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SMILE ASYMPTOTICS II: MODELS WITH
KNOWN MOMENT GENERATING FUNCTIONS
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Abstract

The tail of risk neutral returns can be related explicitly with the wing behaviour of the
Black–Scholes implied volatility smile. In situations where precise tail asymptotics are
unknown but a moment generating function is available we establish, under easy-to-
check Tauberian conditions, tail asymptotics on logarithmic scales. Such asymptotics
are enough to make the tail-wing formula (see Benaim and Friz (2008)) work and so we
obtain, under generic conditions, a limiting slope when plotting the square of the implied
volatility against the log strike, improving a lim sup statement obtained earlier by Lee
(2004). We apply these results to time-changed exponential Lévy models and examine
several popular models in more detail, both analytically and numerically.
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1. Introduction

The purpose of this paper is to connect the tail behaviour of a real-valued random variable
(viewed as returns in a stochastic financial model) to the wing behaviour of the Black–Scholes
implied volatility, sharpening Lee’s celebrated moment formula [8]. Let us recall that the
famous Black–Scholes formula gives the unique price (based on no-arbitrage arguments) of a
European call option (i.e. the option to buy a risky asset at some later time (‘maturity’) at a
price (‘strike’) agreed today), based on the assumption that returns (or log price) of the asset
follow a Brownian motion times a constant factor (‘Black–Scholes volatility’) plus a constant
drift. For pricing purposes, we have to work under risk-neutral measure which, in particular,
relates the drift to the risk-free rate. It is everyday practice in the financial industry to quote call
prices seen in the market in terms of the ‘implied’ volatility, that is, the volatility parameter in
the Black–Scholes formula that gives rise to a matching price. Of course, this implied volatility
can and will depend on the maturity and strike of the call option under consideration. The
implied volatility as a function of these two parameters is the famous volatility surface, e.g. [6]
and [7], its dependence in strike often exhibits a smile (‘volatility smile’). It is also everyday
practice in the industry to fit the volatility surface to parametric models (typically diffusion or
jump-diffusion processes). Not surprisingly then, the behaviour of the Black–Scholes implied
volatility/variance at extreme strikes is of considerable interest to the financial industry: it
constrains the functional form for the extrapolation of an implied volatility skew into the tails,
and allows the inference of parameters of underlying dynamics, given observations of tail slopes
of the volatility skew.
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Smile asymptotics II 17

In a previous paper [4] motivated by Lee’s moment formula [8], we established an explicit
formula (‘tail-wing formula’) that relates the asymptotic behaviour of the tail of the distribution
function of risk-neutral returns (for some fixed maturity) to the small-strike and large-strike
asymptotics of the implied Black–Scholes volatility (the ‘wings’of the implied volatility smile).

The present paper extends the discussion of [4] to models whose returns at some fixed
maturity have a known moment generating function (MGF) M , but whose density f (if it
exists) and distribution function F are, even asymptotically, unknown. For a large class of
distributions used for modelling (risk neutral) returns in finance,M is finite only on part of the
real line. Let us define F̄ ≡ 1 − F and r∗ as the least upper bound of all real r for which
M(r) ≡ E[erX] <∞, and assume that r∗ ∈ (0,∞). An application of Chebyshev’s inequality
yields

lim sup
x→∞

− log F̄ (x)

x
= r∗, (1)

and we may be tempted to conclude that

− log F̄ (x) ∼ r∗x as x →∞, (2)

where we use the standard notation g(x) ∼ h(x) ≡ lim g(x)/h(x) = 1 as x → ∞, but a
simple counterexample shows that this is not true (it suffices to consider F̄ (x) := exp(−elog x)

as x → ∞). However, we do expect (2) to be true if the (right) tail of the distribution is
somewhat reasonably behaved. Our interest in such distributions stems from the fact that the
crude tail asymptotics (2) and the mild integrability condition p∗ = r∗ −1 > 0 are enough, via
the tail-wing formula [4], to assert the existence of a limiting slope of Black–Scholes implied
variance V 2 as a function of the log strike k as k tends to ±∞. Indeed, in standard notation,
reviewed in Section 4, we have

lim
k→∞

V 2(k)

k
= 2− 4(

√
(p∗)2 + p∗ − p∗). (3)

Similarly, if q∗ ≡ sup{q ∈ R : M(−q) ≡ E[e−qX] <∞} ∈ (0,∞) and the (left) tail is reason-
ably behaved, we expect logF(−x) ∼ −q∗x as x →∞, in which case the tail-wing formula
gives

lim
k→∞

V 2(−k)
k

= 2− 4(
√
(q∗)2 + q∗ − q∗). (4)

