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Abstract

Let X1, X2, . . . , Xn be a sequence of independent random points in R
d with common

Lebesgue density f . Under some conditions on f , we obtain a Poisson limit theorem, as
n → ∞, for the number of large probability kth-nearest neighbor balls of X1, . . . , Xn.
Our result generalizes Theorem 2.2 of [11], which refers to the special case k = 1.
Our proof is completely different since it employs the Chen–Stein method instead of
the method of moments. Moreover, we obtain a rate of convergence for the Poisson
approximation.
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1. Introduction and main results

The starting point of this paper is the following result; see [11]. Let X, X1, . . . , Xn, . . . be
a sequence of independent and identically distributed (i.i.d.) random points in R

d, d ≥ 2, that
are defined on a common probability space (�,A, P). We assume that the distribution of X,
which is denoted by μ, is absolutely continuous with respect to Lebesgue measure λ, and
we denote the density of μ by f . Writing ‖ · ‖ for the Euclidean norm in R

d, and putting
Xn := {X1, . . . , Xn}, let Ri,n := minj �=i,j≤n ‖Xi − Xj‖ be the distance from Xi to its nearest
neighbor in the set Xn \ {Xi}. Moreover, let 11{A} denote the indicator function of a set A, and
write B(x, r) = {y ∈R

d : ‖x − y‖ ≤ r} for the closed ball centered at x with radius r. Finally, let

Cn :=
n∑

i=1

11

{
μ(B(Xi, Ri,n)) >

t + log n

n

}
denote the number of exceedances of probability volumes of nearest neighbor balls that are
larger than the threshold (t + log n)/n. The main result of [11] is Theorem 2.2 of that paper,
which states that, under a weak condition on the density f , for each fixed t ∈R, we have

Cn
D−→ Po(exp(−t)) (1)
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Limit laws for large kth-nearest neighbor balls 881

as n → ∞, where
D−→ denotes convergence in distribution, and Po(ξ ) is the Poisson distribu-

tion with parameter ξ > 0.
Since the maximum probability content of these nearest balls, denoted by Pn, is at most

(t + log n)/n if and only if Cn = 0, we immediately obtain a Gumbel limit limn→∞ P(nPn −
log n ≤ t) = exp(− exp(−t)) for Pn.

To state a sufficient condition on f that guarantees (1), let supp(μ) := {x ∈R
d :μ(B(x, r)) > 0

for each r > 0} denote the support of μ. Theorem 2.2 of [11] requires that there are β ∈ (0, 1),
cmax < ∞ and δ > 0 such that, for any r, s > 0 and any x, z ∈ supp(μ) with ‖x − z‖ ≥ max{r, s}
and μ(B(x, r)) = μ(B(z, s)) ≤ δ,

μ(B(x, r) ∩ B(z, s))

μ(B(z, s))
≤ β

and μ(B(z, 2s)) ≤ cmaxμ(B(z, s)).
These conditions hold if supp( f ) is a compact set K (say), and there are f−, f+ ∈ (0, ∞)

such that
f− ≤ f (x) ≤ f+, x ∈ K. (2)

Thus the density f of X is bounded and bounded away from zero.
The purpose of this paper is to generalize (1) to kth-nearest neighbors, and to derive a rate

of convergence for the Poisson approximation of the number of exceedances.
Before stating our main results, we give some more notation. For fixed k ≤ n − 1, we let

Ri,n,k denote the Euclidean distance of Xi to its kth-nearest neighbor among Xn \ {Xi}, and we
write B(Xi, Ri,n,k) for the kth-nearest neighbor ball centered at Xi with radius Ri,n,k. For fixed
t ∈R, put

vn,k := vn,k(t) := t + log n + (k − 1) log log n − log(k − 1)!
n

, (3)

and let

Cn,k :=
n∑

i=1

11{μ(B(Xi, Ri,n,k)) > vn,k} (4)

denote the number of exceedances of probability contents of kth-nearest neighbor balls over
the threshold vn,k defined in (3).

The term log log n, which shows up in the case k > 1, is typical in extreme value theory. It
occurs, for example, in the affine transformation of the maximum of n i.i.d. standard normal
random variables, which has a Gumbel limit distribution (see Example 3.3.29 of [10]), or in
a recent Poisson limit theorem for the number of cells having at most k − 1 particles in the
coupon collector’s problem (see Theorem 1 of [19]).

