torsionfree, 7-injective modules. The inclusion functor from
i?-Mod7 -> R-Mod has a left adjoint, denoted by <27, and defined by letting Q7(Af)
be the 7-closure of M/*y(M) in E(M)/^(M).

For any module M 6 i t-Mod 7, and any element m £ M, the homomorphism
[r H-> rm\ : R —> M defined by multiplication can be extended uniquely to pm : Q-,(R)
—» M. For any element q 6 Q-,(R), the homomorphism pq can be used to define right
multiplication by q, and this induces a ring structure on Q-,(R). Furthermore, any module
M € i?-Mod7 becomes a left Q7(.R)-module by defining qm = pm{q), for all q G Q-,{R)
and m 6 M. The ring Qy{R) is called the ring of quotients determined by 7. The
quotient category R-Mod 7 is also a quotient category of Q7(.R)-Mod, and the functor
Q1 can be viewed as a functor from i?-Mod to Q1(R)-Mod, although as such it may
be only left exact. We can define an associated quotient functor Q : .R-Mod —»• .R-Mod
by letting Q be the composition of the functor Q7 and the inclusion from R- Mod 7 into
R-Mod.
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[8, Theorem 4.2] asserts that in the above situation there is a natural homomor-
phism from Qy(R) into i?r(S) and that this is an isomorphism if and only if C(S) is a
left denominator set in R. The proof depends upon the existence of a natural transfor-
mation from the functor Q1 to the functor i?r(S) <E*R(~)> which is constructed under the
assumption that for any left Rr(s)-module X, the factor module E(X)/X is torsionfree
relative to the idempotent radical radr(s) denned by T(S). Example 1 will show that this
basic assumption may not hold, and in this example the natural transformation and ring
homomorphism discussed above do not exist. The first proposition clarifies the situation
with regard to the existence of a natural transformation from Q7 to i?r(s) <8>R(~)-

PROPOSITION 1 . Let S be a semiprime ideal ofR, let j be the torsion radical
of R-Mod determined by E(R/S), and let Q : R-Mod -¥ R-Mod be the associated
quotient functor. Let Rr(s) denote the universal localisation at S. Then every Rr(s)-
module is j-injective if and only if there exists a natural transformation TJ from the
functor Q : .R-Mod -> R-Mod to the functor Rr(s) (£)R(—)

 : R-Mod —>• R-Mod such
that the following diagram commutes for all modules RM.

M • Q(M)

P R O O F : First suppose that we have a natural transformation as described in
the statement of the theorem. Let RM be an i?r(s)-module. Then the natural R-
homomorphism from M to i?r(S) ®R M is an isomorphism, and so it follows that the
homomorphism from Q(M) into -Rr(S) ® J J M is onto. On the other hand, since M
is an i?r(s)-module, by construction it must be 7-torsionfree, and so the canonical R-
homomorphism from M into Q(M) is one-to-one. Since M is an essential submodule of
Q(M), it follows that the iZ-homomorphism from Q(M) into RT(S) <8>R M is also one-to-
one. Therefore Q(M) is isomorphic to i?r(S) ®R M, which is isomorphic, in turn, to M,
so M is 7-injective since Q(M) is 7-injective.

To prove the converse, suppose that every i?r(5)-module is 7-injective as an R-
module. Then the canonical i?-homomorphism from M into i?r(S) ®R M extends to an
.R-homomorphism TJ(M) : Q(M) -* i?r(S) <S*H ^ > anc^ ia*s homomorphism is unique since
Rr(S) <8>R M is 7-torsionfree. The uniqueness of the extension implies immediately that
we have defined a natural transformation from the functor Q to the functor Rr{s) ®R{~)-

The commutativity of the above diagram also follows directly from the uniqueness in
definition of the natural transformation 77. D

E X A M P L E 1. Let R be the ring of 2 x 2 lower triangular matrices over a field
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F, let P be the prime ideal

ideal, it follows from [4, Lemma 1.5

, and let / = . Since P is an idempotent

that P is the kernel of the mapping from R into
Rr(s)- Since R/P is a field, the universal localisation of R at P is simply R/P. As a left
/2-module, R/P is isomorphic to I, and P is the injective envelope of I. Since P/I is not
isomorphic to R/P (as left i?-modules), we see that P/I is torsion relative to the torsion
radical 7 determined by E(R/P), and therefore the conditions of Proposition 1 are not
satisfied.