Quite similar to the discussion between (1) and (2), there is an elementary derivation [8] of (3)
and (4) with lim sup instead of lim, while the corresponding limit statements are false in general.
Nonetheless, we may hope that every reasonable asset model creates marginal distributions
which do not exhibit oscillations in the far-out-of-the-money regions of the volatility surface.
In fact, we should be reluctant to call a model reasonable if it has such oscillations. The main
part of this paper is devoted to developing criteria that will allow us to check that a given model
is ‘reasonable’. Our working assumption, satisfied by a large class of financial models, is some
knowledge of the MGF of the marginal laws. It will be seen in Section 3 that (2), and then (3)
and (4) as a consequence, holds if the MGF behaves ‘reasonably’ at its endpoint of definition
r∗ (and similarly for −q∗). The right condition on ‘reasonable behaviour’, which covers all
our examples, will be given in terms of regular variation. That said, we cannot help expressing
our surprise that we were unable to find a simple statement of the form

r∗ ≡ sup{s : M(s) <∞} ∈ (0,∞)+ condition �⇒ − log F̄ (x) ∼ r∗x, (5)
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18 S. BENAIM AND P. FRIZ

in the vast literature on Tauberian theory, at least not with a condition sufficient for our
applications. (A statement of form (5) appears in a recent preprint [9] in the context of queueing
theory. The author’s conditions are significantly stronger than ours (see Criteria 1 and 2 in
Section 3) and would rule out important examples such as the normal inverse Gaussian (NIG)
model.) We remark that under the assumption of our Criterion 1, below, and the additional
assumption that

F̄ (x) =
∫ ∞
x

e−ry dU(y)

for some U ∈ Rρ, ρ > 0, which admits an ultimately monotone density (that is, dU/ dy is
monotone on [x,∞) for large enough x), we can obtain full asymptotics of F̄ (see [3]). These
will of course imply the crude asymptotics on log F̄ (x), which is all that we need to establish (3)
and (4). If the condition on ultimate monotonicity ofU ′ is omitted altogether, we can construct
counterexamples to see that the result does not hold true. The problem is that this condition
can be virtually impossible to verify in examples; a similar point was made in a recent work
[1, p. 5].

The proofs of our criteria rely on Tauberian theorems and, as we expect, the monograph
[5] is our splendid source. We then fine tune our machinery to the fashionable class of time-
changed Lévy models [6] and [11] and see how it applies to the variance gamma model under
the gamma-Ornstein–Uhlenbeck (gamma-OU) clock, the NIG model with Cox–Ingersoll–Ross
(CIR) clock, and also the Heston model. The moral is that most, if not all, popular models for
asset returns, with known MGF and p∗, q∗ ∈ (0,∞), satisfy one of our criteria, so that (3) and
(4) will hold. Numerical simulations demonstrate that the asymptotic regime becomes visible
for remarkably low log strikes, which underlines the practical value of moment and tail-wing
formulae.

2. Background in regular variation

For the reader’s convenience, we collect some facts from the theory of regular variation. If
f = f (x) is defined and locally bounded on [X,∞) and tends to∞ as x tends to∞ then the
generalised inverse

f←(x) := inf{y ∈ [X,∞) : f (y) > x}
is defined on [f (X),∞) and is monotone increasing to ∞. This applies, in particular, to
f ∈ Rα with α > 0, and Thereom 1.5.12 of [5] asserts that f← ∈ R1/α and

f (f←(x)) ∼ f←(f (x)) ∼ x as x →∞.
Given f , we can often compute f← (up to asymptotic equivalence) in terms of the Bruijn
conjugate of slowly varying functions [5, Proposition 1.5.15]. A positive function g defined
in some neighbourhood of∞ varies smoothly with index α, g ∈ SRα , if and only if h(x) :=
log(g(ex)) is C∞ and

h′(x)→ α, h(n)(x)→ 0, for n = 2, 3, . . . as x →∞.
The smooth variation theorem [5, Theorem 1.8.2] states that if f ∈ Rα then there exist
fi ∈ SRα, i = 1, 2, with f1 ∼ f2 and f1 ≤ f ≤ f2 on some neighbourhood of∞. When
α > 0, we can assume that f1 and f2 are strictly increasing in some neighbourhood of∞. In
fact, we have the following result.
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Proposition 1. Let α > 0, and let g ∈ SRα . Then g is strictly increasing in some neighbour-
hood of∞ and g′ ∈ SRα−1.

Proof. By the definition of SRα ,

∂

∂x
log(g(ex)) = 1

g(ex)
g′(ex)ex → α > 0 as x →∞.

This shows that, in some neighbourhood of∞, g′ is strictly positive, which implies that g is
strictly increasing. From [5, Proposition 1.8.1], g′ = |g′| ∈ SRα−1.