The threshold vn,k is in some sense universal in dealing with the number of exceedances
of probability contents of kth-nearest neighbor balls. To this end, suppose that, in much more
generality than considered so far, X, X1, X2, . . . are i.i.d. random elements taking values in a
separable metric space (S, ρ). We retain the notation μ for the distribution of X and B(x, r) :=
{y ∈ S : ρ(x, y) ≤ r} for the closed ball with radius r centered at x ∈ S. Regarding the distribution
μ, we assume that

μ({y ∈ S : ρ(x, y) = r}) = 0, x ∈ S, r ≥ 0. (5)

As a consequence, the distances ρ(Xi, Xj), where j ∈ {1, . . . , n} \ {i}, are different with prob-
ability one for each i ∈ {1, . . . , n}. Thus, for fixed k ≤ n − 1, there is almost surely a unique
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kth-nearest neighbor of Xi, and we also retain the notation Ri,n,k for the distance of Xi to its kth-
nearest neighbor among Xn \ {Xi} and B(Xi, Ri,n,k) for the ball centered at Xi with radius Ri,n,k.
Note that condition (5) excludes discrete metric spaces (see e.g. Section 4 of [20]) but not
function spaces such as the space C[0, 1] of continuous functions on [0, 1] with the supremum
metric, and with Wiener measure μ.

In what follows, for sequences (an)n≥0 and (bn)n≥0 of real numbers, write an = O(bn) if
|an| ≤ C|bn|, n ≥ 1, for some positive constant C.

Theorem 1. If X1, X2, . . . are i.i.d. random elements of a metric space (S, ρ), and if (5) holds,
then the sequence (Cn,k) satisfies

E[Cn,k] = e−t + O

(
log log n

log n

)
.

In particular, the mean number of exceedances Cn,k converges to e−t as n goes to infinity.
By Markov’s inequality, this result implies the tightness of the sequence (Cn,k)n≥1. Thus at
least a subsequence converges in distribution. The next result states convergence of Cn,k to a
Poisson distribution if (S, ρ) = (Rd, ‖ · ‖) and (2) holds. To this end, let dTV(Y, Z) be the total
variation between two integer-valued random variables Y and Z, that is,

dTV(Y, Z) = 2 sup
A⊂N

|P(Y ∈ A) − P(Z ∈ A)|.

Theorem 2. Let Z be a Poisson random variable with parameter e−t. If X, X1, X2, . . . are i.i.d.
in R

d with density f, and if the distribution μ of X has compact support [0, 1]d and satisfies
(2), then, as n → ∞,

dTV(Cn,k, Z) = O

(
log log n

log n

)
.

Theorem 2 is not only a generalization of Theorem 2.2 of [11] over all k ≥ 1: it also provides
a rate of convergence for the Poisson approximation of Cn,k. Our theorem is stated in the
particular case that the support of μ is [0, 1]d, but we think it can be extended to any measure
μ whose support is a general convex body. For the sake of readability of the manuscript, we
have not dealt with such a generalization.

Remark 1. The study of extremes of kth-nearest neighbor balls is classical in stochastic geom-
etry, and it has various applications; see e.g. [17]. In Section 4 of [16], Otto obtained bounds
for the total variation distance of the process of Poisson points with large kth-nearest neigh-
bor ball (with respect to the intensity measure) and a Poisson process. Parallel to our work,
Bobrowski et al. have extended these results to the Kantorovich–Rubinstein distance and gen-
eralized them to the binomial process, in a paper that has just been submitted [5, Section 6.2].
Theorem 6.5 of [5] implies our Theorem 2. Nevertheless, the approaches in [5, 16] and in
the present paper are conceptionally different. While the results in [5] and [16] rely on Palm
couplings of a thinned Poisson/binomial process and employ distances of point processes, we
derive a bound on the total variation distance of the number of large kth-nearest neighbor balls
and a Poisson-distributed random variable. Our approach permits us to build arguments on
classical Poisson approximation theory [2] and an asymptotic independence property stated in
Lemma 1 below, and it thus results in a considerably shorter and less technical proof.

Remark 2. From Theorem 2 we can deduce an analogous Poisson approximation result for
Poisson input (instead of X1, X2, . . . ). Assume without loss of generality that μ(Rd) = 1, and
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let ηn be a Poisson process with intensity measure nμ. By Proposition 3.8 of [15], there are
i.i.d. random points X1, X2, . . . in R

d, where X1 has the distribution μ, and a Poisson random
variable N(n) with expectation n that is independent of X1, X2, . . . , such that ηn = ∑N(n)

i=1 δXi .
Here δx denotes a unit mass at x ∈R

d. Let

Dn,k :=
N(n)∑
i=1

11{μ(B(Xi, Ri,N(n),k)) > vn,k}

be the number of exceedances of probability contents of kth-nearest neighbor balls over the
threshold vn,k for the process ηn. By the triangle inequality, we have

dTV(Dn,k, Z) ≤ dTV(Dn,k, Cn,k) + dTV(Cn,k, Z),

where dTV(Dn,k, Cn,k) is at most

E

∣∣∣∣∣
N(n)∑
i=1

11{μ(B(Xi, Ri,N(n),k)) > vn,k} −
n∑

i=1

11{μ(B(Xi, Ri,n,k)) > vn,k}
∣∣∣∣∣.