\ F F]
Since R is 7-torsionfree, and R is 7-dense in its injective envelope , it

follows that Q-,{R) is the full ring of 2 x 2 matrices over F. It is then easy to see
that there is no ring homomorphism (over R) from Q7(i?) into Rr(S), contradicting the
assertion in [8, Theorem 4.2].

[4, Theorem 3.1] states that in the situation under discussion (assuming that 5 is a
semiprime ideal of a left Noetherian ring R) the existence of any ring homomorphism from
Rr(S) into Q-y{R) (over R) is equivalent to the condition that C(S) is a left denominator
set. On the other hand, it will be shown in Example 2 that it is possible to have a ring
homomorphism from Q-,{R) into i?r(S) that is not an isomorphism. The next proposition
provides a condition sufficient to guarantee that this occurs.

PROPOSITION 2 . If i?r(s) is radp(s)-closed in its R-injective envelope, and

radr(s)(-R) = 7(-R)> then there is a natural ring homomorphism from Q-,(R) into i?r(S)-

PROOF: Without loss of generality we can assume that radr(S)(-R) = 7(R) = (0)-
Let A : R —> /?r(S) be the canonical embedding, and assume that i?r(s) is radr(s)-
closed in its /?-injective envelope E(Rr^s))- (That is, assume that E(Rr(s))/Rr(s) is
radr(s)-torsionfree.) Any .R-homomorphism f : R -> /?r(S) extends to / : /?r(S)
—> E(Rr(s))', the image of / must be in Rr(s) since Rr(s)/HR) is torsion relative to
radr-(s), whereas E(Rr(S))/Rr(S) is by assumption torsionfree relative to radr(s)- Fur-
thermore, the extension is unique since Rr(s)/^{R) is torsion relative to radp(S) and
E{Rr(s)) is torsionfree relative to radp(s)- It follows that if q € Rr(S), then the R-
endomorphism pq : Rr(s) —* -Rr(S) defined by pq — [x »-» xq] is the unique extension of
the R-homomorphism [x >-» xq] : R —» iir(S)-

If we let e : R —¥ Q-y(R) be the canonical embedding, then the assumption on /?r(s)
implies that A : R —* Rr(s) has a unique extension (j>: <37(i2) -> -ftr(S) such that <j>e — A.
Since 4> is an i?-homomorphism, we only need to show that <j> preserves multiplication.
Given a ,6 € Qy{R), we can interpret <j>(a)<j>{b) as [p^b))(Ha)) = [P<t>(b)4>\{a)- Similarly,

we can interpret <f>(ab) as 4>{rb(a)) = [0r6](a), where rb is the fi-endomorphism [1 >-» xb]
of Q7 that defines right multiplication by 6. For any r 6 R, we have [p*(6)0](e(r))
- Pwfcir) = A>(&)A(r) = A(r) • 4>{b) and [4>T(>](e(r)) = 4>{e{r) • b). But since 4> is an R-
homomorphism, we must have <p{e(r) b) = \{r) •</>(&), and so P4,(b)<f>e — <j>rbe. Uniqueness
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of the extensions implies that p^brf = <prb, showing that <j> preserves multiplication. D

EXAMPLE 2. Let R be the ring
u

of 2 x 2 lower triangular matrices over the ring

of integers Z, and let 5 be the semiprime ideal
0 0

, where p is a prime. In [4], as

a special case of a result on triangular matrix rings, the universal localisation i?r(S)