We remark that in the situation of Proposition 1 we have limx→∞ g(x) = ∞ and, hence,
in some neighbourhood of∞, g has a genuine inverse g−1 that coincides with the generalised
inverse g←. Kohlbecker’s Tauberian theorem [5, Theorem 4.1.2, Corollary 4.12.6] states that,
for a nondecreasing, right-continuous function on R with U(x) = 0 for all x < 0, α > 1, and
χ ∈ Rα/(α−1), we have

logN(λ) ∼ (α − 1)χ(λ)

λ
as λ→∞

⇐⇒ logµ[0, x] ∼ αx

χ←(x)
as x →∞,

whereN(λ) := ∫
[0,∞) e−x/λ dU(x), λ > 0. Karamata’s Tauberian theorem [5, Theorem 1.7.1]

states that if l ∈ R0, c ≥ 0, and ρ ≥ 0 then

U(x) ∼ cxρl(x)

�(1+ ρ) as x →∞

⇐⇒ Û (s) ≡
∫ ∞

0
e−sx dU(x) ∼ cs−ρl

(
1

s

)
as s → 0+ .

(When c = 0, the asymptotic relations are interpreted in the sense that U(x) = o(xρl(x)), and
similarly for Û .) Finally, Bingham’s lemma [5, Theorem 4.12.10] states that, for f ∈ Rα with
α > 0 such that e−f is locally integrable at +∞, we have the asymptotic relation

− log
∫ ∞
x

e−f (y) dy ∼ f (x).

3. MGFs and log tails

Let F be a finite Borel measure on R, identified with its (bounded, nondecreasing, right-
continuous) distribution function, F(x) ≡ F((−∞, x]). Its MGF is defined as

M(s) :=
∫

esx dF(x).

We define the critical exponents q∗ and r∗ via

−q∗ ≡ inf{s : M(s) <∞}, r∗ ≡ sup{s : M(s) <∞},
and make the standing assumption that

r∗, q∗ ∈ (0,∞).
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20 S. BENAIM AND P. FRIZ

In this section we develop criteria that will imply the asymptotic relations

logF((−∞,−x]) ∼ −q∗x, logF((x,∞)) ∼ −r∗x, as x →∞.
The assumption in Criterion 1, below, is simply that some derivative of the MGF (at the

critical exponent) blows up in a regularly varying way.

Criterion 1. Let F be a bounded, nondecreasing, right-continuous function on R, and define
M = M(s), q∗, and r∗ as above.

(i) If, for some n ≥ 0,M(n)(−q∗ + s) ∼ s−ρl1(1/s) for some ρ > 0 and l1 ∈ R0 as s → 0+
then

logF((−∞,−x]) ∼ −q∗x.
(ii) If, for some n ≥ 0, M(n)(r∗ − s) ∼ s−ρl1(1/s) for some ρ > 0 and l1 ∈ R0 as s → 0+

then
logF((x,∞)) ∼ −r∗x.

Proof. Let us focus on case (ii), noting that case (i) is similar. First we discuss n = 0. The
idea is an Escher-type change of measure followed by an application of Karamata’s Tauberian
theorem. We define a new measure U on [0,∞) by a change-of-measure designed to remove
the exponential decay,

dU(x) := exp(r∗x) dF(x).

We identify U with its nondecreasing, right-continuous distribution function x �→ U([0, x]).
The Laplace transform of U is given by

Û (s) =
∫ ∞

0
e−sx dU(x)

=
∫ ∞

0
exp((r∗ − s)x) dF(x)

= M(r∗ − s)−
∫ 0

−∞
exp((r∗ − s)x) dF(x),

so that

|Û (s)−M(r∗ − s)| ≤
∫ 0

−∞
exp((r∗ − s)x) dF(x) ≤ F(0)− F(−∞) ≤ 2‖F‖∞ <∞.

Since M(r∗ − s) goes to∞ as s → 0+ and we see that Û (s) ∼ M(r∗ − s), then Û ∈ Rρ as
s → 0. Hence, there exists l ∈ R0 such that Û (s) = (1/s)ρl(1/s), and Karamata’s Tauberian
theorem tells us that U ∈ Rρ , namely

U(x) ∼ xρ l(x)

�(1+ ρ) ≡ x
ρl′(x) as x →∞,

where l′ ∈ R0. Going back to the right tail of F , we have, for x ≥ 0,

F((x,∞)) =
∫
(x,∞)

dF(y) =
∫
(x,∞)

exp(−r∗y) dU(y).
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First we assume that U ∈ SRρ . Under this assumption, U is smooth with derivative u = U ′ ∈
SRρ−1 and we can write

u(y) = yρ−1l′′(y) with l′′ ∈ R0.

Then

F((x,∞)) =
∫
(x,∞)

exp(−r∗y)yρ−1l′′(y) dy

=
∫
(x,∞)

exp(−r∗y + (ρ − 1) log y + log l′′(y)) dy.