The last term can be bounded using a concentration inequality for the Poisson distribution; see
e.g. Lemma 1.4 of [18] (we omit the details). Together with Theorem 2, it follows that

dTV(Dn,k, Z) = O

(
log log n

log n

)
as n → ∞. This result is also implied by Theorem 4.2 of [16] and by Theorem 6.4 of [5].

Now let Pn,k = max1≤i≤n μ(B(Xi, Ri,n,k)) be the maximum probability content of the kth-
nearest neighbor balls. Since Cn,k = 0 if and only if Pn,k ≤ vn,k, we obtain the following
corollary.

Corollary 1. Under the conditions of Theorem 2, we have

lim
n→∞ P(nPn,k − log n − (k − 1) log log n + log(k − 1)! ≤ t) = G(t), t ∈R,

where G(t) = exp(− exp(−t)) is the distribution function of the Gumbel distribution.

Remark 3. If, in the Euclidean case, the density f is continuous, then μ(B(Xi, Ri,n,k)) is
approximately equal to f (Xi)κdRd

i,n,k, where κd = πd/2/�(1 + d/2) is the volume of the unit

ball in R
d. Under additional smoothness assumptions on f and (2), Henze [12, 13] proved that

lim
n→∞ P

(
max

i=1,...,n
f (Xi)κd min

(
Rd

i,n,k, ‖Xi − ∂K‖d) ≤ vn,k

)
= G(t), (6)

where K is the support of μ. Here the distance ‖Xi − ∂K‖ of Xi to the boundary of K is impor-
tant to overcome edge effects. These effects dominate the asymptotic behavior of the maximum
of the kth-nearest neighbor distances if k ≥ d; see [8, 9]. In fact Henze [12] proved convergence
of the factorial moments of

C̃n,k :=
n∑

i=1

11
{
f (Xi)κd min

(
Rd

i,n,k, ‖Xi − ∂K‖d) > vn,k
}
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to the corresponding factorial moments of a random variable with the Poisson distribution

Po(e−t) and thus, by the method of moments, more than (6), namely C̃n,k
D→ Po(e−t). However,

our proof of Theorem 2 is completely different, since it is based on the Chen–Stein method and
provides a rate of convergence.

2. Proofs

2.1. Proof of Theorem 1

Proof. By symmetry, we have

E[Cn,k] = n P(μ(B(X1, R1,n,k)) > vn,k)

= n E[P(μ(B(X1, R1,n,k))) > vn,k | X1].

For a fixed x ∈ S, let
Hx(r) := P(ρ(x, X) ≤ r), r ≥ 0,

be the cumulative distribution function of ρ(x, X). Due to the condition (5), the function Hx is
continuous, and by the probability integral transform (see e.g. [4, p. 8]), the random variable

Hx(ρ(x, X)) = μ(B(x, ρ(x, X)))

is uniformly distributed in the unit interval [0, 1]. Put Uj := Hx(ρ(x, Xj+1)), j = 1, . . . , n − 1.
Then U1, . . . , Un−1 are i.i.d. random variables with a uniform distribution in (0, 1). Hence,
conditionally on X1 = x, the random variable μ(B(X1, R1,n,k)) has the same distribution as
Uk : n−1, where U1 : n−1 < · · · < Un−1 : n−1 are the order statistics of U1, . . . , Un−1, and this
distribution does not depend on x. Now, because of a well-known relation between the distri-
bution of order statistics from the uniform distribution on (0, 1) and the binomial distribution
(see e.g. [1, p. 16]), we have

P(Uk : n−1 > s) =
k−1∑
j=0

(
n − 1

j

)
sj(1 − s)n−1−j

and thus

E[Cn,k] = n
k−1∑
j=0

(
n − 1

j

)
vj

n,k(1 − vn,k)n−1−j. (7)

Here the summand for j = k − 1 equals

n

(
n − 1

k − 1

)
vk−1

n,k (1 − vn,k)n−k = n

(k − 1)! (nvn,k)k−1
k−1∏
i=1

n − i

n
(1 − vn,k)n−k.

Using Taylor expansions, (3) yields

nvn,k = log n + O(log log n),
k−1∏
i=1

n − i

n
= 1 + O

(
1

n

)
and

(1 − vn,k)n−k = (k − 1)!
n

exp

(
−t − (k − 1) log log n + O

(
log2(n)

n

))
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Straightforward computations now give

n

(
n − 1

k − 1

)
vk−1

n,k (1 − vn,k)n−k = e−t + O

(
log log n

log n

)
.