[ Q 0 1
shown to be I „

On the other hand, the torsion theoretic localisation <37(.ft) is the ring

. This can be seen by noting first that T/R is C(S)-torsion, and

i Q 1
. It is then clear

T =
n

(p)

then showing that T is 7-closed in its i?-injective envelope

that in this case Q7(i?) can be embedded as a subring of i?r(S)-

The localisation <27(S) of the ideal S is always a left ideal of Q-,(R), but it is
of interest to know when it is a two-sided ideal. The next lemma gives an equivalent

condition. Note that in Example 1 we have Q-y(S) —
F 0
F 0

, and so it is not an

ideal of Qy{R) =
F F
F F

. On the other hand, in Example 2 it can be shown that

Q-r(S) =
0 0

, and this is an ideal of QJR) = (p)

Z (P) (P)

LEMMA 3 . Tie closure Q-,{S) in Qy(R) is an ideal of Qy(R) if and only if the
classical ring of quotients Qa(R/S) is a left module over Q~,{R) (extending the action of
R).

PROOF: The lemma on page 400 of [2] states that if M is a 7-torsionfree left Q-y{R)-
module, then for any m € M and any left ideal A of R, we have Q1(R)m = (0) if and
only if Am — (0). Applying this condition when A = S and M is the injective envelope
E(R/S) of R/S, it follows that Qy(S)m = (0) if and only if m 6 Q^R/S). Thus if
Qy{S) is an ideal, it follows that Qd(R/S) is a <27(i?)-submodule of E(R/S). Conversely,
if Qd(R/S) is a <27(/?)-submodule of E(R/S), then Q1{S) is its annihilator in Q7(i?),
and therefore is an ideal of <27(i?). D

LEMMA 4 . If the equivalent conditions of Proposition 1 are satisfied, or if there

exists a ring homomorphism from Q-,(R) into Rr{s) (over R), then Q-,{S) is an ideal of

Q-r(R)-

PROOF: Since R/S is a semiprime Goldie ideal, the classical ring of left quotients
Qd(R/S) coincides with the maximal ring of quotients Qmax(R/S), and so by [1, Propo-
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sition 3.4 (a)] we have Qd{R/S) C Q7(i?/5). By assumption, Qd{R/S) is 7-injective
since it is isomorphic to the i?r(S)-module Rr{s)/J{Rr(S))- Since Qd(R/S) is 7-dense in
Q.y(R/S), it splits off, and this contradicts the fact that it is also essential in Qy(R/S).
We conclude that Qd(R/S) = Q^(R/S), and so [1, Proposition 3.4 (b)] implies that
<27(S) is an ideal of Qy(R).

If there exists a ring homomorphism from Q7(.R) into i?r(S) (over R), then Qd(R/S)
has the structure of a left <27(/?)-module since it is always a left i?r(S)-module. Lemma 3
then implies that Qy(S) is an ideal of Q-,{R). D

Recall that we have defined the quotient functor Q : R- Mod —* R- Mod by letting
Q be the composition of the functor <27 (defined by E(R/S)) and the inclusion from
R- Mod 7 into R- Mod.

THEOREM 5 . Let R be a left Noetherian ring, and let S be a semiprime ideal of
R. Then the following conditions are equivalent.

(1) Tie universa] localisation i?r(s) coincides with the Ore localisation Rs;

(2) There exists a ring homomorphism from the torsion theoretic localisation
Q-yiR) into the universal localisation i?r(S) (over R) and the quotient func-
tor Q : R-Mod —>• .R-Mod is exact;

(3) The quotient functor Q : .R-Mod —>• i?-Mod is exact, and there is a natural
transformation 77 from Q to i?r(S) <8>fl(~) s u c ^ taat tne following diagram
commutes for all modules

M * Q(M)

PROOF: [7, Theorem 3] implies that if R is left Noetherian, then the ideal 5 is
left localisable if and only if Qy(S) is an ideal of Q1{R) and Q : .R-Mod -> R-Mod is
an exact functor. The equivalence of conditions (1), (2), and (3) therefore follows from
Lemma 4. D
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