Since −(−r∗y + (ρ − 1) log y + log l′′(y)) ∼ r∗y ∈ R1 as y → ∞, we can use Bingham’s
lemma to obtain

− logF((x,∞)) = − log
∫
(x,∞)

exp(−r∗y + (ρ − 1) log y + log l′′(y)) dU(y) ∼ r∗y. (6)

Now we deal with the general case of nondecreasing U ∈ Rρ . From the smooth variation
theorem and Proposition 1, we can find U−, U+ ∈ SRρ strictly increasing in a neighbourhood
of∞, so that

U− ≤ U ≤ U+ and U− ∼ U ∼ U+.
Below we use the change of variables z = U(y) and w = U−1+ (z). Noting that U−1+ ≤ U← ≤
U−1− and using the change-of-variable formulae, as found in [10, pp. 7–9] for instance, we have

F((x,∞)) =
∫
(x,∞)

exp(−r∗y) dU(y)

=
∫
(U(x),∞)

exp(−r∗U←(z)) dz

≤
∫
(U(x),∞)

exp(−r∗U−1+ (z)) dz

=
∫
(U−1+ (U(x)),∞)

exp(−r∗w) dU+(w).

Similar to the derivation of (6), Bingham’s lemma leads to

− log
∫
(U−1+ (U(x)),∞)

exp(−r∗w) dU+(w) ∼ r∗U−1+ (U(x)).

Noting that U−1+ is nondecreasing, U−1+ (U(x)) ≤ U−1+ (U+(x)) = x so that

− logF([x,∞)) � r∗x,

where by g � h we mean lim sup f (x)/g(x) ≤ 1 as x → ∞. The same argument gives the
lower bound − logF((x,∞)) � r∗x, and we conclude that

− logF((x,∞)) ∼ r∗x.
Now we show how n > 0 follows from n = 0. Define V on [0,∞) by

dV (x) := xn dF(x).
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Clearly, V induces a nondecreasing, right-continuous distribution on R, V (x) := V ([0, x]) for
x ≥ 0 and V (x) ≡ 0 for x < 0. The distribution function V (x) is also bounded since

∫ ∞
0

xn dF(x) <∞,

which follows a forteriori from the standing assumption of exponential moments. We will write
V̄ (x) for V (x,∞).

Note that V has an MGF MV (s), finite at least for s ∈ (0, r∗), given by

MV (s) ≡
∫

esx dV (x)

=
∫ ∞

0
xnesx dF

=
∫
xnesx dF + C

= M(n)(s)+ C,
where

0 ≤ C ≡ −
∫ 0

−∞
xnesx dF ≤

∫ 0

−∞
|x|n dF <∞.

(We could do without the assumption
∫ 0
−∞ |x| dF , which follows a forteriori from the standing

assumption q∗ > 0. Finiteness of F on (−∞, 0) is enough.) By assumption,M(n) is regularly
varying with index ρ at r∗ and it follows that, as s → 0+,

MV (r
∗ − s) = M(n)(r∗ − s)+O(1) ∼ s−ρl1

(
1

s

)
.

Now we use the ‘n = 0’ result on the distribution function V , respectively its MGF MV , and
obtain

− logV ([x,∞)) ≡ − log V̄ (x) ∼ r∗x ∈ R1.

First assume that − log V̄ (x) ∈ SR1. Then V has a density V ′ ≡ v and

v(x) = ∂x(V (∞)− V̄ (x)) = −V̄ (x)∂x(log V̄ (x)) ∼ r∗V̄ (x) as x →∞,
since functions in SR1 are stable under differentiation in the sense that ∂x(− log V̄ (x)) ∼
∂x(r

∗x) = r∗. In particular, we have log v(x) ∼ log V̄ (x) ∼ −r∗x. After these preparations,
we can write

F((x,∞)) =
∫
(x,∞)

dF(y)

=
∫
(x,∞)

1

yn
v(y) dy

=
∫
(x,∞)

exp(log v(y)− n log y) dy,

and Bingham’s lemma implies that logF((x,∞)) ∼ −r∗x. The general case of log V̄ (x) ∈ R1
follows by a smooth variation and comparison argument, as earlier.
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Criterion 2, below, deals with the exponential blow up of M at its critical values.

Criterion 2. Let F , M , q∗, and r∗ be as defined above.

(i) If logM(−q∗ + s) ∼ s−ρl1(1/s) for some ρ > 0 and l1 ∈ R0 as s → 0+ then

logF((−∞,−x]) ∼ −q∗x.
(ii) If logM(r∗ − s) ∼ s−ρl1(1/s) for some ρ > 0 and l1 ∈ R0 as s → 0+ then

logF((x,∞)) ∼ −r∗x.
Proof. As for Criterion 1, the idea is an Escher-type change of measure followed by a suitable

Tauberian theorem; in the present case we need Kohlbecker’s theorem. Let us focus on case
(ii), noting that case (i) is similar. A new measure U on [0,∞) is defined by

dU(x) := exp(r∗x) dF(x).

We identify U with its nondecreasing, right-continuous distribution function x �→ U([0, x]),
and define the transform

N(λ) =
∫ ∞

0
e−x/λ dU(x)

=
∫ ∞

0
exp

((
r∗ − 1

λ

)
x

)
dF(x)

= M
(
r∗ − 1

λ

)
−

∫ 0

−∞
exp

((
r∗ − 1

λ

)
x

)
dF(x),

so that
∣∣∣∣N(λ)−M

(
r∗ − 1

λ

)∣∣∣∣ ≤
∫ 0

−∞
exp

((
r∗ − 1

λ

)
x

)
dF(x) ≤ F(0)−F(−∞) ≤ 2‖F‖∞ <∞.