Regarding the remaining summands on the right-hand side of (7), it is readily seen that

k−2∑
j=0

(
n − 1

j

)
vj

n,k(1 − vn,k)n−1−j = O

(
n

(
n − 1

k − 1

)
vk−1

n,k (1 − vn,k)n−k · 1

nvn,k

)
,

with the convention that the sum equals 0 if k = 1. From the above computations and from (3),
it follows that this sum equals O(1/ log n), which concludes the proof of Theorem 1. �

Remark 4. In the proof given above, we conditioned on the realizations x of X1. Since the
distribution of Hx(ρ(x, X)) = μ(B(x, ρ(x, X))) does not depend on X, we obtain as a by-product
that

P(μ(B(X1, R1,n,k)) > vn,k) =
k−1∑
j=0

(
n − 1

j

)
vj

n,k(1 − vn,k)n−1−j ∼ e−t

n
,

if X1, X2, . . . , Xn are independent and X2, . . . , Xn are i.i.d. according to μ. Here X1 may have
an arbitrary distribution and an ∼ bn means that an/bn → 1 as n → ∞.

2.2. Proof of Theorem 2

The main idea to derive Theorem 2 is to discretize supp(μ) = [0, 1]d into finitely many
‘small sets’ and then to employ the Chen–Stein method. To apply this method we will have
to check an asymptotic independence property and a local property which ensures that, with
high probability, two exceedances cannot appear in the same neighborhood. We introduce these
properties below and recall a result due to Arratia et al. [2] on the Chen–Stein method.

2.2.1. The asymptotic independence property. Fix ε > 0. Writing ·� for the floor function, we
partition [0, 1]d into a set Vn of Nd

n subcubes (i.e. subsets that are cubes) of equal size that can
only have boundary points in common, where

Nn = ⌊(
n/ log(n)1+ε

)1/d⌋.

The subcubes are indexed by the set

[1, Nn]d = {j := ( j1, . . . , jd) : jm ∈ {1, . . . , Nn} for m ∈ {1, . . . , d}}.
With a slight abuse of notation, we identify a cube with its index. Let

En =
⋂
j∈Vn

{Xn ∩ j �= ∅}

be the event that each of the subcubes contains at least one of the points of Xn. The event
En is extensively used in stochastic geometry to derive central limit theorems or to deal with
extremes [3, 6, 7], and it will play a crucial role throughout the rest of the paper. The fol-
lowing lemma, which captures the idea of ‘asymptotic independence’, is at the heart of our
development.
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Lemma 1. For each α > 0, we have P(Ec
n) = o(n−α) as n → ∞.

Proof. By subadditivity and independence, it follows that

P(Ec
n) ≤

∑
j∈Vn

P(Xn ∩ j = ∅)

=
∑
j∈Vn

(P(X1 �∈ j))n

=
∑
j∈Vn

(1 − μ(j))n

≤
∑
j∈Vn

exp(−nμ(j)).

Here the last inequality holds since log(1 − x) ≤ −x for each x ∈ [0, 1). Since f ≥ f− > 0 on K,
we have μ(j) = ∫

j f dλ ≥ f−λ(j), whence, writing #M for the cardinality of a finite set M,

P(Ec
n) ≤

∑
j∈Vn

exp(−nf−λ(j))

≤ #Vn exp
(−f−(log n)1+ε

)
.

Since #Vn ≤ n/(log n)1+ε, it follows that nα
P(Ec

n) → 0 as n → ∞. �

2.2.2. The local property. Now define a metric d on Vn by putting d(j, j′) := max1≤s≤d |js − j′s|
for any two different subcubes j and j′, and d(j, j) := 0, j ∈ Vn. Let

S(j, r) = {j′ ∈ Vn : d(j, j′) ≤ r}
be the ball of subcubes of radius r centered at j. For any j ∈ Vn, put

Mj := max
i≤n,Xi∈j

μ(B(Xi, Ri,n,k)),

with the convention Mj = 0 if Xn ∩ j = ∅. Conditionally on the event En, and provided that
d(j, j′) ≥ 2k + 1, the random variables Mj and Mj′ are independent. Lemma 1 is referred to as
the asymptotic independence property: conditionally on the event En, which occurs with high
probability, the extremes Mj and M′

j attained on two subcubes which are sufficiently distant
from each other are independent.

The following lemma claims that, with high probability, two exceedances cannot occur in
the same neighborhood.

Lemma 2. With the notation a ∧ b := min (a, b) for a, b ∈R, let

R(n) = sup
j∈Vn

∑
i �=i′≤n

P
(
Xi, Xi′ ∈ S(j, 2k); μ(B(Xi, Ri,n,k)) ∧ μ(B(Xi′ , Ri′,n,k)) > vn,k

)
.

Then R(n) = O
(
n−1(log n)2−d+ε

)
as n → ∞.

Here, with a slight abuse of notation, we have identified the family of subcubes S(j, 2k) =
{j′ ∈ Vn : d(j, j′) ≤ 2k} with the set

⋃ {
j′ : j′ ∈ Vn and d(j, j′) ≤ 2k}.
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We prepare the proof of Lemma 2. with the following result, which gives the volume of two
d-dimensional balls.

Lemma 3. If x ∈ B(0, 2), then

λ(B(0, 1) ∪ B(x, 1)) = 2

(
κd

(
1 − arccos(‖x‖/2)

π

)
+ ‖x‖κd−1

2d

(√
1 − (‖x‖/2)2

)d−1
)

.