Thus,

N(λ) = M
(
r∗ − 1

λ

)
+O(1) as λ→∞,

and, in particular, since

lim
λ→∞ logM

(
r∗ − 1

λ

)
= lim
λ→∞M

(
r∗ − 1

λ

)
= ∞,

from assumption (ii), we see that

logN(λ) ∼ logM

(
r∗ − 1

λ

)
∼ λρl1(λ) ∈ Rρ as λ→∞.

Define α ∈ (1,∞) as the unique solution to ρ + 1 = α/(α − 1), and note that

χ(λ) := λ

α − 1
logN(λ) ∈ Rρ+1 = Rα/(α−1).
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Using the fact that χ← ∈ R(α−1)/α = R1−1/α , Kohlbecker’s Tauberian theorem tells us that

logU([0, x]) ≡ logU(x) ∼ αx

χ←(x)
∈ R1/α as x →∞.

In particular, there exists l ∈ R0 such that logU(x) = αx1/αl(x). First we assume that
logU ∈ SR1/α . Then U has a density u(·) ∈ SR1/α−1 and

u(x) = U(x)∂x(logU(x)) ∼ U(x)x1/α−1l(x).

In particular,
log u(x) ∼ logU(x) ∈ R1/α as x →∞.

Now, y �→ r∗y ∈ R1 dominates R1/α (since 1/α < 1) in the sense that

r∗y − log u(y) ∼ r∗y.
Thus, from

F((x,∞)) =
∫
(x,∞)

dF(y)

=
∫
[x,∞)

exp(−r∗y)u(y) dy

=
∫
(x,∞)

exp(−r∗y + log u(y)) dy

and Bingham’s lemma, we deduce that

− logF((x,∞)) ∼ r∗x.
The general case, logU ∈ R1/α , is handled via smooth variation, as earlier. Namely, we can
find smooth minorising and majorising functions for logU , sayG_ andG+, respectively. After
defining U± = expG±, we have

logU− ∼ logU ∼ logU+ and U− ≤ U ≤ U+.
Then, exactly as in the last step of the proof of Criterion 1,

F((x,∞)) =
∫
(x,∞)

exp(−r∗y) dU(y) ≤
∫
(U−1+ (U(x)),∞)

exp(−r∗w) dU+(w),

and, from Bingham’s lemma,

− logF((x,∞)) � r∗U−1+ (U(x)) ∼ r∗x.
Similarly, − logF((x,∞)) � r∗x and the proof is complete.

4. Application to smile asymptotics

We start with a few recalls to settle the notation. The normalised Black–Scholes formula for
a call with log strike k is given by

cBS(k, σ ) = �(d1)− ek�(d2),
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where� is the cumulative distribution function of a standard Gaussian, with d1,2(k) = −k/σ±
σ/2. If we model risk-neutral returns with a distribution function F , the implied volatility is
the (unique) value V (k) so that

cBS(k, V (k)) =
∫ ∞
k

(ex − ek) dF(x) =: c(k).

Set ψ[x] ≡ 2 − 4(
√
x2 + x − x), and recall that F̄ ≡ 1− F . The following is a special case

of the tail-wing formula [4].

Theorem 1. Assume that − logF(−k)/k ∼ q∗ for some q∗ ∈ (0,∞). Then

V (−k)2
k

∼ ψ
(
− logF(−k)

k

)
∼ ψ(q∗).

Similarly, assume that − log F̄ (k)/k ∼ p∗ + 1 for some p∗ ∈ (0,∞). Then

V (k)2

k
∼ ψ

(
−1− log F̄ (k)

k

)
∼ ψ(p∗).

As earlier, let M(s) = ∫
esx dF(x) denote the MGF of risk-neutral returns, and now define

the critical exponents r∗ and −q∗ exactly as in the beginning of Section 3. Combining the
results therein with Theorem 1, we obtain the following result.

Theorem 2. If q∗ ∈ (0,∞) and M satisfies part (i) of Criteria 1 or 2 then

V (−k)2
k

∼ ψ(q∗) as k→∞.
Similarly, if r∗ ≡ p∗ + 1 ∈ (1,∞) and M satisfies part (ii) of Criteria 1 or 2 then

V (k)2

k
∼ ψ(p∗) as k→∞.

5. First examples

We discuss several exponential Lévy models; the risk-neutral log price is thus given by a
genuine Lévy process. For models that satisfy one of our criteria, the asymptotic slope of the
total implied variance (i.e. the implied Black–Scholes volatility squared times the maturity T )
is determined by the critical exponents in the MGF and by the Lévy–Khinchine formula, this
value will not depend on maturity. (This time-invariance property must not be confused with
the floating smile property of exponential Lévy models, e.g. Proposition 11.1 of [6], which
is a statement about the evolution of implied volatility over time: the implied volatility for
maturity T + t , as seen from time t , is independent of t provided that the implied volatility is
parametrised in terms of the moneyness and remaining time to maturity. In contrast, all the
results of this paper are concerned with the implied volatility (respectively variance) at time T
as seen from time t = 0.)

5.1. Criterion 1 with n = 0: the variance gamma model

The variance gamma model VG = VG(m, g, C) has MGF given by

M(s) =
(

gm

gm+ (m− g)s − s2

)C
=

(
gm

(m− s)(s + g)
)C
.
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The critical exponents are obviously given by r∗ = m and q∗ = g. Focusing on the first, we
have

M(r∗ − s) ∼
(
gm

m+ g
)C
s−C as s → 0+,

which shows that Criterion 1 is satisfied with n = 0. Theorem 2 now identifies the asymptotic
slope of the implied variance to be ψ(r∗ − 1) = ψ(m− 1). Similarly, the left slope is seen to
beψ(q∗) = ψ(g). We remark that [1] contains tail estimates for VG that lead, via the tail-wing
formula, to the same result.

5.2. Criterion 1 with n > 0: the NIG model

The NIG model NIG = NIG(α, β, µ, δ) has MGF given by

M(s) = exp(δ(
√
α2 − β2 −

√
α2 − (β + s)2)+ µs).

By looking at the endpoints of the strip of analyticity, the critical exponents are immediately
seen to be r∗ = α− β and q∗ = α+ β, and we focus again on the first. WhileM(s) converges
to the finite constant M(r∗) as s → r∗−, we have

M ′(s)
M(s)

= (2δ(β + s)(α2 − (β + s)2)−1/2 + µ)

and
M ′(r∗ − s) ∼ 2δα

√
2αs−1/2M(r∗) as s → 0+ .

We see that Criterion 1 is satisfied with n = 1, and Theorem 2 gives the asymptotic slope
ψ(r∗ − 1) = ψ(α − β − 1). Similarly, the left slope is seen to be ψ(q∗) = ψ(α + β). We
remark that the same slopes were computed in [4] using the tail-wing formula and explicitly
known density asymptotics for NIG.

5.3. Criterion 2: the double exponential model

The double exponential model DE = DE(σ, µ, λ, p, q, η1, η2) has MGF given by

logM(s) = 1

2
σ 2s2 + µs + λ

(
pη1

η1 − s +
qη2

η2 + s − 1

)
.

Clearly, r∗ = η1 and, as s → 0+,

logM(η1 − s) ∼ 1

2
ση2

1 + µη1 + λ
(
pη1

s
+ qη2

η2 + η1
− 1

)
∼ λpη1s

−1,

and we see that Criterion 2 is satisfied. As above, this implies asymptotic slopes ψ(r∗ − 1) =
ψ(η1 − 1) on the right and ψ(η2) on the left.

6. Time-changed Lévy processes

We now discuss how to apply our results to time-changed Lévy processes [6], [11], [12]. To
do this, we only need to check that the MGF of the marginals of the process satisfies one of our
criteria.

To this end, consider a Lévy process L = L(t) described through its cumulant generating
function (CGF) KL at time 1, that is,

KL(v) = log E[exp(vL1)],
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and an independent random clock T = T (ω) ≥ 0 with CGF KT . It follows that the MGF of
L ◦ T is given by

M(v) = E[E(exp(vLT ) | T )] = E[exp(KL(v)T )] = exp(KT (KL(v))).

Therefore, in order to apply our Theorem 2 to time-changed Lévy models, we need to check if
M = exp(KT (KL(·))) satisfies Criteria 1 or 2 then − log F̄ (x)/x tends to a positive constant.
Here, as earlier, F denotes the distribution function of M and F̄ ≡ 1− F . Theorem 3, below,
gives sufficient conditions for this in terms of KT and KL. We shall write

MT ≡ exp(KT ) and ML ≡ exp(KL).

For brevity, we only discuss the right tail (in fact, the elegant change-of-measure argument
in [8] allows a formal reduction of the left-tail behaviour to the right-tail behaviour) and set

pL = sup{s : ML(s) <∞} and pT = sup{s : MT (s) <∞}.
Theorem 3. Using the same notation as above and assuming that pL, pT > 0, we have the
following.

(i) If KL(p) = pT for some p ∈ [0, pL) and MT satisfies either Criteria 1 or 2 then

log F̄ (x) ∼ −px.
(ii) If KL(p) = pT for p = pL and MT and ML satisfy either Criteria 1 or 2 then

log F̄ (x) ∼ −px.
(iii) If KL(p) < pT for all p ∈ [0, pL] and ML satisfies either Criteria 1 or 2 then

log F̄ (x) ∼ −pLx.
Remark 1. It is worth noting that there cannot be more than one solution to KL(p) = pT . To
see this, take any v such that v > 0 and KL(v) > 0 (any solution to KL(p) = pT > 0 will
satisfy this!). From ML ≡ exp(KL), it follows that

ML(0) = 1 and ML(v) > 1.