Proof. We calculate the volume of λ(B(0, 1) ∪ B(x, 1)) as the sum of the volumes of the
following two congruent sets. The first one, say B, is given by the set of all points in B(0, 1) ∪
B(x, 1) that are closer to 0 than to x, and for the second one we change the roles of 0 and x. The
set B is the union of a cone C with radius

√
1 − (‖x‖/2)2, height ‖x‖/2 and apex at the origin

and a set D := B(0, 1) \ S, where S is a simplicial cone with external angle arccos(‖x‖/2).
From elementary geometry, we obtain that the volumes of C and d are given by

λ(C) = ‖x‖κd−1

2d

(√
1 − (‖x‖/2)2

)d−1
, λ(D) = κd

(
1 − arccos(‖x‖/2)

π

)
.

This finishes the proof of the lemma. �

Proof of Lemma 2. For z ∈ [0, 1]d, let

rn,k(z) := inf{r > 0 : μ(B(z, r)) > vn,k}.
Writing #Y(A) for the number of points of a finite set Y of random points in R

d that fall into a
Borel set A, we have

μ(B(z, Rn,k(z))) > vn,k ⇐⇒ #Xn(B(z, rn,k(z))) ≤ k − 1.

In the following, we assume that rn,k(Xi′ ) ≤ rn,k(Xi) (which is at the cost of a factor 2) and dis-
tinguish the two cases Xi′ ∈ B(Xi, rn,k(Xi)) and Xi′ ∈ S(j, 2k) \ B(Xi, rn,k(Xi)). This distinction
of cases gives

P
(
Xi, Xi′ ∈ S(j, 2k); μ(B(Xi, Ri,n,k)) ∧ μ(B(Xi′ , Ri′,n,k)) > vn,k

)
≤ 2P

(
Xi, Xi′ ∈ S(j, 2k); rn,k(Xi′ ) ≤ rn,k(Xi);

μ(B(Xi, Ri,n,k)) ∧ μ(B(Xi′ , Ri′,n,k)) > vn,k
)
.

Therefore

P
(
Xi, Xi′ ∈ S(j, 2k); μ(B(Xi, Ri,n,k)) ∧ μ(B(Xi′ , Ri′,n,k)) > vn,k

)
≤ 2P

(
Xi ∈ S(j, 2k); Xi′ ∈ B(Xi, rn,k(Xi)); rn,k(Xi′ ) ≤ rn,k(Xi);

μ(B(Xi, Ri,n,k)) ∧ μ(B(Xi′ , Ri′,n,k)) > vn,k
)

(8)

+ 2P
(
Xi ∈ S(j, 2k), Xi′ ∈ S(j, 2k) \ B(Xi, rn,k(Xi)); rn,k(Xi′) ≤ rn,k(Xi);

μ(B(Xi, Ri,n,k)) ∧ μ(B(Xi′ , Ri′,n,k)) > vn,k
)
. (9)

We bound the summands (8) and (9) separately. Since Xi and Xi′ are independent, (8) takes
the form

2
∫

S(j,2k)

∫
B(x,rn,k(x))

P
(
#(Xn \ {Xi, Xi′ } ∪ {x})(B(y, rn,k(y))) ≤ k − 1;

#(Xn \ {Xi, Xi′ } ∪ {y})(B(x, rn,k(x))) ≤ k − 1
)

11{rn,k(y) ≤ rn,k(x)} μ(dy) μ(dx).
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For y ∈ B(x, rn,k(x)), the probability in the integrand figuring above is bounded from
above by

P
(
#(Xn \ {Xi, Xi′ })(B(y, rn,k(y))) ≤ k − 1;

#(Xn \ {Xi, Xi′ })(B(x, rn,k(x))) ≤ k − 2
)

≤ P
(
#(Xn \ {Xi, Xi′ })(B(y, rn,k(y))) ≤ k − 1;

#(Xn \ {Xi, Xi′ })(B(x, rn,k(x)) \ B(y, rn,k(y)) ≤ k − 2)
)
. (10)

Since the random vector

(#(Xn \ {Xi, Xi′ })(B(y, rn,k(y))), #(Xn \ {Xi, Xi′ })(B(x, rn,k(x)) \ B(y, rn,k(y))))

is negatively quadrant-dependent (see [14, Section 3.1]), equation (10) has the upper bound

P
(
#(Xn \ {Xi, Xi′ })(B(y, rn,k(y))) ≤ k − 1

)
× P

(
#(Xn \ {Xi, Xi′ })(B(x, rn,k(x)) \ B(y, rn,k(y))) ≤ k − 2

)
≤ P

(
#(Xn \ {Xi, Xi′ })(B(y, rn,k(y))) ≤ k − 1

)
× P

(
#(Xn \ {Xi, Xi′ })(B(x, rn,k(x)) \ B(y, rn,k(x))) ≤ k − 2

)
, (11)

where the last inequality holds since rn,k(y) ≤ rn,k(x). Analogously to Remark 4, the first
probability is

P
(
#(Xn \ {Xi, Xi′ })(B(y, rn,k(y))) ≤ k − 1

) =
k−1∑
j=0

(
n − 2

j

)
vj

n,k(1 − vn,k)n−2−j ∼ e−t

n
.