From this and the convexity ofML(·), it is easy to see thatM ′L(v) is strictly positive and the same
is true for K ′L(v) = M ′L(v)/ML(v). It follows that w ≥ v implies that KL(w) ≥ KL(v) > 0,
the set of all {v > 0 : KL(v) > 0} is connected, and that KL restricted to this set is strictly
increasing. This shows that there is at most one solution to KL(p) = pT .

Proof of Theorem 3. (i) Noting that p > 0, let us first assume that MT satisfies Criterion 1
(at KL(p) = pT with some n ≥ 0), so that, for some ρ > 0 and l ∈ R0,

M
(n)
T (u) ∼ (pT − u)−ρl((pT − u)−1) as u ↑ pT .

From M = MT ◦KL we have
M ′ = M ′T (KL)K ′L,
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and, by iteration, M(n) equals M(n)
T (KL)(K

′
L)
n plus a polynomial in MT (·), . . . ,M(n−1)

T (·)
which remains bounded when the argument approaches pT . Noting that K ′L(p) > 0 (see
Remark 1), we absorb the factor (K ′L(p))n into the slowly varying function and see that

M(n)(v) ∼ (pT −KL(v))−ρl((pT −KL(v))−1) for ρ as above and some l ∈ R0

as KL(v) tends to pT , which follows from v ↑ p. Using analyticity of KL in (0, pL) and
K ′L(p) �= 0, it is clear that

pT −KL(v) ∼ K ′L(p)(p − v) as v ↑ p,
and so

M(n)(p − v) ∼ K ′L(p)−ρv−ρl
(

1

v

)
as v→ 0+ .

This shows thatM satisfies Criterion 1 (with the same n asMT ). A similar argument shows that
M satisfies Criterion 2 if MT does. Either way, the asserted tail behaviour of log F̄ follows.

(ii) The (unlikely!) case in whichKL(pL) = pT involves similar ideas and is left to the reader.

(iii) Now we assume that supp∈[0,pL]KL(p) < pT <∞, and thatML satisfies either Criteria 1
or 2 (at pL). SinceML = exp(KL) stays bounded as its argument approaches the critical value
pL, it is clear thatML cannot satisfy Criteria 1 or 2 with n = 0 and so there must exist a smallest
integer n such thatM(n)

L (pL − x) ∼ x−ρl(x) as x → pL for some ρ > 0 and l ∈ R0. We note
that

M(n)(v) = (K(n)
L (v)K ′T (KL(v))+ f (v)) exp(KT (KL(v))),

where f (v) is a polynomial function of the first (n − 1) derivatives of KL and the first n
derivatives of KT evaluated at KL(v), which are all bounded for 0 ≤ v ≤ pL. Noting that the
positivity of T implies that M ′T > 0 and, hence, K ′T > 0, we see that, as v ↑ pL,

M(n)(v) ∼ K(n)
L (v)K ′T (KL(pL))M(pL).

Applying this to KT (x) ≡ x leads immediately to

K
(n)
L (v) ∼ M

(n)
L (v)

ML(v)
∼ x−ρl(x)
ML(pL)

as v ↑ pL, and so M satisfies Criterion 1.

Now we discuss examples to which the above analysis is applicable. For all the examples, we
plot the total variance smile (that is, V 2(k, t) ≡ σ 2(k, t)t) for several maturities and compare
with straight lines, which have been parallel shifted so that they are easier to compare with
the actual smile, that have correct slope predicted using Theorem 2. All the plots are based on
parameters fitted to market data in [12].

6.1. The VG process with gamma-OU time change

We will consider the VG process with a gamma-OU time change and refer to [12] for details.
From earlier, the VG process has CGF given by

KL(v) = C log

(
gm

(m− v)(v + g)
)

for v ∈ (−g,m).
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We note that KL([0,m]) = [0,∞], so that pL = m. The gamma-OU clock T = T (ω, t) has
CGF given by

KT (v) = vy0λ
−1(1− e−λt )+ λa

v − λb
(
b log

(
b

b − vλ−1(1− e−λt )

)
− vt

)
.

We need to examine how this function behaves around the endpoint of its strip of regularity. At
first glance, it appears that the function tends to∞ as v ↑ λb, because of the λa/(v−λb) term.
However, upon closer examination, we can see that this is in fact a removable singularity and
the term of interest to us is the log(·) term. This term tends to∞ as v→ λb(1−e−λt )−1 =: pT .
After some simple algebra, we see that

exp(KT (v)) =
(

b

b − vλ−1(1− e−λt )

)λab/(v−λb)
exp

(
vy0λ

−1(1− e−λt )− vtλa

v − λb
)

∼
(

pT

pT − v
)λab/(pT−λb)

exp

(
pT y0λ

−1(1− e−λt )− pT tλa

pT − λb
)

as v ↑ pT .