The latter probability in (11) is given by

k−2∑
�=0

(
n − 2

�

)
μ(B(x, rn,k(x)) \ B(y, rn,k(x)))�(1 − μ(B(x, rn,k(x)) \ B(y, rn,k(x))))n−2−�.

(12)

In a next step, we estimate μ(B(x, rn,k(x)) \ B(y, rn,k(x))). Since f (x) ≥ f− > 0, x ∈ [0, 1]d, and
by the homogeneity of d-dimensional Lebesgue measure λ, we obtain

μ(B(x, rn,k(x)) \ B(y, rn,k(x))) ≥ f−λ(B(x, rn,k(x)) \ B(y, rn,k(x)))

= f−rn,k(x)dλ(B(0, 1) \ B(rn,k(x)−1(y − x), 1))

= f−rn,k(x)d(λ(B(0, 1) ∪ B(rn,k(x)−1(y − x), 1)) − κd).

For y ∈ B(x, rn,k(x)), Lemma 3 yields

μ(B(x, rn,k(x)) \ B(y, rn,k(x))) ≥ f−rn,k(x)d

×
(

κd

(
1 − 2 arccos(‖x − y‖/2rn,k(x))

π

)
+ ‖x − y‖κd−1

2drn,k(x)

(√
1 − (‖x − y‖/2rn,k(x))2

)d−1
)

.

Since infs>0 s−1(1 − 2 arccos(s)/π ) > 0, there is c0 > 0 such that

μ(B(x, rn,k(x)) \ B(y, rn,k(x))) ≥ c0‖x − y‖rn,k(x)d−1, x ∈ S(j, 2k), y ∈ B(x, rn,k(x)).
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Equation (12) and the bound f (x) ≤ f+, x ∈ [0, 1]d, give∫
B(x,rn,k(x))

P
(
#(Xn \ {Xi, Xi′ })(B(x, rn,k(x)) \ B(y, rn,k(x))) ≤ k − 1

)
× 11{rn,k(y) ≤ rn,k(x)} μ(dy)

≤ f+
k−2∑
�=0

(
n − 2

�

) ∫
B(x,rn,k(x))

(
c0‖x − y‖rn,k(x)d−1)�

× (
1 − c0‖x − y‖rn,k(x)d−1)n−2−�

λ(dy).

We now introduce spherical coordinates and obtain

f+dκd

k−2∑
�=0

(
n − 2

�

) ∫ rn,k(x)

0

(
c0trn,k(x)d−1)�(1 − c0trn,k(x)d−1)n−2−�

td−1dt

= f+dκd

k−2∑
�=0

(
n − 2

�

) ∫ rn,k(x)

0

(
c0trn,k(x)d−1)�

× exp
(
(n − 2 − �) log(1 − c0trn,k(x)d−1)

)
td−1dt

≤ f+dκd

k−2∑
�=0

(
n − 2

�

) ∫ rn,k(x)

0

(
c0trn,k(x)d−1)�

× exp
(−c0(n − 2 − �)trn,k(x)d−1)td−1dt.

Here the last line follows from the inequality log s ≤ s − 1, s > 0. Next we apply the change
of variables

t := (c0(n − 2 − �))−1rn,k(x)1−ds
(
i.e. s = c0(n − 2 − �)trn,k(x)d−1),

which shows that the last upper bound takes the form

f+dκdc−d
0 rn,k(x)d(1−d)

k−2∑
�=0

(
n − 2

�

)
(n − 2 − �)−d−�

∫ c0(n−2−�)rn,k(x)d

0
s�+d−1 e−s ds. (13)

We now use the bounds f−κdrn,k(x)d ≤ vn,k,
(n−2

�

) ≤ n�/�!, and the fact that the integral
figuring in (13) converges as n → ∞. Hence the expression in (13) is bounded from above
by c1n−1(log n)1−d, where c1 is some positive constant. Consequently (8) is bounded from
above by

c1n−1(log n)1−dλ(S(j, 2k)) sup
y∈S(j,2k)

P
(
#(Xn \ {Xi, Xi′ })(B(y, rn,k(y))) ≤ k − 1

)
∼ c2n−3(log n)2−d+ε (14)

for some c2 > 0.
By analogy with the reasoning above, (9) is given by the integral

2
∫

S(j,2k)

∫
S(j,2k)\B(x,rn,k(x))

P
(
#(Xn \ {Xi, Xi′ } ∪ {x})(B(y, rn,k(y))) ≤ k − 1

)
× P

(
#(Xn \ {Xi, Xi′ })(B(x, rn,k(x)) \ B(y, rn,k(y))) ≤ k − 1

)
× 11{rn,k(y) ≤ rn,k(x)}μ(dy) μ(dx). (15)
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If y /∈ B(x, rn,k(x)) and rn,k(x) ≥ rn,k(y), we have the lower bound

λ(B(x, rn,k(x)) \ B(y, rn,k(y))) ≥ λ(B(x, rn,k(x)))

2
.

Since f+κdrn,k(x)d ≥ vn,k, we find a constant c3 > 0 such that

λ(B(x, rn,k(x)) \ B(y, rn,k(y))) ≥ c3vn,k,

whence

P
(
#(Xn \ {Xi, Xi′ })(B(x, rn,k(x)) \ B(y, rn,k(y))) ≤ k − 1

)
≤

k−1∑
�=0

(
n − 2

�

)
(c3vn,k)�(1 − c3vn,k)n−2−�

∼ ck−1
3

(k − 1)! (log n)k−1 exp (n log (1 − c3vn,k))

as n → ∞. Since log s ≤ s − 1 for s > 0, (15) is bounded from above by

c4n−c3λ(S(j, 2k))2 sup
y∈S(j,2k)

P
(
#(Xn \ {Xi, Xi′ })(B(y, rn,k(y))) ≤ k − 1

)
∼ c5(4k + 1)2d (log n)2+2ε

n3+c3
, (16)

where c4 and c5 are positive constants. Summing over all i �= i′ ≤ n, it follows from (14) and
(16) that R(n) = O(n−1(log n)2−d+ε) as n → ∞, which finishes the proof of Lemma 2. �

2.2.3. A Poisson approximation result based on the Chen–Stein method. In this subsection we
recall a Poisson approximation result due to Arratia et al. [2], which is based on the Chen–
Stein method. To this end, we consider a finite or countable collection (Yα)α∈I of {0, 1}-valued
random variables and we let pα = P(Yα = 1) > 0, pαβ = P(Yα = 1, Yβ = 1). Moreover, suppose
that for each α ∈ I there is a set Bα ⊂ I that contains α. The set Bα is regarded as a neighborhood
of α that consists of the set of indices β such that Yα and Yβ are not independent. Finally, put

b1 =
∑
α∈I

∑
β∈Bα

pαpβ, b2 =
∑
α∈I

∑
α �=β∈Bα

pαβ, b3 =
∑
α∈I

E
[|E[Yα − pα | σ (Yβ : β �∈ Bα)]|].

(17)

Theorem 3. (Theorem 1 of [2].) Let W = ∑
α∈I Yα , and assume λ := E(W) ∈ (0, ∞). Then

dTV(W, Po(λ)) ≤ 2(b1 + b2 + b3).

2.2.4. Proof of Theorem 2. Recall vn,k from (3) and Cn,k from (4). Put

Ĉn,k :=
∑
j∈Vn

11{Mj > vn,k}.

The following lemma claims that the number Cn,k of exceedances is close to the number
of subcubes for which there exists at least one exceedance, i.e. Ĉn,k, and that Ĉn,k can be
approximated by a Poisson random variable.
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Lemma 4. We have

(a) P(Cn,k �= Ĉn,k) = O
(
(log n)1−d

)
,

(b) dTV(Ĉn,k, Po(E[Ĉn,k])) = O
(
(log n)1−d

)
,

(c) E[Ĉn,k] = e−t + O(log log n/log n).

Proof. Assertion (a) is a direct consequence of Lemma 2 and of the inequalities

P(Cn,k �= Ĉn,k)

= P
(∃j ∈ Vn, ∃i, � s.t. Xi, X� ∈ j; μ(B(Xi, Ri,n,k)) ∧ μ(B(X�, R�,n,k)) > vn,k

)
≤

∑
j∈Vn

∑
i �=�≤n

P
(
Xi, X� ∈ j; μ(B(Xi, Ri,n,k)) ∧ μ(B(X�, R�,n,k)) > vn,k

)
≤ n

(log n)1+ε
× R(n).

To prove (b), we apply Theorem 3 to the collection (Yα)α∈I = (Mj)j∈Vn . Recall that, con-
ditionally on the event En, the random variables Mj and Mj′ are independent provided that
d(j, j′) ≥ 2k + 1. With a slight abuse of notation, we omit conditioning on En since this event
occurs with probability tending to 1 as n → ∞ (Lemma 1) at a rate that is at least polynomial.
The first two terms in (17) are

b1 =
∑
j∈Vn

∑
j′∈S(j,2k)

pjpj′ , b2 =
∑
j∈Vn

∑
j�=j′∈S(j,2k)

pjj′ ,

where

pj = P(Mj > vn,k), pjj′ = P(Mj > vn,k, Mj′ > vn,k).