Therefore, exp(KT ) satisfies Criterion 1 with n = 0 and Theorem 3(i) shows that M satisfies
Criterion 1 also. So, log F̄ (x) ∼ −px, where p is determined by the equation

KL(p) = pT = λb(1− e−λt )−1

and can be calculated explicitly as

p = m− g +√
(m− g)2 + 4gm(1− exp(−λb/C(1− e−λt )))

2
.

See Figure 1 for a numerical example.
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0.15

0.20

Figure 1: The VG process with gamma-OU time change. Parameters from [12]. The total implied
variance and slopes for three maturities t = 0.4 (dash–dot line), 0.9 (dashed line), and 1.3 (solid line)

years.
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6.2. The NIG model with CIR time change

The CGF of the CIR clock T = T (ω, t) is given by

KT (v) = κ2ηt

λ2 +
2y0v

κ + γ coth(γ t/2)
− 2κη

λ2 log

[
sinh

γ t

2

(
coth

γ t

2
+ κ

γ

)]
,

where

γ =
√
κ2 − 2λ2v.

This clearly tends to∞ as

I (v) ≡ κ + γ (v) coth
γ (v)t

2
→ 0,

and we can define pT as a solution to the equation I (pT ) = 0. Using l’Hôpital’s rule, it is easy
to check that

pT − v
κ + γ (v) coth(γ (v)t/2)

t

tends to a constant as v→ pT , and so

2y0v

κ + γ coth(γ t/2)

is regularly varying of index 1 as a function of (pT − v)−1. It is clear that this is the dominant
term in this limit, and so MT ≡ exp(KT ) satisfies Criterion 2 (at pT ). From earlier, the NIG
CGF is (following [12] we take µ = 0 here)

KL(v) = −δ(
√
α2 − (β + v)2 −

√
α2 − β2) for v ≤ α − β,

from which we see that pL = α − β > 0 and

sup
v∈[0,α−β]

KL(v) = δ
√
α2 − β2.

Therefore, the behaviour of M on the edge of the strip of analyticity, and the location of the
critical value, will depend on whether this supremum is more or less than pT ; if it is less than
pT , the latter is never reached. Recalling that exp(KL) satisfies Criterion 1 with n = 1, we
apply Theorem 3(ii) and obtain

− log F̄ (x) ∼ pLx = (α − β)x.

Otherwise, there exists p ∈ (0, α − β] such that KL(p) = pT for some p ≤ α − β, and since
MT was seen to satisfy one of the criteria (to be precise, Criterion 2), we can apply Theorem 3(i)
and (ii) to obtain − log F̄ (x) ∼ px. In particular, we see that, for all possible parameters in
the NIG-CIR model, (2) holds true. Smile asymptotics are now an immediate consequence of
Theorem 1. See Figure 2 for a numerical example.
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Figure 2: The NIG model with CIR time change. Parameters from [12]. The total implied variance and
slopes for three maturities t = 0.4 (dash–dot line), 0.9 (dashed line), and 1.3 (solid line) years. Observe
that the lines with correct slope do not perfectly line up with the smile, which is not a contradiction to the

result that V 2(k)/k converges to a constant.

6.3. The Heston model

The Heston model is a stochastic volatility model defined by the following stochastic
differential equations:

dSt
St
= √vt dW 1

t ,

dvt = κ(η − vt ) dt + vt dW 2
t ,

where d〈W 1
t ,W

2
t 〉 = ρ dt is the correlation of the two Brownian motions. Therefore, log St

has the distribution of a Brownian motion with drift − 1
2 evaluated at a random time T (ω, t) =∫ t

0 vs ds with the distribution of an integrated CIR process, as in the previous example. When
ρ = 0, the Lévy process L ≡ W 1 and T are independent and we can apply the same analysis
as above. Namely, the CGF of the Brownian motion with drift speed − 1

2 at time 1 is

KL(v) = v2 − v
2

,

so that pL = ∞, and MT = exp(KT ) satisfies Criterion 2; hence, by Theorem 3(i) and (ii),

log F̄ (x) ∼ −px,
where p is determined by the equation KL(p) = pT . When ρ ≤ 0, we can analyse the MGF
of log St directly and apply the same reasoning as for the MGF of the CIR process to deduce
that Criterion 2 is satisfied. Hence, the distribution function for the Heston returns satisfies
log F̄ (x) ∼ −px, where p is solution to (see [2])

(κ − ρvθ)+ (θ2(v2 − v)− (κ − ρvθ)2)1/2 cot

(
(θ2(v2 − v)− (κ − ρvθ)2)1/2t

2

)∣∣∣∣
v=p
= 0.
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Figure 3: The Heston model. Parameters from [12]. The total implied variance and slopes for three
maturities t = 0.4 (dash–dot line), 0.9 (dashed line), and 1.3 (solid line) years.

When ρ > 0, which is of little practical importance (at least in equity markets), the MGF
may explode at a different point (see [2]), but Criterion 2 will still be satisfied. See Figure 3
for a numerical example.
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