The term b3 figuring in (17) equals 0 since, conditionally on En, the random variable Mj is
independent of the σ -field σ (Mj′ : j′ �∈ S(j, 2k)). Thus, according to Theorem 3, we have

dTV(Ĉn,k, Po(E[Ĉn,k])) ≤ 2(b1 + b2).

First we deal with b1. As for the first assertion, note that for each j ∈ Vn, using symmetry, we
obtain

pj = P

(⋃
i≤n

{Xi ∈ j, μ(B(Xi, Ri,n,k)) > vn,k}
)

≤ n · P(
X1 ∈ j, μ(B(X1, R1,n,k)) > vn,k

)
= n ·

∫
j
P(μ(B(x, R1,n,k)) > vn,k | X1 = x)f (x)dx

≤ nf +λ(j)
∫

j
P(μ(B(x, R1,n,k)) > vn,k | X1 = x)

1

λ(j)
dx

= nf +λ(j)P
(
μ(B(X̃1, R1,n,k)) > vn,k

)
,
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where X̃1 is independent of X2, . . . , Xn and has a uniform distribution over j. Invoking
Remark 4, the probability figuring in the last line is asymptotically equal to e−t/n as n → ∞.
Since λ(j) = O((log n)1+ε/n), we thus have

pj ≤ C · (log n)1+ε

n
,

where C is a constant that does not depend on j. Since #Vn ≤ n/(log n)1+ε and #S(j, 2k) ≤
(4k + 1)d, summing over j, j′ gives

b1 ≤ C2
∑
j∈Vn

∑
j′∈S(j,2k)

(
(log n)1+ε

n

)2

= O

(
(log n)1+ε

n

)
.

To deal with b2, note that for each j, j′ ∈ Vn and j′ ∈ S(j, 2k) we have

pjj′ = P

( ⋃
i �=i′≤n

{Xi ∈ j, Xi′ ∈ S(j, 2k), μ(B(Xi, Ri,n,k)) ∧ μ(B(Xi′ , Ri′,n,k)) > vn,k}
)

≤ P

( ⋃
i �=i′≤n

{Xi, Xi′ ∈ S(j, 2k); μ(B(Xi, Ri,n,k)) ∧ μ(B(Xi′ , Ri′,n,k)) > vn,k}
)

.

Using subadditivity, and taking the supremum, we obtain

b2 ≤∑
j∈Vn

∑
j′∈S(j,2k)

sup
j∈Vn

∑
i �=i′≤n

P
(
Xi, Xi′ ∈ S(j, 2k); μ(B(Xi, Ri,n,k)) ∧ μ(B(Xi′ , Ri′,n,k)) > vn,k

)
.

Therefore
b2 ≤ n

(log n)1+ε
× (4k + 1)d × R(n).

According to Lemma 2, the last term equals O
(
(log n)1−d

)
, which concludes the proof of (b).

To prove (c), observe that

|E[Ĉn,k] − e−t| ≤ |E[Ĉn,k] −E[Cn,k]| + |E[Cn,k] − e−t|.
By Theorem 1, the last summand is O(log log n/log n). Since Cn,k ≥ Ĉn,k, we further have

|E[Ĉn,k] −E[Cn,k]| =E[Cn,k − Ĉn,k]

=E

(∑
i≤n

11{μ(B(Xi, Ri,n,k)) > vn,k} −
∑
j∈Vn

11{Mj > vn,k}
)

=
∑
j∈Vn

E

[(∑
i≤n

11{Xi ∈ j}11{μ(B(Xi, Ri,n,k)) > vn,k} − 1

)
11{Mj > vn,k}

]

≤
∑
j∈Vn

∑
i �=i′≤n

P(Xi, Xi′ ∈ j, μ(B(Xi, Ri,n,k)), μ(B(Xi′ , Ri′,n,k)) > vn,k)

≤ #Vn × R(n).

According to Lemma 2, the last term equals O
(
(log n)1−d

)
. This concludes the proof of

Lemma 4 and thus of Theorem 2. �
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3. Concluding remarks

When dealing with limit laws for large kth-nearest neighbor distances of a sequence of i.i.d.
random points in R

d with density f , which take values in a bounded region K, the modification
of the kth-nearest neighbor distances made in (6) (by introducing the ‘boundary distances’
‖Xi − ∂K‖) and the condition that f is bounded away from zero, which have been adopted in
[12] and [13], seem to be crucial, since boundary effects play a decisive role [8, 9]. Regarding
kth-nearest neighbor balls with large probability volume, there is no need to introduce ‖Xi −
∂K‖. It is an open problem, however, whether Theorem 2 continues to hold for densities that
are not bounded away from zero.

A second open problem refers to Theorem 1, which states convergence of expectations of
Cn,k in a setting beyond the finite-dimensional case. Since Cn,k is non-negative, the sequence
(Cn,k)k is tight by Markov’s inequality. Can one find conditions on the underlying distribution
that ensure convergence in distribution to some random element of the metric space?
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